
yF ON

Macintosh
Technical Notes

4

@.

Index

Developer Technical Support

June 1992

Note: Trap names can appear in two different places: under the name of the trap alphabetically and at the end of
the index, preceeded by an underscore (_).

TOT 7G Since tocvecsabiccedevecacesnvwoteceds Sounseaueosenivoneces 280
Go AMIULOD]: cesctvosenegs)setesesovseesseecsuvedtesebenecteleleaees 105
Co IMEth LADIES tescisce cree oteeaaieot en tatewass 93, 105
Fo™SCUPLOCSY cccoker oats cincostesseenasce ce tiwesbonsstitaeeeas 93

SOSH a Lh sins od eMeletcc toss ttet ccsvencautteare seers 129, 230
BIMICOG OS IR: sia ase ress eee Ns nsah sateatic TR ne 146
PAOUL BATIVER cosheoesostencescseect aotnowssdcueracsviuetsttesten 249
ATP Crivier s 22yets ahead n ehcdtadiccat eee ee 224, 250

BOUL GRIN isc ones ee eeecancuc tits acattecest ere aassee 102, 102
ENED GGiver si. Nonkict inca eed stsasiess pawohiwene aches ote 271
EMPP GSIVER ss ccotinse csertestetiiotnweseacet 224, 250, 311
sPRING, OPV EP si eshe Bettendes vetescckex ices eee 102

EXP bu Chi Vehics oinchasaacus cuties sat netaskeceeteeest es 250, 270
PBERR o.. Sccrsesncnes aan cvesdevapornsancabnabaesnceumsgee teeaann 292
PEVAIST Pico cceath Secucle ha cacsiarestetioestoatacdoct reget teces 292
MEA NEB d oockagacthssicans te coeaadesin as twecadtenad exanwseehicone 230
V2 ® MBs ses ivecestencietedetiessandoicesse ohio ek Sees 230
T28K. FROM Fi dieksscaisecsiksoxtbeadeetencsideae 198, 224, 232
24-bit addressingcceceeceeeeeeeeeeeees 212, 213, 285
2eebit *MOdes eos tei cee ek ee 213, 228, 229
32-bit AdATESSING: 403s secedessssiesesesctessses 212, 275, 285
32=DIL DUS ese wane eats bioreactor 230
52-bit Clean Asa evi ate ae ae 212
S22 Dit Clean ROM inte eesetee ecw svaesset tee eres: 176
32= DIE” MOE Hissscule elected ete 205, 213, 228, 229
32-Bit QuickDraw 193, 229, 275, 276, 277, 289
YP) Gal og pl} weer rrn tree eerrerercntrrerrerc teers 256
4- Mbit: DRAMS iss cvdsestseeceocasesdvcvaveccetscseveniahieee 176
AOOKCOISK 227. eae coe UE Ee eb hE Bs 70
(ote (8.0 Gis od B Ayam nina arg arec. ane enRE etle ASC R ao eel 230
GSO3O'PDS Foi5 edee ab eed chee nededioekees eta ebatee 230
SO=DILMORMAE Ai oste Se Ree te es ern co Se 146
SOUR CISKG: erates See ies Rt oh rete UE Set eae a ee 70
$924:-GC- Display’ Cardy. c.cscccsesce 53 Ry ackcaseeececasects 289
O6-DItfOrMat cstisccssonccckes stot eee Se haces wees 146
(@Operdlonn ite tese ceatustene eat eleva! 42,117
YN AG D, oneeneeny Aree Me er ress 212, 229, 278, 283, 284

Sy Stem Calls: i. 0.22. eicsescb ste sncsnoteheetsabeensts.tecesee 283
VN areterreere terres trite ror Pate pe cn tne Re ae 228
yO ERE REPRE Perr ere Sere 25, 136, 180, 208, 239, 256
ASU ets eatni eesS See Loe ees 256
POSIZE oie. teste Se 256
PAUINOGGso.2c2 cscs tees: BER ici eee ee 311
AB Pasintls ott se el sc ts alerst tx epee ele 132
BING cats tad echt eet a eee 9
absolute pointing CeVICE eee eeeeccceeeeceeeeeeeees 266

Index

ADUSIVCbiactiieg so scccs Seo cackets cieichileres ces acdosee 276
ACCCIEFALOL: UPSTAGES 5.2 ssctass 8ieiseeenescesesseveteeensevess 285
acceptChildDiedEvent ..:.:..0:.0s2sess-cesessiecdscteeseeese 205
acceptSuspendResumeEVents..........ssssecessseceeeeeeeee 205
ACCESS CITOM wsscesezieecie is cee hieviviviziebaetisesutess 292
ACCESS *PFIVIIE PCS. scce.sectescssceibuceevensteescescteate eons 186
SCCRUEMN ois acigcCcecctlacsieccedesudes toccees teewnca eee 248

Pi CIOS Co sceovi cee ceca vunia cca dhePosoee ee cose eeenwi sh eDiets 311

ACUHONMALOMD cocccaccersccds Sesst nse ehess eoesaarnse este 715

Activate: Palette csctc occas icodsikortihiieeterte. 211
AE NOG ee cisda® ctor eetasica tele sstn ose taadeuwoteetatessseteanelees 292
ADB ccwarcaetasthcssttsatecrsstoadi Rattus 143, 160, 206, 266

DOOl PIOCESS ssc scachanalsacseacddeesaiesiadevieavseiaste es 2
CADIES sic ctheniaathcddoensdesecesnnsetescustseeedostee tenons 206
Griver INStAMALION isos ccsescsecae lodctneeveadearersoroatenees 206
MICTOCONPOIIER ics esescihersadesiecisadorest dave ees 206

TELETENCES 5 ck OS et seh eteata du aebeaiens Sate da tute eet es 206
SELVIGE TOULINE iio.nc cceseisastivelarsaiacdeesseccehensee ees 206

ADB REIN It ates sesndicevteekicceieeer ee eee 143
ADB SoGierccardsciesccexsescsctesctusRocsct eee ee 206
AAI WIVE Stee cdiasdiviaciscvecssesedsossiacseeacervoeedeoes 36, 108
BIN OG is 5 echitea aan Sid ouids Sox eoreesseesesiccnsesae ease. 311
AGAR ELERCACE vesnesecseccetivesecdesavesStniscccse Mawceveueoetooden 2
AdGRESMENI iccces escucecoxeasescdeaeteashecesavesadss 191, 198
GOAGeSS AFiUNMClC +a. ossscceevccovssedeshaess Gilseswesesoste es 213
ACAVESSIAG % « scecscsvdsscueeeetcesspeccsbcoseawsaceebessteee 212, 213

DA sDi ti cidscocsestessionsseidesiostocdedvetiwiedetneees 212, 213

B32 Dito. Si ceeetadeiis chaeisecescatSesaceacsedsoevocnauaveston: 213
ADEINOG6 ie: c0ccerecdsceecsssasvenseseeo tee eee ee de cate ac 311
PEP oe ccdeteccsscacstesedscaecuse dastacte vO coe BLOM a de cetees 270
ADE V icc tract een east tele eaascestte sen esecdialiavie 311
BEEP aesticciodid tacts bocuccdoceSeacee ese AO 186, 195
Alvar (0) ASK: sivas scsccvedicavsracesvectesadesasWoceevestteawsete 171

A Geto sscssiseddicidtandccsstateeavetiweewot awd Mindeeen 311
AGEINOdEREF 3. c0scs56 ciceaecessecccstevaseneavena hdecdees sete 311
Alnstall sic. stucctisticstesteeteiveacedsead sev szshotetne eee 311
Alarm Clock ecsiaicics cecdecotiwessestsivbhewedeteeeon 85, 184

Allegro: COMMON LiSp.scceciscccs deslatessdeccsanstatces dee 231
AllOCCONU Go .22.5.s2éccesdesescaterenpeet es oettest neato 218
alISlAVEBIOCKSIZES: ccivsseces ese ee eekte donk s eee. 288
alpha VErsiON ec aveceisi ccsscegesst Gece eee stents 189
IOR soo codexadasastdi cose dlesaduceeseeeste ee eee 23

AlterNAle: ‘SCLECR cocbth cies cesses ree 113

alternate-screen buffer. 23.3..202. 0.5 ddl ieee 2, 126
alternate sound buffercccccceceececseseees 2, 126

IANS Ib dere scesaess coaseceseceedin Seed essercganechass tae ieeeree 208

1 of 19

Macintosh Technical Notes

2 of 19

AINSIGG covccssstssuvecececcsasset a vteeeewcceesevid esses 246,313 audio CD-ROM... eecicheceeeeeseeeeete Rate seats 66
PDN a avncsiisnaaanansisabasenieussannnarnieiionicionsvetinsk S11 «= -sauto-polling:...5:.4-.-3eteecee. Se Ss eae eee 206
OD DIE WV bewssvesadecitenceseedeatescexvchcegateced senacuaecnvesteuee 158 automatic style substitution cece eeeeeeeees 198
APP iocccssvescesdsicsnasivies saasascacascetssedecaesapeesenenddewcs 29. AULOT TACK... cicccssncssacssdsessseassasuesctessesesTessees tees 196
Apple Desktop BUS.......... eee 160, 206, 266, 271 auxiliary WINdOW IiSt/5.cccccsececsscecssssssocsseeees 227
Apple Desktop Bus Manager00.cseseseeeeeeeeee 206. AUX: FS FREE SPACE ...25cisisscscccseessiie.0thesesss 229
Apple HD SC Setup scasscscesssceasensssecscantesescoeessens 134 _ back off algorithm0.2.2.cd5.ccscsalbedi ea Seca estecedsoes 270
APP. MCNU:.c.scccc-nsccsestceesaceussneeesseeecsas 85, 180, 184 BACK CO1OD sncesesccassssssseweiesactcasesandssveeeeescatacsen ese 73
Apple: Sound. Chipscscscscssccsesveseseseccssees 19; 230, 268. — baCKSrOUN........0..cccssssscosedecssesseesassccee 158, 180, 192
AppleCD » SC visccscchissedccesssanesevesanseanesceueesarssseesse 293 PRUNING «222. ..sccsscecccsssvcdesscecncosrccvessavddessassaceses 192
AppleShare:...0cis.scssescsccstenveescesases 66, 114, 115, 116, PIOCESS wees sedincecncdsavcvecsdescscnascessseusstiee steccstsees 180

asveuebsaeisdbedaaedsdautsseeses 137, 165, 167, 186; 216, 229° “Dad DIOGK SPATING usa sssanwsenasgnwsngste spadererscncinendos Bor
AppleTalk........... 9, 20, 121, 132, 133, 142, 195, 199 Dad MOVCEMT: <0..005-.3i2cceccltiswesctcvesseassececeacecesseiales 229

Ssivassdesaansadeasiiens 201, 224, 225, 250, 270,311,313. © WASCAAG cscssdessssnsdnsncsscsssousinastensennstuetonenstne lg ate
AppleTalk Echo Protocol........ceccessessseseeseeeeeens DIO. - BOD vacessstsvarostasesedassecsstesteestiesees ieetecesaantes 189, oc
AppleTalk Filing Protocol.............:cesseeeeeees 186, 195 BGER wassscdesivosesacdscseeescesecaldeccsecedsctoscastesssscossneess

AppleTalk Manager 9, 195, 199, 201, 224, 225, Berkeley 4.2 File a ee

Laide dates lout ae ondteoctnidouseuipandbs +isens's exassreneeseestes 250, 270 - DWe VERSION sicencescscscsstecccccessesssceensncstactiecetaedsoenghO?

AppleTalk Phase 2eeeeeees 249, 250, 270, 311 bHasPersonalAccessPrivilegescseeeeeseeeeeees 186

AppleTalk Session Protocolccccesseseeeeeeeeees WOS: SBI BrO a sosies 25 cccadsasepessecnnosvesesedeneeGoeserteessepcheocvess 256

AppleTalk Transaction Proto...........sssceceeeee 9, 20, 270 binary:coded decimal:c-ss<scssssesesstss.sssevscecticetes 293

AppleTalk Transition Queue........... eee eee 250, 311 DIWMNAD 23 bss se scecavweveraevesssscetcesos 41, 117, 120, 193, 277

Apple. Divers oc. .sesiseseeesssssos-dsenesnacecacstacierens gaeees 258 BitMapR oMheccccssseiecnvsscscsaatecesesscessdascesdersded oc¥oeee 193

APPIPOMN teas. scecesecdeccsssdectznedads sacects vesvesressessoeteeee 191 BitMapTOREION :ccccccsccessessnesvesessvcsersasoceesvsdocees 193

APPlICAtON sede coneccacesssavevconnseoees 29, 48, 192, 211, 242 black arid: White’. ccssesssssccessccesscxascavesctstecacedcccavetes 276

POPE scdisosiein cnemusewdepeadiccadesccnesedeanseesabeecn-Ga 192, 242 BACK LeCtrOid 3 vcsccsendeascsddowsscsnsncsesesceeesesasceeuests 247

PAlCtte’, ices caassesanasswavexterseswseussensudateis a cstonseentes 211 blessed folder. ssissccassiceswecccesssccodeesdos 20, 67, 129, 229

SION ALU C vesss cececisaassvivscncsceoss easdeectantaessascasas 29, 48 DIOCK SONVEIS ia. oc.azcs0nsseoacavecesddvacsestesusiewasaceredoaess' 20

application paramMeters............eeceeeeseeeeeeeeeeeeeeeeeees 256: —_ BIO CK THANE CNS 5.35 dessxvenusiwedssecnasevvecenstesstsbnedoogss 288

ADPPIZONEG ies ssssseeinsednctsnestenvercnesesvensseesnccovenssctenenacs 2 BND I wsdawes capweancesoateseeseessseesans

ALTAY-GlAIOG-11EM ona dos ccasenssosesesedecacerssecdisarsaeeeeys 231 BOSDOAR wwaseidecesesicenaiiinnneeicnessdeesasseseesceceseccesosass

BITOW KEYS in seceseosshetewatasewtrnes senscanadesencnnpewnisenesasees 160 DOAIGS 53.05 csedasccsesacecdeureeseviecatenecesesegasasteceeesaes

artificial inteliGeNnCe 0. sce.ccedicdseveveossdeseeeasereoesaate 231 DOOL. DIOCKS wacécs ces cevstsssersceccstsswectleasectennaeene

ASG secossssabsieceaasectesdsshsadiisensecsstossanevteiecetsareddeee 19 DOOts HM sseccecssccescccossesscdssavetsendevnassstccvestsesteosse
ASEXUAL cass scsetcasccsccseseedocessseaassacneaioetiesareeees 247 BOG DIIVE secs cscscscatesccssanscecsiccctetacesscoceasssassen seed a

ASIC sevsvsesassccssayacessevesves sesssssacnctsseeneeeterses 271, 291 — DOOLIN «ss eseeeeeereeeceeeceeeeeeenees aeaveshesuse pevaccsscees’
HRS PE i. sacs ssbussvog ses tevavenessnas sagtanepeeease sen csMeieenteee 195 brain-damaged Laeee

aSSeMbly language............ccccsssscegenereerroees 200,223 break, serial
ASYNCHTONOUS..........sseseseeeeeeseeseseeeseseseneeees 249, 271 BSED scc.cccosastigtiercticccseweeeecatscctereccectesoscosssae tees

BIOIIVEE ss osvack aaaetaiencsathuasouemecsswcsasioteny siveGtasvestacee 249 BUfP Uh vcs sscossccncas-vosdyessesecsnastesnestocseseecoeses

| Seen ee Seis trues wreqetcrceal 271 ‘bug
. . Srial COMMUNICATIONceeeseeeeeeseeeeeeeeeeeeees 249 ADB iv csicscccosaseseatosssssscsesustevscesssscetcee st ss0Rlnotaes “206

atDrvrVersNum........... iietkapechuesenavonseysseasseess 129, 250 Allegro Common Lisp............. seataoecetepetespopets 231

LUST os sez dc sv asione caged beb saves teceseswacsavseneeececeeeteceues 75; 15 AppleShare:. 23 saSecceixasvdfsstesvoecosstione’s ss Sdoynteystce ..137

PSS cccs ooossecevestitecintereiticaseese ta, 9, 20, 270 Can RCI RESHIRCE isa caatacéncsoscsscaases s ceindtpaiciataaghsAOO

AT PGCtREQUESt cxinsescssesccceseetsaonedvonsees voessaasacaseas 20 "FUCBPBREC:ecsesesesvecdssessccasexed SS eewaseueess Sraaascagyae

CAT P80 5: scscsiscassasecvezzetesdsitesete.vonsseieven vous 20, 224 GetVINO .coccsecsiioecesssecsJcdsosee! Ssaccndeaneietas ace

RTP OBR ccccrcccezsonciincnseer tappounaniteanc tan nates 199 LASCE WAGES scocscxennanstrrsns Di toaaeacesaa seins
ATPRESPONSC vi essissenscicesceeSsccssspoesseeessedssasesWeses 20 LaserWriter ROMs
AT PUSer Data vcssicceasavesscecveveanaaedeteccccassdseresseves 250 Maca pp iiss cv 2.2 0 5c cons dussedessecctsscses yer

.ATTransCableChange isd ash is Selgsast sastesneeaeetueut 311 MIP W csccsecvsssarcsoaesecensesedeccelscuecvacsacesesesees
ATTransCancelClose wassUagungu cies steg satiate soe¥ 311 PBLockRange se
~ATTransCancelNameChange seashell eeneeeseces de 311 PrGenral. 22s. .36 20h sees scsi

AE TASC NOSE cna secccacesnnearaires Seubaedenssate pesteesacs 311 Script Manager ; eee

DT FRANSCIOSEP IED |. sasnsssssatinags capa tevwanesdecadzantanns 311 S CSTs cscseseesiencs oy, seal yaasuawsceuseses ore sse cata,

ATTransNameChangeAskTask.........cecseseessees wid] SCSI Manager..........cceceeeeelatleseetees Siaciensace tank

_ ATTransNameChangeTellTask............sesesesees iso l TESCrolls...c.cenclos cesacssecesessss eeseeneeteon ee re ‘

_ATTransNetworkTransition.........+..+.+++; evens ae 311 TextEdit =. <.ccssacedstaeesde vexdsticeniseee ise

Av ig Tro ~ | eee SD ee TORR TE I WaitNextEvent
insti: jaimebcalnantins Gacaaatecenacses DANII cds pcg seceit cassarpestcabearassetaxetens , 48, 147,

senesee einen Js he

Developer Technical Support June 1992

Bus Error Exception Processing:.:esseeeeeeeee 292
bus. error anglet.ws A. ectecsssstnaiets Basie ees 292
bus locking...........cccccceeeeceeee Neto et ta ee NNT, 221
bus master aera ee GPE Ai are 288
DYLESMCATING va cicsuscestadzsaeecsnesscbecossavs she se ncetonerees 282
byteCount........... Bi AOS as peepee a MERA EM onshe ies 171
C oskvacass ndaevibanetesdevessscoteonaeads 164, 166, 200, 246, 265
CHE Je cspshoscssteucsab ebusnsesqartvers Recast eeeter ae seucncasees 265
OF as od seat vad ondessecoaricuadaassasonveseesens onsoeesieceee 281
CADIS srcurei citation seawinius ev adeResudd este onataete ieee teriakeh 10, 65

VIG COS. caco3ees des ssteawentorececaueeaseecesvisvdncsesaseteetees 144
Cable Range Transition Eventcc:sseeeeeeees 311
CACHE :: covnsesscecsencswista ss sieevaasencseserestesedecorers 117, 261
GacheCOM hove .ccecsssessnshsessaccetecuuessecescsdasieuveleetet 81
CACIN Ginc: cascceseteccdesencsec ondsevessiosccsuovssuadesteceuderess 81
CAICCROMS |. ...sacscsesavesenedscsecesnes ed eves condeacseeeocenedes 212
CallA Ghai: ss2eeccesssevscesedeverdtabacnnesassantdsceesoeeises 250
Callback procedures:. «i. fectevecesssaseccuancsortescsewecosesees 265
Callback TOULINCS::. .46c.2.cicuceicesessscestecossened os avasseoee 256
Calling CONVENLIONS............ceccceeeesccesseeeseeeeeeeeees 256
CANBACKSTOUNG 2 cess cncvsebusmedicowwaccatas 158, 180, 205, 231
RANCEMNG is kes sasstnanshatelasseleasescunensaatccasavaeetetees 263
Card power allocation............cccceccceceeessssseenseeeeees 260
ANAS a 8s cfesea vie ss atetdaasehes aiet fea une aaede Gene aamaeuee shes 234

INUB USSF ccc ssnetiiccettnccset ieseestax cate 288
CALI D. vss poonssecc ase e le thesis scowoscsadocdaacseceeeetosate cease 161

CASE a SCNSILIVG x. ccacvesscaciecensesvaneds vecvevvenccdetensencsdsde 229
CALMOVG jonnccs ccxoea vs cee ceeds cdciesronsesaceteoesstnaséseeest: 218
COR ieee ecvenctdeie da uedecR her ina Saree diet naa Siac 2
CD-ROM yas cestescacseseith thatdes artiste aresestnes 66, 229, 293
ISG MOTMALtS . sscedseesvcsensacveocssevessvadsteeeteandesteees 209
IVER oi cake es coecenanadstairechhecaatesdeaaeessnete 271, 293
Foreign: File: ACCESS wiiwiisscsacansoesecoustevnsawees 209, 293
HOTMAUS: Sois0cdsacecessdensesvinnetiedscaeveateuieunveataceds 209

HIGH Sierra cssvcectcrcncoassansausesnacacctanseses octmmaaws 209
TS OR 9660 2 chesiresstavdgeracetmcd enters ectet See 209

7 Primary VOl; DESCHIPLON .cacécisssieecesssedeegedeacosves- 209
Standard Identifer Field:cssseeeceeeeeeeeees 209
N AIG AtGD sccetss ccevsxasteetociecch ie evegen tee ee 209

(21 5/0.) ee eee anne Cee eee ene mee See 209
GDEP As cisssaiiicctccsisstacelcsscaesinascasctetes 23, 196, 212
“MESSAGE PATAMCHELervesccescececcsscazenssesressecensss 196

$c PALAM /PATAMCIET os cscesesacescasesdstinded, cases Sepaye o8eees 196
DOV Sis id caeseadesesesesdasseeacstsvasassqenesennnseasigense 215, 251

wx “MERE SeOvial SWHCH.\..icis..0ccscaseveseseiessissese2 Ey: 204
» keyboard......... Cishceste eeepc die Manco nace 160
FINICSSAQCS ..ssaiceeccesaedos saoiecesstecsseseg sgaeverdzede artes 215

CORRES iaisiccsesavasvinenas necesasnts cas eae cere erates 277
ecll rectangle pOMler cc. edcsasvsvcedessdansevedaeestecseee 279
POMSIALP OM cvs sasaesccedis ose cs Suite denesesnaesee set 120, 211, 259
HAN RCURESOIICE «sie. cccsseesvueyecesereniseanseniesenceeaed 188
SG NALZ PIR Cl vas csinveverGsviatswettaveaxccuieeesnunsa ees 207
BORADISL SPACING fo scns scraenarsisnet dh xaon han een teaeoe 72
CharWidth pivbawesohdexiteuds ces ta cetideocsnaraen eae 26, 82
NECK RSIRCCONM 2c, aca a readiness 173
CHECKSUM cece; gevedesesetesdiaceseeeeenccee ieee es 7, 258
SHOCK SUM FING <.cissaassasisotacieretiearseravaaiitin: ai
RS UOOISOT i vnsrcecmtensssnsvasquntseyessesasudvag opatnouariintets 197
CHOOSCIBIUS oo ocs Getto s senscertieastesccciesssnede vers teect 250
CIC et «Peso Sieecemwexsdess consansOtteneiaiceast hsmeceene se 275

Index

CINfOPBROG 15.353: Mcsesssecseseessteden caee cask eee ee 204
10 So Soa oes c vets cu wtnue evedesdanseceseadetegseve det uauseabeveates 269

Class "Info: Tabless..scsvecicv betas. ccsvves dt deceaexceenes 239
CleanupDeRezzed ViewS.........cessceceeeseceeseeeeeeeeees 280
ClearDev \. isisscscesssisssccctssesecdeceisesesccceasctoossvedeiands 215
CliCK=*ClICK: MOE 5.4secssenensseceasceyevvvsexestuteveseciuaeks 260
CHR OOD wis ctessesssSesdetesae seccecstetocnsticast Baa trast ee 82
CLKS Hf occ. cconsssseotesesadrastrweisseritasazescvesbaseshnsrest 127
LID TEQION 05 ss cccssscdsseccadensnddesoceastaenntesdeesectods 59, 72
CHP PING di c<sicsdyccsadswanadssiusaseveccssessecevdseccntstendecyess 72
CHDRECrcscttieliatevetsnseosncsnadesatssikensceereseeas 2eeeuees 59
CIEOS isi. seodeectcasdecsaveccessnes tevsdeveschvensesteeaneriecs 231
CIOS Coscia ii Soea cadet ceaccassacsaeessccneuis DeaaeseSecevenTeeseess 278
ClOSC tran SIMON ies scsesseccssexsccsecstosesedeocasitesne ene 250
CIOSCAS W OIG 5 scsaiesciacsscsseseeccesesseecqensteocesseoeeress 256
ICIOSCRESHIN 6 3 ca ssicssacdestscevescivosstieshetesessesiavesss os 116
ClOSE W. Dis sis scassscsnedetniecs socececcssveteestosaseesvensobess 218
CUT 2 veskese sc tcaweist vac oguceel tack nceeee eaten seed 120, 244
CIs ssdssusssudacesuscadusd oenestsdsscostaposasioaececaxstuereevets 277
CMOS ia ssissccocthotns cchowaes tabesdeibest Siacadseedscastcenee 291
CODE casdec ete evestenscsnss Hoes eeniieteeietes 220, 228, 256
code
SOOMOM os ceencansc seth Seaesesnatvectedsehoausenoetesuenrestecs 53
SCLE MOGILYING woeceicsesseseescecescucwsexceas ss ctessarceess 117

CODE MOMUIC 2.225 cece vecwessseccesteceaee sen caocstasesteeset ec 256
CONOR ss ia sdacivvceatersGuceessacaeaseeddaesSeveersnaedd vepzececdes 277

CUTSOM s,s iwanuisdassutaseesessnesecvokeseestceataesaesavatnwnees 244
AIO 47, Geascacacsecentsnsccanseccscssatessceceosseeateesaecs 231
LOOK=UP TADI Exec cassuses sedaveadeissaseneeedteetvasedes 120, 277

MAD PING sas sdscudsavseduassasidecaasseevtuscneasseceseusscaits 277
MON 525-2 necscticaceseruscevicedsdedocadepesaeenseunesbeule 231
INOGEIS. 5 sas decadeestosessxtnascascadasdenseaanasaastoscsveaers 259
PEMGIN ses vecdvessactnwesneccorsenuesceah sa dedessauenses 73, 120
PADIS discs coewectctevadaavinclsmassesznestaeussesdevetsseeeet acess 277

Color QuickDraw...............00668 41, 73, 120, 129, 163,
Sa aaas neawnaveeneceutee tied cusedusentss 230, 244, 259, 275, 277

COIOMZANOMN S25: ods ices sasehenssanaennsusestsaebeesedieens 163, 277
Command key ...03ccsscecksscsseanstosereeeiccsacuarsinracsaas 263
COMI ENC IND h teaiaauste castebstenstcentes tactonsSegoe 263
Common Lisp Object Systemceeeeeeeeeeeee 231
COMMON SIONAL... i..c.c0ses can cosccoessenastcasesessenvediens 230
GCOMPACt: CISC ..cccsnscevececssdezecesencdd saviasesenstoes DUN 295
CompactMeM..3..cis.c: ssccasesevexesd ssategeosseens Baa sctses 51
compatibility............... 2, 25, 83, 103, 117, 126, 129,

pidocivenessecese 155, 156, 176, 212, 227, 229, 230, 232,
sesdevagesdcessalasentegacseseGeewaoess 268, 271, 273,.282, 284
PES racks iarelshased cdevectacosec aes eeszevaaeteunsilesae esate 44
large-screen GiSplayS..........sseccccceesesees finedtsensh OO
SANG ARIES 2.8. 07 fasts ctv cos tuedeviece sree seaetteees 47

COM Pla tiefirisilectesicete cates heseeteteacnt auarin ene 274
COMPSON TOBE 5 s6scces jc2e2escesssaxessaees e aapeen tink 180
COMPIessed: Gata. .-csccse0. ses ccesdsscocctotes Lessnitrasesten st 171
CONGILION COE TEQISLET sca'seio. occahesceservcealanccdpcrioeapazee
CONFIGUTALION: fle. .2. css sie cathe csnusssecceees errors 115
COnNECE COMEOL BIGCKS ves ccisesoascanscecesvpinpeatey pthON
connector, external drive Ca res METS 10
CONSCHING USET ccs. .ecesnsonstvacee oan prescaictnadetenent@
PONTO CAN os cisavencatessatascersonr uniesedivacces ene 272
control definition functions4. eu phenkecagtte 196
Control Manager.............eceeesseeeeeeeeee e296, 203, 212

3 of 19

Macintosh Technical Notes

Control: Panels <i: ccsessdsvscesdecsevsceeseztveceve 134, 215, 251
Control Panel DeVicex..c:.c.<ccssssaesscsancosseedess 215, 251
COMMON sisi ctsescerscweceensaesdessewssascesen stevedsseuseeeds 161
Control an Ge wis: :2<050s0cseed3eee~seinenietecsessoencdevencsaene 197
COMMONS S: ss:ccscc oc sadesnsaeseesiencecasetsaneiseseaseestetacoent 197
COPLOCESSOF vassesevecoaessnsereesevenstevonssessessusasze 235, 236
CODY. PIOLE COM exes eiseseceasassbeweesedstenesanecseus ues 117
COPY BUS is. sestasenacadseacdanetnasessdderasecosseceewnce 55, 163
COPY DOV asses eisaciesnswassscwsss senders cceossacessvertdsctdenses 215
CODY MASK otexiscec to oistinac tasecstsesessteceottencsesereecte 163
Copy Palette. ns. ccsccslacvecsssecnevstdeeiesestescisurestvesent 211
Oral SOR WAR ES iccccccesescussechtesncstsassoatoneevessessecces 231
COUNTY COE fos seed coanvesisdsenneditvsanyeedasiecckeeees cots 189
CPUFIAG sco ccwssaccscevsdavexsaxseesiasccnsinnanteomeasseveenecoeees 2
CreateResPiles..3s sees ves ccssenuecacssessscessasaresesees 101, 214
CLCALOE <saceceds cas essacewedtassex sundays spezadesecsteseagzetesseives 29
CSC OGG wsdedesieishcdias tevsiabotas snceveseti se steactueneseazcadess 272
CSPATAINS ccicevnasceesieccesextesssastensissestnesieceassess 262, 272
CUR Dosis dssdusincladaienessecsvesedaseentecsdcexseSeccctsara success 3
COTS cescties tas cetecarcadesceeccecueoeses seveniduaceweeicesencees 56
CISCO asses ceatessienusiveteeustvoasssswevsvatedinsoeasessosassenee: 277
CUPDIPS OTE scccontsdvsescmosas nedasesctassseeemysseceevedconads 80
(GUPTENTA Siscihssvsesddaciansdiasadivcnovedeceavvsotenvedess 25, 136
CUR wienesisioncs ceetocctendevecdadetensieeceastecusiasecenme ss 215
CUISING vase vedexececteGed oovocsnescstscetssscoatcseess ses etcqes teen 244
CUISOP DEV gasesies csdvadcues coves seondeuncstieuscbuadebyenscesente 215
CUPSYSENV VETS wise. csscesnccnsteedsencsaseganssdavesssiatentes 129
CUS T sats: dit isnectostonseeetianepanierncmniveetecweteacvevectesses 135
CUSTOM: “WIDER vise svsscssssacsceverecssestassiesineadsesnnenteass 290
CUED OW 5 35 sic stiesoeninanvotanwsacatenswcessaueisceunsseechecacsest 215
CWiINdOW ones tiscsnsidescecevedvscsevessavsienautiecessdeezessaeeee 211
CWind OW PU cs cccie'xiaacccwscdenctarsreessencenterensteansetics 120
damn the fragmentationceeeeeeeeeeeeeeeeeeeees 281
DD ASNEULANG <.ccies cdiacsedececvassvnsessed costes caedetensavestenees 91
Dashed Stop ce oncstcnacesaicesvesteveuteaverseed oe.ticontiierees 91
Gala CACNC se viccctis Ai tencidcseanchsinsesstectstoceensdosestoseds 261
Data Cycle Fault Address.............ccceeseseceseeeeeeeees 292
Data Delivery: Protocol ssccs.cccncdenss ds cce edetecesedetasues 270
Pata PORK 2S oscxdathawhseee de cover attecuawueademeaetsavtassehees 203
GALA SERVER eletecieialicosivebicn Sov crsfidstocsieedeloveaanteaees 20
data Sirictures'. Sy. saccsestasceed neat Meaesessase tie eee 227
Datagram Delivery Protocol fo sSvisxoewvtec tel 9, 270
dataHandle, in WindowRecord..............cesbeseeeeseeeees 79
ALES 2. 2. cect en deeeetedie cas overeat Castes eth aate tse sven stone 264
DB 1 oacsscctasccsdesvacntrecdis deta leedveeeteueNsscteaeusees 10
DBe25 fads ceecscdecetecetesse cotisieeseeoitvendserdssiteessozeiesces 10
DB-9....... Suis Gee aad pia Goaedsovaveeecuaeectaaatoarsexeedeeeetse 10
GBOXPIOG i sozsadenesstie evades eocsttcte lea aeeeateseseesstenetts 180
DCE ise rsaneztestosecceteauasics 71, 108, 187, 248, 250; 272
OCUDIIVER. 2222..40cidssetverateds loess. cee ceies.ceteehens 71, 248
TCT MEY =o) cance tostordomanteniiceetinene 266
ACUPOSItION: sicietteiiciatieteccnsstan te 187, 272
SPCUOUOE: sa22. Ssutebstien sd chess cotentees sh tessueceatateees 250
*GOCUUREINUM fy cieus odetet ovat their ccdetese cree 56
CUS OFAC sec: aes sedeches Seed enec cots eo eed uses eae 266
DDP isicvcees faaSlaSeadeustatSextsaaceee mat aeneeee ees 9,270

Gcath dWark css... ccossnezbseeonekcast Sezcesonncc tated +222 168
debtigger PKEY”..iss<celessssesseessesscestuusseseiesesde 20 256
GCDUSRING sfcrcesiscaservecsvesctogessaceess 7, 42, 51, 151, 235
Declaration ROM .s.sc.ssssesevsseevesssseiasecsssceseeuseeenes 230
declaration ROM. ssacciesseccsssscgesssqecsssqessteeeeweset coos 288
deCOGING: PICT S vec k. ces cnsgcetestsceestsenyostesesseteccess 171
deferred “task: .isisistsccsavesiggsceescsecasxseaedysscs ads Bieiess 221
Deferred Task Managersccsssecssseeseeeeceeneeees 271
GCFINILION. PIOCEMUTE....scccccccascrccscessestesssesesenedsedee 227
DELAY saccsesssidssvctenchoenicovscesesetecctstgssceseonn ts dacsceee 36 2
GO Pls .oicccccncs secs sed cus stecsedeandaxscctsdecoptonessieetaseiest 276
dereferenced handle’. .isscasscscseoesesdesgesatoactesdiestooese 232
GENCLEFENCING -..cdsenccesicsscnscosdacieceseegbssesssnescapsaeoses« 213
GESION oss o5ccvensasisesedscoscssacvassteass spansscgesssveces Seeaees 227
Merived CASS <. vscdssvasscwusceeesscesestsstvesseetesbecestescoss 307
GOSK, ACCESSOLY c spsscesdeccsevensacsceseorectenee 5, 23, 184, 248
DESKHOOK (i iscsenesecessceccesseses setezconececccsedasesdusonyeoes 247
DESKtOD saweececsiasscsssscsccsddizivessseecudesseess 194, 210, 247
Desktop: “BiSvsdsedessessecssdsnsueceseansuseedantesteoenstbeaiecs 206
Desktop fle scsocsdiasescevenesssnsvessetseoes 29, 48, 134,.210
HM ILAUONS v5 cc. evecebvncsccvenssacssendaseasoesseecatnnncees 210

GEStRE Chicvsissacccsdscesccacasccosde contesecsesesexse Rb deeees i237
GEVElOPMENt VELSION ss svcescsvceescecsesiedssaenevesstecegaess 189
Device Control: Enty se..cs ccsscsv tvs Hiessevesesyeos 248, 272
device driver 56, 71, 184, 187, 229, 258, 262, 278
Device, Manager ss<cescassdescseees. 197, 257, 262, 272, 293

CRVICE PACKAGES wi scswvesesisssuscasececsessacdadages ssecdereeoess 197
GEVICE SEIVER ooo ssescdcecucnsscvieneesseeeesaveecessivasscbensieaevs 20
device-independent printing......... cee eeeeees 122, 152
Diagnostic Raw Track Dump........ccscseseessseeseseees 272
dialog

PMCS ex sad cnoseevessonsisdactbonatentededcadtvscdecssetsaenees 34
NOOK’. dsc. sneeze Senude¥eccecsansuoaeed ect eeeaseeesadeesetee 47
TRE IM ie sececncueussdeueesdseviexs eteseacsabtes sateaeanstesetestets 112
item text DENAVION c....sescsesscssesnssaderpspanstesndestes 267
RATS SB eacelattsse acnstrincsereerte eee
USEF ILOM... cs ccsscsceccaccecses goasneccpates atl cnnsouledengel “34

Dialog Manager sss.cccevscaveascerseter-dee whee 203, 251,267
DialogSelectscitessctescavessivsssstaxcsvesces pesenseceds ereetse 34
DIB ad MOUND tissceccsceessnsesstacejstdassec'sess thinned O
Dir Greate cons siciccetesceesccscacachessvqas dagvaeeteceads 6S ene

direct Color G@VICE«.scc<s.ssssscessssscuees pdalediceotes tere re
Direct Memory Access ; z
GIFEGIOLY NAME scscsscndadedasxadvcseeasadqassscyedacocalsegacee ae
DID frsasteesecdcivsqteseavessscsse
OiSCvs:. seevsdiesecisassvsizanviascsascocepsvesnepsessségpee were
GISCIPIING ssdissesceecscsessatzccescssesseessodggees sueSee98 117. 151
disk. drive, fOreign............ise+ssersosi4qcreeeSin gots Rdseea es 8
DSK DI VEF . 60.003 seveasaaveacacetaayea gett ese tecciee
ISK: GIIVED cciesecense anceves enti cnens caeesesqsgeqenssenerts

SCSI cicavesstetatsssstinesics Asnohadossondgitnl “i
disk C17 OPS ..cc0...s0eec<cceseee Te piswoteeyes oesthddien tap sip 287
Disk First Aidcccccessssseeesettabtadfisnty 945 134
isk initialization se ececeenee eens ealea ged PqUT ge eone’
Disk Initialization Package eiehst Fos
DisposeAS WO8ld . s.cszcccstccssteasseaasses eseparensiavenee bee
*Pither Copy: «ccsscsevsssectsesssasseveeseovtardibsieaee

FCN

Developer, Technical Support June.1992

DIS CUE. Aiveiteectts css etn ede descee ob seeasseecudetetees ZID © CAVMACHCK is. .33s00cdeccecuseividetosseaveceetbabseedccaeetties 129
DIGDCICE 2. caiccsscxwnaasvsbsnnssevestensvcsestesesssessdsete sess 215 SNVM aC LE Nooo esas ce tee eodsosese le eoseenseSesssscectesexteee 129
DIG Paste sescc2..lecdagsrdeBiclsecessectenccstesseeecedtacteeds 215 CNV MAC eres oii. cera dececepdgss seth consedescoaecegateoseste 129
DEOGS isdiseschen es sei cidbe cots ouuawenecbeean veecies Veceeoueedeaes 23>) “CNVPOMADIC. cisssvccsncsacesccsgiwesevescsesbeceesctedsoedvecess 129
DIMA ovenceasicas cat duudebseerutasetesseaeesdetecs 221,.261.285. ~- CNVPOTTADBKKDG x. ccscavessecesericecenonensdeccesesecastecete 129

BULSHLTANSICP soos fevvecetcescicnsseteabteatecs Setiatesreees 230: envPortISOADBK bd a cisavscusessech dcnstetecadasettecs canoes 129
NGOGTIM Gis ds50.; sees acdesaeat etiaudeenees sussse ee acbaees 2DAS- ENVSE3O ieren: ec ateetede es rack ieee tilacshoes dase cdleusezisees 129
DOC ALC be. wees sei scsessss oucdacacasedssyetcesnsesteseredes dee acees $2) “ONVSE]TOOBIG ssc sscsccecovsscest cceseiseseteseteevescecxeesees 129
DO Dra W iesessvvsesedeaniuzt ce teesccatsctiatten eecititeeeeeauees S2_ “enVStdISOADBER Dd c., ss00secesssevess carcass eveneusseceteece 129
GORACE. cisnsisedostecessstthas Casvsecsnasd eeutieetttasees mest QOT oF HBOP vwscccdencedeesditeateesiseataesdasceceursisieetiteonascoats 188
MOT OSSIC cc sscstensstecesdevarcscaccasesseosassesspceusssveseacyes 207. — Erase: Calls) scolsicecsisscctesssateussteuvosascdaezcusvbesaneeteets 72
double-sided disk ceccsccccsssdscsossssecsecéveosidacesevesecat ese TO: ° cv EVASE DISK: swcessousettiesnsstasaees bebsvagareetedeweeetetess ewe 287
downloading OMt.. ...ccdocic.cseveeeiccscedesecessserspastepese 217 ERIK sss cactedcvssececedanvvensgvevossensseuvcwsteveeseavvswdsesies 126
GOD SIZE 4 cacti chats casa sshcastacsianecenssnesteaees 36- —enror handling, Dus erf0rs c...0c6: sei sentccasescnaereeesaice 292
Graft Mode: 2: awctstals saa tecDeecdtenedasn tees sgeoes cesses teeeee es $2. (CMOrs; NUBUS is. -sshecisdewssccss covigusavateasstacenaiasieaee 292
POLAR BES) 255. Sse asbeacs cs suaceds canceddessetacteee ate aetesoce 128: . EVADB ososssssceseveasisecestiecssueasveseavsiucedscvenevesteassss 84
DragHook ic cesssacdansesasseevervnecestecneathaseivevey ed oete DAT “SHC Tal evs cseesscvencschsGvaccecateessaiwscaeeecacs 250, 271, 311
DRA Moi iis. vaccsictecia eacatesdisedenconsameweeanacauseseteets 176 event
GRAM BASE bss sacantsevnsenasaisanecensarcsoinrsivanhseslagsetvasey 71 Key COdG: cts shee sessxedesavssscssexcednecdeletcateartouse tease 160
DAW GNA cast es Gas aeact ta sshoesvectirae se ead warenie 26 KO Y=CO WI tscaasttsteeatenavsinesteteasveaceewenedah ters sce at 263
raw CMU] ss. scecarsceten tn Sessa esteecettc suse saeaeamnteeecect 196 MAS owas sie beacescvelencdinsueten sxtewecdsceeccecesnceawcastss 202
Draw Controls sive cs ceca ccnenscesisduseencees duekenan deseence 203 MOUSCAMNOVED sic seuss saviegcanseesdoestaceeededeovesderieaaes 205
CEAWING) 5 ssvacseteccsscbacewedeeerencsacaeeeaasd 41, 60, 275, 277 TOUW ORK 5 «5s cassccisehce teas ave caseasadaeeettaigoseustar costes 142

DCOMS¥ 5 senissd eacekesneseaisancoseesces panceoneaaeeacee es ee eenee =) QUEUE sass nsscevscaseaesssvscncsadacusessuceuatesvendeursgences 229
OLE SCE Siig evaSeecSov sea tdecv aman extoessreusieas 120,277 sBVent: Mana tet s..cecsccssscaseactescesesesssccapseesstes 202, 229
OB the ESKLOD wiesi5 5505 seiazsrndieadsceessedeebaveemoantsives 194. EventAwaitl.s0:c00:.cesceeesccesesenetsebes.iedesedeeanes 194

DrAWPICUIIG:cc5o..02ctes cen scassditcossnedensseonusvencecsse> QU SD SOVAl si cestacessxce steed lexccssesedeusiss ecucsseceaies eeteeiasa eens: 247
STDEAW SUWANG. £ cs vs os odb oeasaes ans satan enor aeuseeomaierarausieeee 26: JEXcéllent > CD creesctscaheteetvsstecrsgecctivseveatecssat iets 293
DAW REX liasith vs dctadoesticweswss Abt ces ciavedaviaracstee te 207 EXCEPUION occes cc ccieasaidussccecscswabdousceassssautauceooteaeestens 2
CLIVE NUM DCF css scccccaccesssecevesdsavepeosrasenaddsicessceweats TT exception: handlerisn.scccihisssnsvsessecsdsssstaceseeesdsscsese 292
ANVE QUCUC:... 2. deca senctssescesssevonessesmestedeneysets 36,108 Exception Stack Frame.ici.c.ccccssssnsessnssvscssnsscesenss 292
IDFIVE: SLAUIS ijessnccbasantedvccesadssvanneuctuieugiencsnssnsdecee 272 Exception Vector Table. .ccccivescanssdesiiessvecasecssdcosas 292
IIVER oles ottrdesseuscebexecuaduseonseext 71, 108, 221, 248,282 executable COde reSOUFC€......... eee eeseseeeeeeeeeeeeeee 228
MAM Cis. 20ssckissoncanrdaccacissstces seiceernuss-ageceuasseaees 102° OXUSENVER S eeccccsoeceedcees eka veideevecezeesseensestenaen teeters: 91
SOP al as ccswecssasscuuscvaccdesvagesexadocecnadewesnteuntss eeeeae 56. «OXPANSION Cards... .c..ssacesssesceassaesserseess 230, 254, 255

OTIVEES saccsccdcctevisecec dunce deasstannadeoaies cosidectedestaseeve 283 expansion interfaceceeeeeeeeeee seen e e's Avsesledsaetts 230
GrOp OLDER. 3. F<. csticscnssaseccsassonnssesnsbssesenea ctetestetes 165: SEK ed 65... sos. ce sds cacesesoacessaseavtesteccvmeavecenste, te 146
POV) uk i enteacwesnictaasiniaonctopmnea man torataeden 86. “Extended KevbOard scsi: scscsnccsscsssssspsnemnssadsealicseaaes 206
PREIS sess ciicis'ss cetavasneswieimenstnads eee aoe 108 DE OS axaceciencdeeeveisuanssasiaecsevnndueninanucreen eet: 206
DIVIRCMOVCcaiserscccsattvsetieeascstet nantes & 108 — extensible applicationsceececeeeeeeeeeeeceeeees 256
EB DISKONIVER Ss acutesciawecdsscinassacsnadeieexaranseseeeaas 255 OXLEMANGMVE o..lescceccebsvsevedatesbcwenes desea teniencnsvetecmces 10
EDISKS wyedicciesavsveciuncagevcnnidsseciesanteescsetsneacusyaccede eee 255 external file system..............0 TE sdvesesctauadeseve 66, 229

SEG... daaveesedstesoese oh cvasweidts cad ted Posseacagacttteese sees 84 external routineS.......c4..i.00.eceseseeauede 3b eteadicved 135
BOILER, cs doreccacatbocstaweniomesnissstaecnoniahaisaeiivscnes 251 EXteMmal, ELM INAVON xs ococa56.bcssiss ord scecvessaew ders aetessas 213
BSE oleracea nines dedscnmp tbh tedstebuteet rena iaeuael 84 faceless background taskcssssssesssessoeseae 205

BB JOCk: DISK x canst ves beseaczscesedanscasdestenesseouaneasveaeded DIL~ ~ glake Nandle:.s 25.cs5 0. aes deesassuactvaseorecsncesrs deveatabidee 117
ESECHON,-PFOMALUITE ...!.accecatccaescdseras sossevesndatbocnens LOG! Sfall through ve ccscveceessedcicinavesteestssinossceweses car sectes 16
PE OCHONIC. DRISES ei ccasasrarevratsenacesseza ecermmnstectoag OO) PBS BIR eisccsissannseccddessccssitnantensendestiennitiengahe 180
HEAORISRO Li.) sscrassndswepisanieniseniesinenceaameo Gates BAGS HOB iva crcsssnstavucpanssltonpssaadedunhbesnincinmesehin’ 102, 229
SHIPLEY ODIOCG sitcansatcsscedonassatcndgrossacnevarestonsnsiretes 72, -PCBPBREG%sccscacssetsszcevcaszusecapassesi0eacsnuetbevexceeetes 87

ebnd-Ol-file, - range AOC k cs ccsccsicesccoscnsaitaeitavieaistolan TOG! pO SE cecasts see iesned ed ciaeiensd ul tectcdusas etadin ventas’ 102
MEI cisis Press inetepaasviawseaced ucaanttene es M27. SRO Mo oscack cheered cccanvassvegoageesiidedehuat.s<te aces 29
@Ad-Of-line. CHATACIET .,0s000ccsdazesseeenaadayietsaeMiossseare DID), . POU a: x: ccivasewasseaesteilotsans Wckspahumaasienciimeaatas 198
ENGFOPMSPHNUNG. 05; céovcesaccessoonsgatsendteesterssscaretees 91. LACOMMEN sass wedi seccesssvesecesdeoneccneeeetemeesserve las 29
EnumerateCatalog DeeTecs teens eS tae oes eee 68° hdFlagS) do cccetin ve a vacseccasexenskisststots abyeson abe tases 40
ENVOS 03 Oe: ssavisessceezeevanecsesescceae ocensuapiiauesdieeeate gs 12902 PDD yatadh dete ntantaedece<soereeieesseastieedses eeasesssedeet eo 50
SNVEXUSOADBRDA os secede csvescesnchesatvscsneteteetatiete N29 <HAOPENS cd.suss bcVececevsaaysea caves eudsiuasatvcrstussescetsesntse sss 246
SNVILONS VEISION 5 00353 scacvseasiceedetegeceeadcecancerseeds 129 POAULULES oc Ssee aie etag atau dons cagest SaShecscusgetehescue ates 227
SIUM AEN acl niictenipadiennasncninaaie ene: 109” BiB io sc ho isad i accis trac acleeentiecceawe eaeee 167
CHV MACHCI.<..c.cxensscconncsavnv’s deh onsaterseiteevtene tates V29 fle CACHE cesses ccccsvesdctewsscnguavensesisacousteeabe ewcdina es 313

‘Index 5 of 19

‘Macintosh Technical Notes

6 of 19

file filter 5, .352 f.cccsi Soeescctesteages aeesesdoete eshte 47 FONLFOIRCE sevnsscd saseetcaceeseteee. cttcbuncsssehans Paatveest eos 242

File Manager............:sss0ec0e+ 66;186, 2032204 218, LOPE aseccveves sn scetzeccech a ieccctsessedavtioctAm este 246, 246

bh ic esata Att aot sac aec at uluastaasaiSens 226.238, 246: 287 Fore COlOfscescscsssevesedevestuadess coctiseidocset tcetisiceee IS

TUE SELVERS oss cecsstesccsnessaccusccededscceeaddaceldcoevteceeseets 20 foreground application..............:.. baftbieecuuetes ances 167

PHLE ‘StrulCtiaiciccoysacivtacwedscsvacsecenscostedactotcsctessecses 246 ~—- Foreign File ACCESS..............sessceeeeee Soaanedezcossdeues 293

file system....... 24, 44, 66, 67, 68, 69, 77, 81, 87, 94, FORGIVING. 20.2 ce cesvecsusvssecscectstetsetecsesctesteesnsbh tases 264

he obit 102, 106, 307, 108; 130, 140, 157, 179, 190 FOrmal Disk ccssscsssccccsesssnatinceocrssomnnsistivettarenel >

PCNAMNG soo. 2de cssceccccexsctvecnvectealenssetseckdesceedsestease 107°. _- POPMSP LINING oas.c0.0esccceecssesssctstseseteveocsesesntea 2! 00 D1

JON GU secsecee cacesesesecees cassedecasnsseecnsas vases edesseaee 229 EPByteRangelocksisicsscsssseccscssestsscasvesssescovertess 186

FE DRCOG osssisccdacse site arenes wesuenestioreness 34 FRGCPie Dir Panis scccsccscsvsciseaasivenssenentniGeotes 137

PIEPPHOC vc. csnccsessnctensscssssecctsacecosetecrseczoseaaeivanes 203 PLA Risvisd iooevsseescoatedasnctuctesvecnsste htacenestecetateses 236

Find DIt6Mi...inscsscccsscaseseassas tenses saaxidaatensvecsetertes P12, ©. BRM VE seisesivcesed ceecendecesesevsedeessesssd0e-tsessussesarees 137

FINGER sccsccassatacs deasesestescusds 28, 40, 48, 114, 116, 126 FPSetFileParms........cscosesssecsscesdesteseestesteceeueestes 137

Bas Saeesaeesseeeus 134, 147, 189, 194, 202, 205, 210, 313 FEU oon Do, 146, 236

File: COMMENES-.sscrsscoesssssescsesscasesbstsssseyeses DIO: “FractBnable ancscecssscosatecsaseceveteesstencteee rseouseebee 91, 92

PAGS. oc; ceaesswesdeaschnsseceecamevnssessseusovesssbesseesaszese 40 fractional line width.........cs..sessecsssesressssesecdoasdecses 91

laUACHIN Ss eevsetecedes sxessetsevissaeocssdeesacetnasesoasceasse 126 fractional width font... Lvendeleuctucodivslscsteats 26

SUBIAUACHING sisedssvavs ancscesanssiecsdastosesdeesve soeeeteedt 126 ~ fractional, WidthSséscsssececcsescecdeessesonertteessves ee dl

Find WOPG) jecsccee.0cececcecssecesseteseoeetesests senssancoesateae 182: FASITIENIALION se cesescccdes onesassdeshenesomsereacdettvies ess 01.281

BIB Yo sdabtssviesdnavautienacaves acvavenandcaSmestcectaceaanstezate 8 FRANZ NCiccaiscanssesed Suteonsasencnataatevveadienstesds ores 231

PLAD=COUNCEL DY 16 ‘sss sus seo<ceco ons sassanjetsousecostrcsnsecedesee 171 fr COMMEN ts avsteieerceeeeeestiar aa etocsaste cso ee Ze

PLAT SCLLIAGS cccancccenssins'ses ch cigssvonsenanosstccrieceedseguetes DIG? “PREP visarcedeceavesQecceuesecntesdensescucstocs sedeSec 29; 48, 217

Flagship Naming Service...........ceeccceseceseeeeeee 311 FREEN UM wosicnadossceabardecunistbeednecoteeceewuesesestes vane 246

flashing MENU MEMS ...c5ccccacessscensseseessensstespaessare 222 FRESTOR Ehiscscccccccceccicssoasissscteassceesebesssaveaseneder 235

PLCKGERP cscs X wae vcwnsaedacsuinsabacacassenceiduniewsscvasseacneass 229 FSAVE svcsccvsisssnnsaiesdenacecsccseesassetesasecededdedestieess 235

floating-point FS Cale DISADIlC. cccsschecsscazodessdexasasiceesties-tossetslecttes 92

ANINMECLIC a. 055 svccssncaednecheesersonccensereiseatissisounene 236 - FS COSC. odssccsescdesasecesceensens sescnastsersvecssssesenconeses 102

EXCEPLION as. eedcecsces sssins seuetessaversuaanbebedesopnssnsense 235 FSECBLEN .::s0cscesecceccastscessdscetessdtiacacaadedsaetocsans 66

MINE etc dca ecwcceavewnoe pak edaencdoeaneseseceesuacts 129, 146 FS Open wsscccscavs seawecaentrsecasctedeesscessasthacees te ndacees 102

Floppy Drive, High Demsity.........ccccssceeseeeeeeee 230 ESUCAG: cssdacvancsreasivaseedeeavesatcoxsescancasscteccou sees ase 246

E MOV Eviecssseeses cesses teescuoacoasacionssxsescensssevesscctees 235 - full Speed Ahead c.2cccic sa cssessedcsweccieasasectusseddedetenes 281

FOB) ccctieviteosteoestesscecccaisenarenttevessm sieeeesets rachel D9 _° “PWHTLE .s.csececis. 000 c0sdecanasareesteceocsvsseuscettetdibe eet 246

POCUS iccddedeatelocdaciscaundasace de Mes oteitevecetsouccessuess see 280. GER format secssecwe ceeds cecescccesssedsossscaeussssessee 230, 272

OND) sche ccslesagetetasadevicendeseso 191,192. 198. 242.245 — GDEVICC sa. .ccwcvsvesvoseesssesnceuessdesecdestededesese dee 79, 120

LOM bess S550 eaececeouadeasedetet ee deste Ravasesdewseedeueiecieeestevess BO. SARE CBisensccsdisicciesssccsssveusorssvcavnocsteceesateses babecded. 79

ASSOCIALION tAbDlOss....2escescecessentssscesesosesessesaseooes 198 General-Purpose Input..............ccesseeeeeeteeeeeeees +.-+.286

COMO tale .d....dscevisscecacieseeccedeiseestensesseeestessaess VOS “Geb, AnfOvesseieesetvcccice codecs eaceasecnsciis

Gownloadable iscecexiics sb isie acta aesncdicevecesscesseceees 217 GerAppFiles...c.ccevsesvsevsacessosevese hush eSugetiosecestaben’ S77

fathily GESCHIPLUON. scccsciiet cect sscsdsesnesss cessseaesstes 198 GetAppleTalkInfo Steceade we

Ce ROMY EDs csacescesincensshnxsessiepdoevvertanasheanes 242, 245 GetBridgeAddress *

© FAN Y NAME F.3-c.c55 ca) evescl edt edieewwnvesseeceasses 198 GetDCuUEntry....:.....0..0scessessesdeesesces bslacssecees

* fanny MUMDE sis.cas5.sseersadtvtete axesoevien 191, 198, 245 GOLFNUM widsiecesestecsascvesesetectencdenstieteld cheese =

* fractional Width ..2....c0sseseccescesisceeeceseessseeeeeesees 26 —_ GetPOntName::...:....0cecenresciessecssrncsicitentigseb teased

height table... eee seceseeetetseeeeseteneeeeteneees 30 GetFontNumber SievesdevedibeeseZRee

TOON cad s2boackcsans coeeedsSesecccesanccs ca eenacs seetecents 217. ~— getFrontClicks

TAME sia cssas ies iea bees esdtatelacecescds cede tereh ss TOL, 198 . “GU COM s..scesicciceacdedssasersussdevessiotezeensee ee

TOSOUICES? vcccinsssdbacocssoselsSovedeasesdadedess ioe esseiaaaat 198 GeuUNnd VOLUMES 20200 sccecessssedseeseeeee TW oer

"Scaled Hisivdiediassdstetsteebeaveneteadalieecctanbenssedecsese 26 =GetlText ssbeeeasehi

SITAIC OWE eva ds S08et de ttecoustacioatessteeseces 191 GetLocalZones : :

Strike -TESOUPCE <5.c2i hence cdo dec betel scenesati setae ese 198. ~ GOUMENY sessccstcesescessacertttatooustesiies

style attributeeeee setSavndadeshi.<ssouceeews 198 GetMyQDVars as: 3s

_Styled SieeeS es dastecehiesase eee Pelevdedesuessledoastient 198 GetMyZone........... AL SEat Suave ettt oes :

UO Sot cc deictted meets Ppesataneatucseteuanatoacees 191 GetNewControl set

PONE sicssesvscseesieensscusetentosadyiasnntidessstenets 30,92, 191 GetNewDialog.......:...eeciseseeeteeeeeet Stiskes

PONT ecb oo coded ttaads aca Seatestecdeet ee ttsoe Ss 198, 237, 245 | GetNewWindow

fmt Te i278 Foccc beeen tikes hwes celebs Fels 217 GetNextEvent........ FS adieee eeaueceveiaeeet Wise

POU Man avers. ieccdi Sees esesdivadiscecatezecxetts 72,191,198 GetOSEvent................ Bs bosuatunsdeuss any ek Reese

Font Name Mapping Table’..-.22........ ele eeeeeeeeeeecete 191 GetPalette ..:2:2 cscccsdens: eee Se castete Ree ier eT?

“Font Registration Program...........ccscesssesesseeeees SOAS. SGEUIPRYSICA szcccteriewessvessesecestosibat Hest. dacdue easel

“Font/DA MOVEF:......0..cseseeeeseeeseeeesesss0, 23, 191, 198 GetPixBaseAddress ; bli

pk Atal eee eat Atal Senate ee Ge ee ee eee ee =:

Developer Technical Support June 1992

GElODGIODS isciscstwdustdastasexsestudeeate cevenekos Sere 256
GOlRESB ase is a5oese. cds acadtecces Sue's nae dcansay needbauus cnadeesooenss 6
GetResource........ pik insadecestes tec avetec tds: setae. cs 4, 154
GetRO thea essed sore eaetie teste ees Masher: 128
GURSID ala aes vettstaeeteenevecosieeenetirsstecdascetess 128, 173
GetStylS Crap secicsteccovatsess csacsansndsaszesstagens<oscreetes 207
GetSySUUSt Aci sssctscts cesses tearesedbesteereelecccssviteuacaes 267
RGICEL TAD AGCIESS,« vcsieress neck vschisetevvdurestoradietatcmebenoaees 2
Get VINO ccccusececkv her suds abevoustessswsavisenies See 157
GetV Ol osccdek ocistsck Siccedcaneseoesecwansaceageasedsaos setae 77, 140
GELW. DIRIGO e508 atc eceveenctedewtiadrnontessec testes 218
GetLW MS EP OM sieccvcsvvendesestsbiesedicdzscsscsivusseatea 194
GeIZONCLists. oui svescesseiesassaisiee. Siteeacteesedeaee 250, 270
BHAVCAUX sevevccccaccsasescudaverdecestaness <ecdedesetscodensie 238
IMM Gea .2 6 crcceneeatvelacngeosneswtsuvcceucessermovssvateetis 276
GIOD AIS. sicesssveteeverziecesscowssassederveeessneses 104, 208, 227

In ‘Stand-alone’ COE: ..c.csssecsecosecscssenisecissee theese 256
"QUICK DIA W weses hecsasnnse edeestserceansiesseestoterstaeteaes 256
SPO CO sii scncscensscssoesepectowteasvvecdecwssversacseteatyes vanes 223

DINGS cvsecuntadeteusncucedeesdeveiGavineessaxctesnt ossnientsneeiene 219
PLUS CODE Nasi. eerydved sence uisdecteeunsassssensdsadiccobeuvecaasees 256
OOD MING cos exiseesssamecusvdcesstevastanetecouessadieonbectiw ne 248
GP ivs .caicdetotvadssvoucednadsayzeaseseouveadeiwobistewsasusteteeses 286
GrAPPOM i sca tvetataenadoucoutnevsucseaenetianl Meaattes 41, 252
BTADNCT fev ccmires vivensdnwnisck Brcsieciss Wéadciedcsoet auceeeeces 231
PTAPHICS)..CSVICE:, cssssonceasavececadsucaseassieaseensexste 120, 276
SLADNICS CAD EL. is op sesssesvesessaveceuesaceaaneeretasateeanes Se 266
GEAVR ONS: 5.4%. sssececccrecosves Mes ceecceespoensreseees 79, 194
Group Coded Recording:sseeeeeeeeees 230, 272
STOW ZONE LUNCUON at a evcccecehesveescdueenctsaanwsaienareds 136
GW nd acct chevcvagenstesaxrcdexiadiiadiiesida. ites tee 277, 289
BZPLOC Sc csotens catincwes sastatus ended aeeasdyenean cebsnansseceaaeee 233
Nand-Feed Paper icsccisssccveasiadesvedecsdascseseasdeedscnssesos- 33
ANMG ees craseetisootasicssadichactstvecauen coset 155, 213

METEMETENOCD |i cet oswevecyadcninsicedteceseanesencseretetoric 213
WAKC 5s. Suess det seus vets <acevasdsades ttecaeetGadscssasanes-veoreds 117

POM siwus fh caniiesncdenessverecanewvcavsocdenveee eaueeesuteess 7,117
Man dleODjOCh ean csasstccanvsncotvansssvasvaces sonteatiauettece 281
ard Gisks ..sevessvsesiwscaclivzsesbanstevevnseveesseeseiteas: 134, 159
Hard Disk 20 ssscesvescasseeedeseccecsanstdcceegiscateesacs hes 272
HarGROCKCOCO) 06 asivesisiuuecciasemecrieceveratiartieteonee 246
PA WARE eetsasdevensiace deaseteccousss sosctucaehasst teste ae 234
NAMAWANE ACCESS ssc sseseenca ve ce sesiwnsesnicceeshsucacexceederes 229
HasColorOD savesscveccauiesercessenevavedss sh pees ee 129, 230
HaSDeptl.., .esssesvecsssesustacdeossseget lates eoesagenest .276
WASH PW vtaccnsevesecceseesctucediee Teac teat 129, 236
HashString........ wana lotus Museloswsdudeliusdauste eet eaters 29
HCIER Bits ssinssuvecesseeiieeccnseivenmstocsstevosvatentoneed ease 2
PAC ate FoF ss. cece lott oes os Weasietestiesse ster t e 218
FICTCALCRESRILG vestec tcniscazsstivasnentvtrreeudyeosdoretiees: 214
HD SC Setup................ ssesdensivesPeabeces susaaashateeas os 134
MCAD ZOMG sss sesces cc onset dao seancedenceedscteesa tet casaseenesieset 248

SHOAL GISSIPAUON «.caassssscaeacsacasevaccearsceee eeeeten ey ...260
NGA ita DICH cesteea ca wrases Hew le dies Semtobaestate eee 30

SMOCUPISUC oceasecueisiuadatastheves aexecsssasesasecincdesenta tees 270
FIPS vecscestecs sieved, 44, 66, 67, 68, 69, 77, 81, 87, 94,

bt rec sata Soest -101, 102, 106, 107, 108, 130, 140, 157,
saevemesee’ 179, 190, 204, 218, 229, 238, 246, 287, 293
PANHION . swaccayecvdceartess setuwe Mies dexd cones sduesatea tense 229

PAGES AUC aa sexta daeechaeroonete hear tewnssuecusdenucsassticetectest 2

Index

FSD SUGANO ya sssiaruccitcvs cacedtancavcncavenctendee’ 66, 209, 293
high-density iskS............eeeeeeeesseeeeeeeeees jean eaeeonte 230
HICOCK: ::vscchesesscnsssdecasccesascdoactseandscciegsaas@adevaves ee 2
IN OP UPS Cy ccicecducetecceacnesauvstesvesinsatdisceseeeteeitr eee Ste
HIOIG MOM OF wassieuce seach sets asc yak tea ccheateeesecteeate taste 285
HOOK . .<ssedseacsdsnadeateteuwasosedsed Anceenwoccosads saagtateiees 279
IQ PEN REESE ssc ces. seesessxeeanaeecaseuvcastescee tesecustee 214
NOTSE=WhIPPEd sn .csasteesPeesstewseanecesees Ree ae 280
HParamBlockRee «.scccissccsseciooscsccvihenoseescebowekt 66, 204
HAR UT SC oasccss sonssicesteadedses sens sesessveceesetsewestivencensewaee 2
HIS GER Bits satessscvcssscesesassavevscacsdevecsodedsaseeeeseesteseetee 2
FISCES (ANG aa vicsshcneteascesoass shat caaues raduedonetseantede tes 2
PUI OC Kos ooh sé cere casaex cceaatntecsteesssivencutetaxecee. cheese 2
HIWCIGEIA GS. cosdsctcsvcsacsvesseth acces QescinsMvesseentteaees 212
FY Per Cards axciactucedec cxssivenctaachtsissanlunsentiocis ss faecs 168

Dackeround primus: 2... ssessseswcdetdiwessaecneetesseets 168
DOMDS wis cevcdsee ccasedes csvenssacteverserbiceedetesevntoeets 168
DUG csecaccchnvssdsesenscnnesassiesssuseteusuvensusedeshewhenes 168
dialing the telephone...s0scsscansstucecsvels aeaedasuwedses 168
HIE LOLMAtiecissse.hecs costes de viest See teeta 168
PING 2:0. siaavesvecessensacceastancesseveleas ssnescecedeeesivesees 168
Globals and, XCMD Sik. sevsseavecnsacvesensenecort ee 38eeus 168
PY Perl alk ccatasscccstscenassinndccbvacncave Meevsdseectesstesas 168
LMI POROUS: TEX Eamets sec csvarstedtetShesssancecadesva tetas 168
LAUNCHING 222 oscssccecsevesesceiess sideseeiandnenssielasrtiess 168
0) 11a (0 | (pe ne en ee eee ee 168
Playin®: SOUNKS:...25:.seccee attests Ate 168
PPINUINE PLODIOMS se cissseidecodacssssseceessteceveecedeacse 168
TESOUICOMOIKS i. eticde3ceseecspsdiliewdccacceecadeweseisutee et 168
SCIOCLING EX ic sdeceestedecexste steed scesnesesiosetsietetecs 168
LEXU WON WIAD ecxecedeocce sta devctenwesiencsisiledtiiean hs 168
the: Neapspacesviic.s.scisstesdesheccoeoste esta eens 168
VISUAL -CLIECIS: 3. 5<2tatescsivanscctersscdtsacinnsdegquessseScacees 168

FyperCard "Snd * feSOULCE ssssacde ones ena ssenv eaten tl aeceeaes 168
FAY DCE ALK sxiosceceedece esas encitewceuspecteeretetees rete 168
W/O! Fee ssheentanessansesdawdude puplstdecectadeseeanneceesseere ees 246
W/O PIOCOSSOR: fcsexiseveseessiosasctavesreaeeveasens Sumarees: 271
VAC scsiet inst ves catanteenaesetisnncentsietede caucsdearteetaues 180
CNG Sci coesssaencess scckeussadesias 29, 48, 55, 147, 217, 252
IGON insccecesinsd Steen cvecessenotesdesddediacensd te QED OHO NOS
ICONS: iN MENUS wasscecesnssecsnudecete sear eSehscecastieesteceest 253
HD H33 cistsiecxcencesans sancusisvacechcbecssacsamosevttysaeel od
TEBE SpeCiiiCation .d01 sign acnaisieccesenssiennesoanactnniagad ae 234
MT Ex:SerialiS Witch Cdev... 3. .acccsojcesoacnncsesaatore teres lass 271
MOA DOF bes ccseteasiecicnaceskesssiatevessavasewccceossbteccetatss 161
IMAGE OPCTALO cco c.cc cdseececsicunadlanticaceseasshtPerestecs aes)
sLMMAQE WIUGT sninsssidseasssasneadsaiands 3,33, 72,:135:95,, 128
Foo] 1 Cod | aan ee rT me iE 124, 125

IMeMPUNEN sistas coscadteogvsadevecoassseaessccesterte 161
IMMED ives cccssuadsentcaassactesiuavevsesncassenadetestauaty 2, 44
in-line

assembly language............-.--.-s-+ss-sesssseeseper-e 126
PINE TOULINES «oc saicdcnoscesnaseescnaasatadtasecdcecseests 208

ENCIUGEPTOCS Cb ces svesvcssnnas cuccastenessdescsoowssaastvs 192
indm RRR eee ee REE EOE HEHEHE EEE SHEE EO EEE EESESESES ESOS EES r nee bs)

MINI 25. un cancs@t nceaavaain SesOacwes asaious tues csaets 75
DIND Fiscsaads censcsudeedsugeageices cet seas cczeegaes baits 129, 247, 256
IND OV isc sss esa sdeceasesiavshesetsosegs sssbauneeretvaneties 251
MIL GTAPHICS 2-0 ssssidesstevdevexseas jpsht cred iuiaseeeneg tiaras 91
IULANIZING MANARORS ...0iccesacsaceeensacnesiaceesinceetieacd 129

Macintosh Technical Notes

Lit MOMS 225 saci soncsaccssvedserienntedeessoevessdeseceeeese oes 211
PLS Sid < asus cccxeccessaecceedeesedetousavedeseusewassecenstaat 197
INIPAltteS..4.5....c.00cdecescdnsecessescerscsseccsssececensesesds 211

TEE WY INGOW Sicdcacissoscessecekes.cbcceceersseenssassesasoesbeccs 53

BEd ssa oesearsce eo ticewiactcneausestusieteus 2s ocesttosessiausaceseussuess 75

WAStAN ED .5...S0icsceeasiccenssdacacsasegataasdesdeswwctestucsssentecs: 75
Installing: MCMOLY..c...c.ccveedsro-asvesnsecssspeeecesaseneats 176
INSUFUCHON: CACHE). ccscsévendssceecaswssscsseessetessadeseesineset 261
interapplication COMM..........c cee eeeseseeeeeeeeeeeeees 180
INTET EA CEs. c.csvecsevscvccscccenddecsedenncacceseswedcdaasvantesaws 247
international ...c.:ccccssesieseresesssescssevacsevss 241, 242, 243

in K6YDOAIGS scevcssiessesasvevestecsessoassssaszesazemcnaetececess 263
INLEEN El veda cccsccscntecesssacddewarcevessetedwsovosseeveaeeest 9, 270
INterprocess COMMUNICATIONccceeeeeeees 180, 289

INECTTUDL 5 é5cccccseivsceceaverecesmseedecsaeses 85, 206, 221, 271

Wanidlet ences ccutr css an ives eons oaseusdeeanreteseesssee 25, 278
TALCTICY sicsiceesieasseccapesedeicenssaiasstsconsessscsemsseueres 221
PUIOTIUIES...cssessaecscsesssevecessstosecesecresesesssenseesers 251
SEFVICE TOULING voce. ceseececssiecacasaccceardtecewevnvsssessds 180

intersegment function Call............cccsseeeeeeeeeeeeeeeees 220
BINT vive dexveciivewacsxcspbagsaducoiskese nie ssatveveuseceswsess@eay 153
INTIFOTC 6 sicscspsccescccaesdecsersdenrincmcadestcsssaswssatdeesenes 242

intrasegment function Callccseseeeeeeeeeeeeeeeees 220
INZOOMU ei ossecsossssindscdoseeeseacwsexsaenedacseenteccsessicee’s 79

MZOOMOUL scssscacscsddoncsacacswse red occascvensceverecesesesees 79
IOCOMPIEHON05..ccs5cctsseeseswsesssexeedsavencseneesecees 130
TOD ITU ee vaiedcceawexteacestnsdeseccaceusoseu se casinaa eceeenoeatess 77
TOD PP ATID ws sainssccassseciasavceacesdevenechacswcstesedsoveosacsde 226
HORCB INGX soi wiv ev's vevsesdsessesedeaceectaedeccsasventedescwsss 87
TOP DIFINGOR: 5 c06iicsscsscascteeeierteswessccssccssswensivs nieces 69

IOFUCT Y POs. cccccasvssessesesesssdacdewasnenssaseescsovsacessee 102
GOPIPNAEIN FO sh .ccc.cscechisecssavscoessscavcats caw loasasetesexeoes 40

TOFINO ios isesics vcive senses snagavedetd oxeeedeseuvbacseeeebaestens. 77
IOFIVETSN UMN sic. ois ccdsdescssmewscoscssesseedeeentveesecsas es 102

TOL VETS NUM oe sscsdaxcssevoosaodectexDansecseuevsascsacaseaseesne 204
ION AMCPUG scascsasaccvarcsncsaceenssadceuaribocsdiledoswwns 69, 179
IONEWDITID Wei scccceccdinessiascsteseaccnceacssceecsetesseasetens 226
IONE WNAIME siisicciccscssscncscsecsssencecneveecetsnessscseostswses 226

NOP hip ooe aa cpoa ssh other Wwe ena odsatsestanscencotaseaes 271, 284
BYPASS MODE cisccrscecvavasecessdeonsscssasstysseseSexesess 271

ioPosMode, fsFromLEOF.............cc:sscecceeeseeceeeeees 186
HOP OSOELSE cscs cestewcssewsis bass deswewwasceuawssisveneaes 187

ION CIDSIZ6 essecsces exevente mieviarteenaveseavetionteeistectedeeess 204
TO VO EINEIN aissces soca avon deae the deat ener edeacddessetses 106
IOV. DEVIN [0 :eccccssunaiedascceetavescosssarcararsiaatecerntweste 106
MO VERGE IN (0 ives sccened. owadweesceedsagcuccrsecsnceeetpusteousseiee 67
RO VIEL KS sissescsavedisavaudesversssbecsasedeeaesesstssotaneets 157
IOVESID viacesanesssccscesdusensrseadliseanctactevedeaetcteicenees 66
TOVNMAIBIRS co ocncssoccchaciecrosscenesetdectosNesiess vesseas 157
IOV SIG Wt sins saavdsccoveccotzease. kere sisiteneiet eens Au Sees 66
1OW DDI D senesced detdies ses vessaawsedeccascowecwesteactuacces 140
SOW DPPOCID si scsvedocccaesbesezocest lets bosexesactiees 77, 190
PG csi cecesesasecdeeesecbsd aa eee vas caenuedasheceuctccests 180, 289
APPA DOLE cocsiccccdoies sectscsacsdessasdeveascaecs vedessscaveaaeece 161

IPR BitsC tlic. ccsccchsveseseisiwatseacosscsseans Pe ccsddeves etic 192
PIPPSAVEPF ih. csccst ci sodeesasecd sotanesncds ccavdeeedeeceetet esos 161
isS2BitCompatibleeceeeeceeeeeeees 3s sdsveuestuaien 205
ISDialOQEVENL...vccssssnossrnessoesssarevssanssceciescesteeethis 5

it hurts when I do that...............ccceeeeeeeeeees e228)
itemIcon
MO scsi. Acscesccecsasaeeuadvedocesessseescssd
HUY cs. Jos ces sdasnesusnas be vascesavasssosss iovessceseeesbesesseeeees
Ht ooo ccccs cs. sescadvoscios sdawas este senugaseedeseesesees ike
HELD .xadesdeveivezexscteeceveceecnies te avenesteiseseny tree
HUG: scncsiesceeccctuaaeseiscunonvonscceseesessusssesases
TUGetInd
TUSuData
EW M ic ssiscisstssssaiseccosanesscessscoosestipepsesdesces vest! sodees
jADBProc
Jane's HEAD ..ceecesieescvesssctaaesesesssctsesstscusscossstieesss 248
Japanese Macintosh Pluss:eeseeeeseeeeeeeeeeaeees 138
FGNEF U6? .ssnceccscsssccorssssosssescssnnmsesareummeemmague SO
ge ee aus dupes 55
JUMP OU svrsezesecosvodececnssessceccesooscensisnessee tea tepv oes 161
JUMP TABIESccessseceessscrcasseesseetes vdesettD 220, 239, 256
JUSUIFICATION :...45..000cccccersssooceseecoogsesnctecnaeeeesesttss 267
Kanji Valk. isscsisssoessoscesscecesassigeayesscsorsayeeostyveore 138
RBC VPC cscialceiccesceiaatactavaraccorsmemxtguncteapeceaees 160
IK CHR cavivexerbosdecensvccnasineace tesco oseenansves 153, 160, 263
KOPIN All xssscsicesaiccedenosesdensdecenssacsicecsceusesteasmesscenes 229
KEY COG cansececssnoenasoscsssssopesvgiaseanes perbcccwatevsigeees 160
KY MAPPING vecsssscanvsseseevsvsnsessccceseenennas .:...160, 263
Key-GOWN CVENL........:sssseseesssseseccceccecseuedonesenreoees 263
KCYlITANSissicne.cccsoupzeessacscesasksteseasesieend se. eyes hOO
Key2 Tian soncesscesevescccsroseevsncncsaesssassoanesvareupane se 160

keyboard
Apple: DeSkiop Bus .ssccectccressencasppetneurceaitacs 160
QIIVEF sci sesisesciceseesseceacsvacts saad sagestbe feodtesstekeyerss 143
POON PY ING sevcsivscenscaccescacsicenoseesacenescatensecepiyees 160
TSO isisssdsacasccenssiocsacudes.s ects snasteseseosoops siples sess fen 60
Macintosh... ...232...20000-dossesseescansaseeys sisadeedsvsees’ 160
Macintosh PIUS,,......ccssccccscccoseseseniestfneeepbootebes 160

KCY DAG ss. i5: ccs cesnecauetcescegsdblecensedesvocssostaesenereteenss 160
KIO es si terctetecelvet stains doc eewaebsacuarienias sshiysewasege IZ
KilANGetReg) .cidcccsvasiensvecssesasee scenes eer a!)
KillGZProc......... asbunabhaanedagatieasesoets saastetesbsgoelees
KGlINBP. 2.0 222sssseceswxntssctesnsnadeesd quovbfdedecyenetalghessael 99
KIUAS EE ssccccetssccessllaccencbesusienenseqeusansassoanseenemeenes
KMAP fev oie ceackasetvacwiensisSeucansasdacecteeretneppaten eee eons
LAUGAEG .n..ccecesceseonssestascessansesereese ties eeap’s

LAP. .ccesesccsscsenwadececaevesusdyessavenaqasetinte®
Lap MANA GET vs sccscccnesesctsecassacdesseasgasenneders e
large Capacity MCdIA............ceeeeeeeceeeeeeeeeees %
large-screen displays
Laser Prep io eexoveveeate tei

PASECS hale ss cccsueatuiiocswcsetctisstsusreicaaepiapaseneaeees 6.133
EASCEWITNER, <cscascsseccsseeesss 72, 91, 123, 128, 133, 152,

PeadingEdge flap i.-4-ssasaeGbeccelivdesetdedesconencoetecrepa l
beftSides flags uctc. Fc Dats djateceteissatcanssze 241

8 of 19

Developer.Technical. Support June 1992

Line DrCAKS sc2.scncdsbssec endecete ese eee eet ae 92 CRMASIET 2: civ cteiaccadoavvensctcsacsecasathadnaasdanaeseventonece 288
line BAYOU fie vasssbegsicaitese ety See. teat 72, 91, 92 MASLEM - POMNCKss.-..-.chen5eescsesssnedensssteatei sees se 7, 53, 228

line width, fractional. :i:..........cccccecedceessssssssseseseees 91 BIOCK Shc a cesesscebesisveens veteesesete cede te hste eee
LINCHEIG NG cose ccsesecseeidecscesteseseees ee ceateseceteew antes ds 237° — AMASLET POUMNUETS :n00.6cescceceelsensescedastantoaisesesseeteees 213
LincbayoutOn o.5.tsi.s.scecwsses vecascuasansatterdovseses P2E 91.” aMath: COPTOCESSON isssccesd vedacvnctesastecedyveaneae 235, 236
Lime lay Out ea cccieesteesicvescacssveetnGeiassevessascoesactees G1 © MaxApplZone iiscsccssssscsecscncasdvscavszesstnstcoanestteeese 103
MSINES taNtS > ccd o, eads- eke. teesasicn PMaloead en cesee ee acre QOT MAX DEVICE 2 sits. cececenxdes ovasccees<cesaciasows tase reveext riots 120
nitMsg... sadeaat dantadteathecavetexc: Ssessastancotdeeseieca tes 219” OMBAR sicsaxedecadsseciecaesvsanzed taveestuvestenes ceeee eee 23
DING 2e Septem cna atieeeastitee aisle tetceetu duel fastueSowea fodiens SB MBarlleighit.ssscscesssescescvsceevestescessecstacssees eters 117
Link Access Foca das cedeusshossiwesesaccensteeseedeetooenece O° OMBDE oosces sev cnssavetese<edess bectcesedsceseabeegeessevaes 233,227
NK CR Sen cwasat ess deaceest ces acdscacesSessteleecvoasvesceeseees 256,» SMCG8020)..:2:.sssszsatawcsnepseseccctedeveticcbessectasceset tees 282
ASD cvetiesdionct cast sPedeciseseccadetuaattngeevedssecencdvess iets 231. s IMEGSO30 5 tevcctecrecactesa vent acrsineeetes ses 261, 282, 292
list definition procedure::.............ccceeeeceeeteeceeeeeeees DAD IMCG8040 soos cceseesl sani decteeesecasee ed evcdeareadoetyxiceouncs 292
Sts MAN ASCE se. . Accasessveccceesssssvatiseted cadences’ 203,279 MC68881/MC68882........ eens 146, 235, 236
HStDGEPLOC sesciassstcc seat sanscesvevexaurescaeenceSeverteeeeeocs 203 IMGHOOSEMS 8 cs nsvstusstdtassaenss teeteaceuawer chee te satones 222
BAStER TRO bo cecess cd .certeen tay eas ee eet eesteses Means DQOG= Mc MIDER cf vecececvesnicectdnsestepicestnisxtes 23, 172, 194, 222
Hives Installations... scscscscssesevaes.chaszeteoees cessed’ TD. MDS vissivsscsnccsnstesvensenisnsnevesearscenssnatelsesusetsenecdee 103
EKO Di, fcotsvelstecic desasnsceteedeinesetlosseeaneae etek D7O “UMDS- Edits.5. ss cacecssessedicave sa stdsotcsateavedusvesecaeets tees 84
SOS BYIGS wc cscsciisvsteeesscwanvacdabaettousenicecesadieseeseaes 213 MEGIAN ELLOS s6.o ces be cesesascessevcs doses tevecessderdsiercoscent 287
LOCK: G2 <CIOCHADS on ascsavedeisctasdsciuateseeesneuseusvessocs 234 MO ME SR iscsseascsedesduceissansccasan ieebes acdacagtectt tiuetstuces 7
LOCK TAN GC vod) es nickewcecacuchectanienavsdebicegtanereactentes 186 memory
SO CKMOMOEY fac evstserenctivessndevscnusdessvesenedbabacetedanhe 285 CON SUALION3.3.5.<.0ceverescoanendoiscsandceetancscacouaseds 176
LockMemoryContiguouS..........::ccsccsscceeeeeeeeeeneees 285 JUMPER. ossccesasiacedscdenass ance steces Wicks geaeressSoaeastees 176
lOxICAls AAATESS SPACE sais cwsacctsxssccset esas eerie irisect dees 285 TOAKS wccvndaveivccansitassansneanedsvceauteddaecomaeeceedeaeed 307
PONS Date Rec oss. cdaceuses Pdr bere ecdecseee okoeeaes ae 264 SIZ © TESISIOR sac veccecvadnvardswusdesadsascsakuanosaees esa axees 176
EONS DAS TIM G: soon i saccohoe caves ca vees ote ncesetheeeseasoee 264 MEMOry AllOCAUON veccccesn.csesices vac ceeesecetesssedazsacess 281
OOK UP TEQUESb iss s<sscectenshespssivennariivasindeosineemes 225 Memory Management Unit............... 2, 228, 230, 261
low=level. fORMAtSsccssseaccssvacctcavtssasettecectheev tte? 287 Memory Manager...s..scicssssscensiscees 41, 205, 213, 219,
FOWSIE VEL Printing’. sscsssessssenesssacsevecdeaacnestedeeesiends V24- ¥ Godescscawecauubsvesonsenesgeaseecbesiatastecetsnes 228, 229, 252
TO WAM EM OLY 2eecc.cdecc asses beds heuecesadestennavcedacéexsecssese QD ¢ MOM TOD ics sive sccecen secdccdesees excuavesschareuckeessttaveavsss 285
GOD ANS cs vasdsaabachavactconadaussseeeead ines tesendect 175212 MENU 2 ccscascexeserseascsiebascodsassseseacdanvesatanesies 23, 222

IPRDOCODE iisvscdses ve teccaawes vasatusies sdenaveaeldeeaiedsess 192 menu
IPRRASCOPER s: ccccnn0. dase! Seascesdss soles ceanseaeasiQeoesee 192 HASHING... sdodecsesdeesscadeaticcossieatacaeecenacsies corsets 222
IRead Dispatch irscssecsdiccccescnsseeavotsadesseivianavcaceseess 311 TOCONG ig Mets cttas Qesnwisinseacseeesnesas tere ree aN 222
PRE CES scemnsestoventescrtcede stunt Sevassaaveaitvdessieusieveeoes 219 — “menu bar definition proc: .;..::.:c...ccecdeccdsessassscccwass 227
MER MVAE OQ is soreteasswk anna end sacudtvicte cwowese desea cuseutetcttes 250 “Ment. Managers. ccs... .0cccceceteessececgesdennsecsee 222,.253
MOIR G sco iaise ssousesexs2tsersycleverncdeaunadeasviasdisgestheuttensd 72. AMONUTLEML.. cssceseecesse eocose asap sted ebeteasapsesucscchtseestage 253
MAB UING inc s 50). docnseccascesxsecacetesteacecedeasssieetett eee 280. ¢ MENULISt. <2.5 ste deesscncdocscessapentssne tiated decat viet 85
Mac. Allegro Common Lispc....::::seeeeeeeeeeneeee 231 MECNODS AS.iceu G02 vesesivsstcaceseiwestedovasasce sentiedoroacteeets 265
IMACADD widitetecescthos.stvesieiesns 220;.239,/265,5280 313 | MEM: Ormat: 3, siccti vaseescesccadebesscecsaxezerseuess 230,272
IM ACA PDs L iD sscecsevecossettsnaccesssaaoeissstsaregcnooudteanstt 280) SIME S ioe ceccicerssssnee scosdenedeseesnsenns 44, 66, 68, aves jen
machine-specific Signal... eeeeeeeeceeeeeeeeeeees 230 MFTempHandle desesespstevesencssssesessoessssemcbavabcin tess 205
MACHINE T YP sc cccvesiserscssdveesinlecasacs soneslesecadeteasnsde 129°) “\MiNOF, SWILCHNING. ...0.5.<s05056082404eu sb -dessenced dees tias 180
IMACINT ALK isin sdevstlissevveseecsnasesaecnnenseesrsveaeonateaere 268) 1 MMU scsesiccadsstvecesonuestenesveessss 2, 228, 330, 260, 313
Macintosh ve MO al 1a OS cis sess ssassabsassca nstsasvenssacesesseaseses 34, 247

MN GE!. aksacwastadstaeetaassisedgestncthensesaaccadsnnsataerecewees 144.. “SModalDialog isscecevevecscacesioasssaseesvessusduesseceess 34, 203
WER wees wedewdac ea device ce dasdundasaneoTBecs cian tides 271;:273 MOGEIESS -CIAlO@ Ac esscvssesseishes sas scedsseysosogeuseoees zeroes 34
Uk oso zed ssatenestitwstescctionelacdcscdacebascdseneveiealtettocs 230 Modified Frequency MO... cceseseeseseees 230, 272

LG wa clieieeee Shs Svs ssulea dest dess WisdoessauceyentiNa 144, 291 MOdifyREadOnly «...2:4s:stcascseseessossvvacestaacstans dices 209
Portable....... Na aeculcaceGaedigueseeceudecokissassencsos 254,255 monitor :

SARS I DU ical ns cibethoaiaea whaatenaebaccamaasiiaondlie Messe 230) CADIS ovate Seswieedeatdinesetendineas<ctansastversnsctRancss 144
Vid6O Card vsieisistss cadesesseicineveseSindageimetess 144, 262 NEC? MUltiS yiCiiiciccssenstessesecte ts teate her eere 144

Macintosh OS. Ree ee rr ee ny i cercieet 229, 278 SENSE 'SIOMANS sds dessedeceshd desndicncetacon date cb seesdaser acs 144
IMAGL os. 0b cctiwstsevosuethcieascteedithiti cates, sates eeteeed} 231 Sony Mulliscani...csosciesdéeac3 scoavsandavere hee eee l44
MacPaint.::2:. 200.33: ste0cers.atiteasendtseices 223 3, 86, 171 Taxan Super Vision 770............---scccasesscseseeeeneL44
MACS BUS} ai citecotscctduvivsinesdeartttastees 7,113, 2713313 BS NGA Sas tacensnesatenSusten sas ta ltessaerestess oor neee ie 44

MMMAQNCUC WOU wesc tis 0sd ta vecehoxcasesdentacvectosveiuets 287% i xMONitOTS <CUCY...ve.sessssincecssdesssrenss Seana oe 10
- main entry SE RP OOM ar e296. monochrome Gisplay 5; 3... 0.5..2..sescaads edese gees Gas 230
MAJOL-SWItCHINGctoccccsecesnnsdeascenceorsiaseMeboweses 180° wmoralcol this. StOLY sss. icscsesceoseesbossecesssecpecteseessseess 234
MakeAS WOnld). .u.ccsccccgsosccdesstecsssnonn fies Omae 256 » MOPéMAaSters cs.cccceseicesecssesesecsasaspsasnestenee da. td. 53

Index 9 of 19

Macintosh Technical Notes

PAOUSE: cc.cuccsessisdssdiestassesasacextecpencteeesiestednssaassats 10
FAOUSE-MOVEd EVEN .3.s.s0ceces0sssc0seseeeessuessssedecsoes se 205
“EROUSE DOW sxe dvencoxcwnkenstorascantonausdsanetsaveunaoectanees 205
SMOUSCROM 0s cccdssueisunssesossesoeatonesnsesssesseanesaessesas 205
MOUSEW Pisce ctecsccascescsesss stticsseesedeacesesseberieesteeets 205
MOVeHBL.. 2.5 2254s Secsversivieterwenceceeeventess vanes’ 103, 111
AMOVING PUlOSiedccrcszhesazeavesiasscsvoxvscsetistesessseascntes 226
SMEPIN TE file 's.s5 ccccdesssseceutdecleewuassenadssesestanccdcadsesents 86
MPOPUPMS SG ..:<s<isensesecvevsveosavsseosnwsoncsvos seetseszsses 172
MPPO Del sisciccsccassssavsdsosacecessicssescsavexedenteoanvatens 224
MIPRPPB Pt0:<cconsscse case csiessesntoettecetsiwevenscetoneceee es 199
MP W . Ssccehavessecsaxedesins 103, 121, 146, 193, 200, 223

Sunsdsaussetowsedebesssteasscoudeeaesstonsnensdsonest 240, 256, 281
Go 2MEth TableSvcsesesdeccsacsscvescsnanssenssvesesssss> 93, 105
Oo SOIPLOCS sccseesscdcececesnescecescavicesesonssebsecverectes? 93
O888 1. csiccossesssceoscsoeeecesnessonsieenseossaceadeesssrsesnes 235
aSSeMbly languages i .ccscessvesessccseccssessesscossecesase 200
DUGS s.cssansistesinsceccasccoassdsesvsesereassssessevewnseeseae 200
Or rere 164, 166, 200, 232, oa

globals from assembly:seseeeeeeeeeeeeeeeeees
JINKOD ccs cata vesidewvesvdersccessawecsdestecesassaswessieseewesss pe
ODJeCt. PasCal ccsssccccssssevsssassvesssecsexscseleodsevesss 105
OS Interface- Library............:cccsssssssrcseressrsenes 200
PASCAl occvscessccsiawsixesetosawosucenswanmedactecs sae ssteonees « 200
PLOJOClOL. cc .esacewsbsecsescsssssscoasesebecersencauceueeb eases 269
ANE vecantes icc dsatencs suataceceutecssesthoussdassasesitas 235

TOOIDOX: LIDLaLry sscccezeisswesiasasievscacccosdecdteveseontoo 200
LOGI Sis’ ccioshesnscenecetetvcaseotis.decovneceesesh soasgocnserssees 239
VETSION 2.0.2). wacsiesnevesnsoarseecedaeceeexscenseseesneieaess 200
VEFSION: 3. Ovessiesiesescsacessssensscwees 129, 200, 208, 219
“Data ttiais cssensscoveasesevevevctstvecsovsedssesees<eonceees4 93
{SEOAD) icicasszesssaceswecdcneneoneaactesstansasotiusseueeans 93
{MC6888 I=} ccvisiccsizcncevecmedeeuntosoncoesecosesiuisaeste 146

MS-DOS Ss sicsie de saeett eccsscsecoves eontevstiwanseotassheeiass 230
SUP esscsee cst ocececeesacaste cecedectivas eaesevaetcateeteancoscnaos 205
INS CB 52s asses cnteheve eestor sede odes eatetaaesestoesicebiameeees 205
Multi-SCreeN ENVIFONMENL..........ceecesesseeeeetseeeees 79

_Multidisk- Installerccc.cccsseeveccccesdessccenetesersess 75
*MultiFindetez......25.005006+ 2, 126, 158, 177, 180, 185,
shane cdehatsbee.teudeassest oestsibes ss 190, 194, 202, 205, 233

AS ccs Sorscnded oii seoee cawext Seam eteacuctausaseseatebocesaceuess 180
Apple Men uttisciisetactetcdesseaateosecacteseeveweesecastecsa 180
background application.............:sssecceeeeseeeeeeeeees 180

«| “BTOW ZONE TOC:eisieceesedveosssenecesensscancennsessss 233
SLAG ee cnacksectanes vanenshe deaesatiilesecnssecetacsssucnsosnaents 180
SS EPC 2, sii eter aersart i sits vaasabecuguadenss <tesssooesaseaneat 180
“Jaunching.:...0..c.eee farsa tibiae nada Ul ocesad ts 126, 180
Open: GOCUMENE 222.255 00 Se oe siederds oeeeseas send ee 205
oa application sasuthbesshiowseceds Ssestacsvosseteatieieets 205

RS ADE 2 icevsenectertasedends tat teass tse steteasiny 205, 271
oe actin cdivied bitin aint d th ideas eseveeissetess 180
SMCS Ds. cfcvesccesweastentelsieteesdeieesey Diy s loiec stormed ces 177
Splash SCHOEN scielessiosetisseeckiaede Ai notseteeees heseess 180

~ SUDIAUNCHING........ eee eeeeee ects eeteseeteseeeseetens 126
SWITCHING cectegatecva tasers se ecbecicceshecstediine soeed «,..180

SS YSUEMIOOO viens ccacdansacaesze Po saseeebieeaseetensestees S205
= nm outit VOl icuitiasceaseaelateresavdoeeloaticendacaterecd OU

WaitNextEvent Sine Bel tcawsndbtscasedehtestere tones 177
working GITECIOLY !...csccscesvesioeetieessecdeod’s Lea | 190
multiPinderA ware: cswetecwtcean ses 205

Multinode addresses...........cceccccrsessesssrceees 68311
multsple bus MASters......ds-eccnscercasmrenctanvasceel
multiple inheritance............cccccssseeeteseeneseeeeeenes 281
Multiple Node Architecturec0teeeeeeeeeseeeeeeeees 311
My Window DeF o.22ccccssisdeosssstaceeces teen Soteeattos i..2-.296
WAKO 355.52. 2ccceeusnccciwcndedasssessessesceeesateee eae 280
Name Binding Protocol...... 9, 199, 225, 250, 270, 311
NAMOW GIalPOLrt sec ceescassscsccesiscccdsoosseawsecasnevecdessed 60
NBP ticecesdstaevebsessrtaceceusess: 9, 199, 225, 250, 270,.311
NOPDUpliCate oes...cccccvaawscsiansceesedeevost ees codecs ce eten bse 225
NBPLOOKUD iss 2s chsevesesvescsxcsdscceccssensseeesscanveseets 9, 20
NBPREGIS0EF os ccccvcstasivssasseveseeessasdaasweas cassassaassetses 20
NE QZCOPICCEM 6.05 iessccssssnsesecsscctsvoetvesects (ederents “151
NESted POCedUrES «....0s.cs seve cssvasecosesccwe'seese Fevet er L209
NCtWOIK CVENE es sceceessasesesenses’ Conse 122 ESE. 142
Network File System.............ccssssscsseceeceseeesseedenes 229
network installation...............sesessscececesaeccessesdeseve TD
TOtWOTK TOULELs0cccscccesssscsesecsccsncsssadsMboetealO
Network Transition Event.............sssccccseseeseeees 311
NEW fi tO sinccccescesesnscnesseseesedessecesesernbertes todo)
Ne@wWG WO8ld)....2265:.cccecsssessestudncsunsneevens Heucteee tea 277
New Handle.....ccscccsvevssesvevesesescessccnsssotasvacctets £7,117
Néw Handle Clear, scivsccccessoasetedet tite tteiscsaet sntstoncest 219
NéwHatidleSy$.c......sssessoassasasteesieieceaesssecestass S60 219
NewHandleS ysClear...............:sesssessreeseees Fide. HAO
New PtrCleat.si.cosrissssssexstacecsvcscscstescettdisetethnsocsd 219
NEW PIES Sscc.avcccsectsenssenticancecencess reosnvevted ved 2L9
NewPtrSysCleat...........ccsssccoccscssssssrceeteedissocedes 219
NENG ssseckicesveasntrccececsncesseecseeasdadereceees 30, 198, 245
NES ccssccssesceicecovesivecaevssisvocsicucense sna scteates dates as 229
NGet TA DAddreSS ceccssicsscisescsaarspssonstoaveccame cet oO
Wily HAN dO vccccveveivscecesesievedersheseetssentewess GH 342008117
Dil, POIMh..aiec.connsieerncamnnt eee
MITVANA << s.c06seseccdshacaadevsmsavectevesessssastosecSeeatees 168
NMPIAGS secvessvevcccseseccswesessasesssvaadtoacancenet ee 184
NMMAIK ss scccorcszeseccneesstesssdsoeseente4 joke Heege
DINPFIVALC .« sssha sus csssacess-seeadsovececenecseeee 184
NMREC....::ccsessscavacectenssccsseveteabes 184
AMRE(COM s.cessccesscesecesveee iasedstesdcdeveealen
NMRESCPVE sci c22sc.scsissnessacsscsscscsevsernvadesses
NMRESD..........ceccccrccecsnscccesscendecsenecsonseacsssoossoece
Ai S1GOM scascvegssivdasspioncseciaeeGantiai stanton
NMSOUIG,.cccivecesssveusectevccescesesse :
TINS 8 sccsssceesvcerescvessessesessiessessseed fies ceds
NM Ty PC.n.......-.ssevcccnncevncccteccesetbeveseroess
NM TYPEM ...0.40. 06.0005 sseceessese asuseeeacesl
NO COMPOMNENL AFCA........seeeeeoeseeeees
NO. “WOMAN ssssess celeron weet cisadtazeesaarsasenl cs

Perr er erer rr rrr errr errr errr eri ir rior rere)

noDraftBits6.ceec. 0008 (Esiekvachowbccsestan

non-breaking Space «.........s.ceceeeeereaes
NON-EXACHY-ONCE 26.222... -seecseceeeseeeedensoaees ia
non-Macintosh SySteMS........0...e00se0s Hist
non-Roman script SySt€MS....2..s...000 2

“ANOSUCHRSI :.....00ccsseetectedisscncereedeceesivnstorwbiestas 161
‘Notification Managerssecceesesteee 184, '229;247
TC A096 2s ossyscscocctebscessbevessiiacso dist eee ee 197
NSendRequest........ Getscesceaesebastavwbesaectcl wteetainZI0

10 of 19

Developer Technical Support June 1992

ICIP GNC cca Sonsaivaaiuresveceranestbeiaetoecawiace ASD. We tPASCH ANNE WAIN sos ecsgs2sncdentcieaiausiadeaxcasacn 213,.227
DSVESEB ot cave sees concer sssuvelaMianie cst ae Oe CO he es PA 22 WAT IAIN co ofthe dda oectasien tei pclwseuneasadietas. cane 238
INUBUS es sccerceesteas ties ternesek 221, 230, 234, 260, 261, pathname SeparatOE 2... 5.:6.:00scccccescaccenesvecascceielidoan 229

Jopsbybteeeteeees DIT, 21D ph IDs 2B 5200, DBR 202, BUS PRWGIR vcacecsssisenessausiccoacseeecuecSbeisvosdahacsecleeviec
EXPANSION CALGS i 0ccccscegevensersesweven cave vena tesgesessess 260) SPA TY De si sisae. cas cekdeabesteduel.ave Sade ecisesiesbnce Cee 275

S CXLENGSE- DOAN 0s sescscaecgessvacewssaesseosstsediovaeselee BAS = GRIBSCH SUNG sia cnssautenserceauisnd sonedeasanestan ee 68, 69
POWER SMM IUS Sc. eiecoseghs des viavsetic Boel ecdeeetes 200! 9 PBGCIPCB Int Os eveccseres cecess hi ssdexosshaswaresescodecccs eet 87

MUS aoa catPeeetedecyc an vaenoeroacdesosestiese Rtasitenseeccc Bes 102 <PBGetPilelito... sssc0c.23essewsisssascedesasedscnsasaeeere eos 68
Mull Scrap ee ewsh adios hee scokeeoe eM ok ee 2O7~ SPB GGtPIIi lO: essessessiseadectasssncsecsecselsc evel eee 24
DUMETICN CLS OMiscy ee ciasessschesseesesceresteeeec he 189 ~~ (PBGCEVANLO is cciecsveoevsceiesesdiassadeceesseotascanes 24, 44, 157
INUIN VETSIOMiec..pezrtestaasSeltcicdovnesssisecos hae 189° . PBGetWDING citi toeteareeeeventia settee 77, 190
Object Class..,.......... a Ee Sa Sete 239 (PBAGCVINO ssc secacoetbscexeccscess 24, 67, 77, 106, 157
ODJECL, INSPSC ONS cxsess dees, Sexeveceeele eee 265.“ #PB HO pens: «22: Cecsessatessuetesiicade «acetate 204
Object: Pascal...:ssscccccsssasese pesteoesteceieatoeetersees 2598265:° © UPBHSCtVOlivsices-hicssvescssiecesscess saccsesssaveleaveeresens 140
Object-Oriented Programsecceceeecceceeseceeneeeees 220) ° PBMOUNtV Olisssiscassccedeeseeccucasacest ae etn 134
ODJOCIS a5 sens2t seu desn esedendshescowatye Gecee re esas 239-2281.» “PBODENRE:....ccscsccocsvesessesasssacacdeanacesegecsetesuelencets 74
POM=]NE: VOIWME wi waiss ces ccasgesasesdcnecesSSscsAaensecvaeectete 106; *PBOPCNWD:.c0ccsccssenssadensoidcdesvesaseaslteevattetes 77, 190
off-screen PBREAG sicsiscestestensScbvesviseveresseccstacsencadteasnceeesestees 187
DIUM AD syense esscrs se Rulednsnccossseosceseceesees AE S1G3,5277 PB SCtV INL Osseseccssiciscascdcnccssesdeessassisaeeduseeteesarats 204
DIRE] MAP arches s.coeseveeseeeheocesssidcasthesoezeates T209277. © OPBS tats), .iiciccisacvescatvn odertsessnace'¥encdtodsacdvance see 262

Old=Sty 16! COIOTS vi ssecs deeesxesasnexedeweneeceashes hedeia tatters 299“ PB WUC secs sspcdsesteccresasssendtecusnecseseiactacsae seeivesseee 187
ONLY BACK STOUNG ...cs2escthecnsineadscwscees leaned eoeecseessee 205 PC a dacs ivchocatunonctesenacurecvadceesebeteaws atncasteeateat tere 228
GOP saonssnbeaesgetusiaxneiergescesceneet Cos unebanetedetees 220,239 — PCL vaicssvencdssavscetuasesdean see tenbestus inussdecnepacsatieeese 231
OPEN ev sasernoi-geasdadenaesecdevececedes tee Moeee av arenutotioene LOD: © PDS vickacsadensvevsnseeesscsenvssicsdsecensnnsseaevese 230, 254, 291

MOPEN: LLANSIMOM vase. ois caves. soovevonecnecevedbeneeatensyceetee ZIOl” POTION ccscewissosasvessnscisees casseoacogeostvs hassenesabeageerssee 26
POpenAS WOT Oi. sscdcseccevesceeeatecacaseddvedecsecteceaeeeeeeee 256) « SPOLSIS Cassie scuadsucscotedes wWecenssbviateossteseeneassaieestecssest 256
Open Driver si vcdcccciee goin cde cases decdhdawageassedoousdedeeees 249 - physical. MeMOPYi:s..sccesesssegetleoe ets decesdaegseade 285
OPENPICLUNE vacins saisav'esduckscnsWusadaatectetardacewnitentesnans 21 PiCCOMMENE sx.3.3.ceccsseeceseciodouessdscecsyans 91, 175, 181
EMPENPOL OL ance cccssesenavadspeveccdestaceecseetedenemens 155,994: picPramess2cadscccsdtegecdicceseanwencnasveawtagecseceeesesdoanct 59
OpenResFile ws:..scaccesseeeveees4 46,46, 78; 1OTS-185, 274). picPOly Clo wwwvicesecsscccsesctscctescsssddecccvevenctsesssunsesess 91
PHONE a vezstees vioctiiccasee sdiceucdennabagteweaes voeetoseexetee ses TS PICT sy ssvsssusacesapasavenessseaacsoscaces soeeessaeweoenaaees 23, 274
OPEN RE PERM iesecs catseswatis srccauredenscinvecuseemeges 116, 185 PICT. $e sca ciice sb osecenwed sacewaasarcngeminateaeetaetes 154, 171

OpenSOcke tics. sces 2 vesschcocedecedeshavesdeexeeseReosteseseess QOe: API CT Dy vecssesiaececietecessethvsesiudictaractedecvestaceiee 171, 275
RODET WD) aso duiaSecwiede ba cteaonctpadénsuceconestundoaeeteen. te denee QUS! PICKPONUNL Os. scccssescccccsassesasseusatadaseseewes cent eei Ged 275
OpNotlmpl saacgcceviesdes.geteedi cdusasncessavzssdenss jeoasees est AG] - SPIClUFC esesei cee ccannssstiessacecenasansoosseseocssi' 21, 59, 181

A OPUMIZING COMPILELS)2<cincssdvetncosaadecesaaseedaseebe dace 208° “pICLUTe: COMMENLES<. soscccessseasdes saa decasccentedsd 72, 91, 175
POD WIEIT 5 cewesccapssyscaveloxductecesuccsousspesemesevesnceyercat 185 APPliCatiON=GELINE . «5.00 sv.sesierasenwsncrccssdsvageesceeses 181
Ordered address COMPAFISON:sececcessereeeeeeseees 213 PIC VETSION »,..-.nererencsesnsesorsanensnvssesesontenaels Piateece!
KASD IUSPAtCh vesiccess Rs Se cees ds ive Sane veensseevtarbosiendgpeetes HDS). PID jc ceocosceher Gosecaddot cacisetesctacecaessesness saceaseetiuelOO
OSLstEntry.......... Da crbi tre Sere sie ersaeweusd Coote vee 288° * pinzfeed Paper2 60.8 desedeiods tebok daacdageetery SS 33

PAS IUIS MR. te catae teste test ccchas seach se stddadvsdadéct ecctines 208 “piMOUbescccccs iesndeaseceediecrsse ieee AT 10, 65
OSU Ss pvezs cieedrivisncxcanscestesastacswmgeseacd tensageccenss 208 VIDEO wwedecsonhenstetadenncossavdessecacasacdsenitatetecoste ones 4

 OUL-OLSOQUENCE sinsiec ete sscassssdecsanssnanseasedsnsesytdepsceese D. SPIXDANA sieisislessteanieseossssssacessessnssbeaseonsrbetenen: Pree er
"MOVETGFAWING. POWECE...cccsce.csccccseqesecsesteosecseseosenecs 260 pixel
VEITAIE ois n2sssccaearedeaes vest tvtesetiscteuaat stutes tecnsebens 265 ONONM EM ses seccticsteestayseccdsveccensceseseectentesieates 277

MOWNE TRSOULCE ssicsasnseissssssssscesoonssseassvsacrsssastesrTens 6 UMA BC scons sciences scadysccsgassdsceeats teased weteeenael 20
SPA CK A096 ci csasaushumentatscotoousssacene eet eteonss<s 197 TAP 2255 cece Sescauas Secensevees cosdovedes teases 120, 193, 277
ESPACKBILSRECE cna. soscssiededneseenssee wine dneadish avs ccosalist 171 PIXE] MAP \sosscsecnceSeoscejeacedaesscreesscoess sateesecesancseies 289
PACK BUS OM ess cesceaavead sccnncheasasaeesescessuetaa theta see ies 171 Prxrel2 Chane cs iced te scsacteee neta 207, 241
PACKC Cala wine dcsvvsecsesecceavansdeshevartsneccoesusyctelices TTY | SPIXMaD sccesctostssecscsendesssencatss: 41, 120, 163, 275, 289
‘Paged Memory Mgmt. Unit.............. 2, 228,:230226) — PIxMaP32Bit.i2....cse..cecsevnecenswecedeosterseecben toes casbies 275
Palette: Mana SG casas. yacenowsvsasegesteesccosesnonescdiecds 211 pixmap TOODee PEM, 3.2: sccsssssscsscccsesessaseoessert stds 193
PAD caysotulractedennievanith copeuaseatas seaelasasettrree eaters 133- ‘+PIXBAticevets vie cvcadedecasdes sedsehasboeus des spiesesiss Ree TS

MACH MOON wes, scccaucadsgervecsecevevansvoeSes Pha diel deeaente B35 —* EPLAUNCHSMUCl 2c.Scciesssscossseteasedtuc aes iepthegetaey ZO
ParatyBlOCK Re siivieossusscssivaaetet vdalestvioventocndaves QOS SPIO CONG sas. sonassnanrtaarsorearrctiunneiada ROMS ENGIN OO
PATAMCLET PASSING ...4..<esesswverctavccsaceseusseonBssobsatencs 256 XPIOISION . o. 34..:Scc.ssshcssesteasaceten eee ee ete 252
PAPCNE GITECLONY ass esic deacs deg sdges ove sbe Measecdenbeasesee aoees 220", “Pl tbetsavesaudesiasacguchveretewschteatet ontecses wasuannertuanian 211
PAL RAM sncssiossssenvrarvnevessseceecveesPmarsceattie FIG, -PMBACK COO sisssucossessnouvesemnitdcasvaserig anmritecenatiee L
PASORl adipisesocsnasnocesvereciunedanasacinandesics 200, 265,583. SH PMB OOS IZ6 ac tiiss cassavesnssesennneaevceipavasinn det ineagtiaaeide 258
PASte DOV diisicscose overensecesesecocegentetetuabbieciaces 215 ~ PmForeColor...... eC daneiosmisaseaess wosthspsecgizeaesean lll

Index 11 of 19

PNM. cvcdedes ccescwasg odsatcsaceeoscdseeabdscersocitecacdeesees 230 low-level Calls. . .:..ssssssaeecseestestessensesceesaates 124, 192

PMS P i ccsiicescceccssdessensecusssboosseseussees 69, 77, 101, 214 PICLUTE COMMENL...........escseceeeeeeceseeeeecssercsbeceones 72

DIN VCLSION ss exsssivnccodeescccundscnai snes xeaseedecsseecese tenors 275 Selected Printerscecccccssssncacsesceseeneessacccenes 72

PNG * flO s.cceiecssvessececteteasancetesséniversseseciesstiesecty 86 SPOOL/PFiNt-A-PAagVe.....csereeeeccccernenenererecceereeserers 125

DOINLED 65 sdasdetecessssvessovvesssasescsivwcsseesnines sere 155, 213 SPOOLING.... .2e:ssceseseiccsstsexsessssesvocb ee fi: Aegheattenteds 12

“ dereferenced dn sluctewesiomsaudeesenesueveseanetaueevscgaastouss 213 TIME OUU esses sanescereaegesscesasteessenesesssntewicalenes 161

Til}, :.Secanssxceusaveateeiseresccossnsesssesccossssdsgecwedsveat ee TUF, Priming LOOK sess: ieceesvccessesscspiveesseceestectecestasseves> 161

POMUNG.deVICE 0.5 s.cccssssesssseesssecsssaseccseasereseseaess 266 = Printing Mamageresecsseeceeseceeesseees 72, 161, 192

Oly Be PIM iss cscssencesecsssstessocsdesnansdesonsseteseiescoeeenees 91 privileged instructions............... Lessdheessgteeerte tees 229

POV ENG i ecdsscessacedessernedenscvesentsessswseseceieSeaseeseceres 91 PHODDIBIOS sabsecessissecivessosesesens peshwstbextees 72, 95, 161

POLI OTOL vise seas ccaves-ccteesctussdsvexdexsecsecSeuadoaseacseess O1. PRODI Mi tcc. bisedsssedeesneccaecossessccsceneasevesed¥eensstinaa oD
POlYVSMOOtihsess.ccecassvsdersecetevesessateneteestesesteteseernss 91 PROCEDURE parameters...........s000003 patavuateaeene DOO
Poor Man’s Search Path4 69, 77, 101, 214 procedure POINLeL....... eee eeeeceeeeeescepen eset tdteeeeeee 42

POPUP MENU s cessscccasecsnnnicncsvsweseccessesdvassccesasseceand 172“ PLOCOSSOF a csees shescccceecssccesssessxes sows} S aubigemreliedeces 292
PopUpMenuS €lect........ccceccsnssssceosesenaseesencecevecaves 156 _—_ processor direct SltscescssseesscesSicewedaccds ..230, 254
POT. s-ceccenssessneessscceecevsesetcessenvecusseresescccexsesesdass 249 = procesSOr ROM.........cccsccssssessseeenseree ised obbacvnsllas200
Portable Common LOOPScecceeeeeeeeeeeeeee QB “PLOCPUT ccsecacbscesdebcdorsacetescslessvectaeenstiQessedel unl... 184
POrtA USC sx, coecscncetencteeesoecesersvesteresssiassesiestsusinse 249 PROD OS. sacescses cgdacencecsaact ovdsccssaseesaasaeccactebeassens 230
POMBU SE. .ncscevesiatsesierstovessevetesdeuedessseseceies 224, 249 PLOSTAM \COUMIEL s5c0c seca scdedscasceccasseesnsesasteesti Vadieed2O
POPtID wsscssssasedecenceszevscwsavsevsneSecwevennstveviesene sss 250) . (PEONE COR cecctectavesvsescstrauepestscnnseactscesscesansStvecat 401269
DOPUIN USC wcccses sssscswcneessdavegcesedieraaessesocesssesevessese's DAD. SPYOPCNDOC cv ncewccssceescsansicanessdacesesoocnasdsasmeeetea gene 161
PeHNDICE acaswesaaauaduuensesaneatedss sadesswuetaureeuventacasoos 249 PrOpenPage.....cs<cocsnoosssadsvessanssecssssesscoeds witanoae
POFER CCE s 3 scavs ass csanicesuceecacer soot oncsttesewecaagdasaeeeastzuce 59 proprietary 68000 systems:eseeeceeeeeeeeedate 240
DOS CHiN celta sels caacetethnaceeteecvesseuere Bees stovedoestece bee 196 protected environMeN..............eeeeeeeeeeneeee pavatecisl ao
POST sosstcecwseoscansendecesdcavenssiss sooenczecnevesestxncease: 91 Protocol handler. ..0055..+sassseavessceesesnipartsseetieweee Ol
PostScript.......... 72, 91,123, ¥52, 175, 183,.192, 217 -~PrOlvOcol ViIOlQUON cccdevesccecescececossssssssaxenaddowedts ieoD

POSILION=-INAEPENAENE + ..sccascoczsesdansscerssnrecveesvvaes 183. ~ PISQtErrOT i secsscccccassssvescissvexeossievecccscdeaseongeder dates 161
POStSCriptBe O1M <2s2ssse8e5cbAeswamacoeetivssetderoncdteancacusts QL” «—_- PFStDialOS. cisdescecsacecessahessescoceseseees desea 72, soete!
POSUS CrIPtB nnd . sei ccsesceounsvsssaseemesessvestvancesecsastoSaes QO]. PSU Mts. sicccacessevesseavsecttescoededesascasalvatestevasl tess s 95
POStScriptPile sccsiscsvaseccasscscosvescesecccesacessoeverccowscs 91 PEValIGALE 3... Siveesscecssssceseseceessesees 72, 122, 128, 149
POstS criptHandle. cc... .ssiiscsssssccooeessassssssssscseseeteess 91 PS CtSCl S60 ccsccesssedecvcveadvecseccvseensteveasceeveddeeces 250
POtENtial NASUNESS ssc.sisssscesesveccssesscsveverrstersceecssee 250. “PseldO=-DMA 2. cc0n.nnsesssecarsiecoaassacnessysbteeeaes LMiveas 96
POWEF DUGRCE cece i cciasssccsssescecsnssicsscenssenecccess 254,260 public System Folder................c:ssccssecceecnnceavesces 229
PEC IOSED OCs eisseccccsisanscstseesdecewsseveseeesnsvndsvesoseses 161 PUM OM .ovsiscsackerecesctevaesssinceetensencoanasdenseactees 3.51
PECIOSCPALE: z, ais osaccvassersnsewarsasavasarevexeueesiestaeesees F2. QDEMGR veccxeoccbanchecencuaesisesbacsassacwesdageacsovees tees 275
BEDS Mali xcs viewcsavaceccestecwss sais onic tscdsevetioseseeeses OS. QEIAGS s.. cnswnsanesessesteesedesscecuctun Steusestaxechere=t 72.8290
PREC M08 ohsccncs occas ctncstacsanaridliocationseade mada B02 EI da cediessaeAeinudsisacssauiacisStentoeaamonetees 184
PREG 201 icc ics dccscucastdeest ccaasercossiccoveeteneshcacemees 192” © AQ DY DC ase sectadeccsdeevest ccecrsd etierispiesetest atc 184
PREM Ol wesciessdevsseecevavsyssesdeunsvcscessussacnesceiecsssteevs 161 QUEUES: siccies as edaccesans veseacesewensiinosdegacovncuatestee eeectogdes 2
Pro eneral, cc.sseceaedecsssassswissecestareces 72, 128, 161,173 = QuickDraw........eeseeeeeeeeee 21, 26, 41, 55, 59, 60, 72,
primary volume deSCFiplOF.............:ccceseeeceseseeeeees DOO,” seiidistercathoceystetic 120, 154, 163, 171, 181, 193, 198,
PRINE-ACHON TOULINE. socccsscesesesceenasssoccensvassenendeoeed V74 OF Asse ceesseacbenosscteas cugencseaccees 203, 259, 275, 277; 289
punt dialog Nie buthlsvesinndeesiharen iret 95 COMM ss desaedasussaeiiedavesdeteesaass 73, 120, 129,463,277
Print “ANG wecsssesessecerssestascseseieces eessecsscetiestssdete 161 Global variableS...2....csseceessesdeasacssesecstecees :223, 256
Print MOMILOF...0........cseeseeeeeeeeeeeees eyetere eee 184, 192 intemal picture definition:sssesesneeenseniee 21
printable paper arca..........eeceeeeeeeeees Uscueaenaaee. 72 SPCCO vsseciecsedesncsesassadsntenssaseneane sas Ussvereseeeelend
PrintDe faults... .seersdecetssovenscieeoom daheSizaneetesea sie 122 tex measuring
printer ; WANSIER NODE wvsesicevecsetibecenseccastuesetesds sediesdiseds

NIVED sxiesenseraendcousenete es besiacdve Fie cetevesnetaseosstrencen’ 2 FACS CONGINON Spas cssgatacorvchssseaises cecasenas ie eeas emcees
SNALEG: iirc sciesiscescsntscoxeslebedloacdecascossmttssscavienste- RAGES Jesscesisccessscongsnessecucseoteas seapassso pasate lentes

Printer Access Protocol RAM Hitec nc hdsintlcste em BIS
vee vi a eet dads Mo abev cote tea sasdeeaanteeceeabants EDISKS sccuigosscdeccsunssacsensccessceatesiraletiwets ftiqei2oo

CODE ssc astice cae wununswandsedexcesstanss sieebveeserxetend EXPANSION. SIOL s sssasccecrascesersesercesccadererasancesd +5176
device independent RA MS DO pei aeccccvacsessiieesescaccicscooasnecsesebeatants e249
device-independent rangé:locking/UMIOCKINsceseseeeeeeaeeeess Sapeeers C0)
AOCUMENUNAME i. cssseeisccscsscesecsscescecesassscesesetess RAS -ACCOSS HMC nt z wxcnsdasasessocsssaca' esatunacereateed Pore We)

B sR UNIVER a si'eiows sans dvetveaseatvastensessaeseddacecss PAW? KOYCOGGsiccseiessseicssecsoessurecseraasaesaveeea tocend toss k OU
fo emmOr Handling............cwerccceveosecsesssceneesstipialtes PR BMUPY ckciacseocasinnisaseepenerponsanniataeane eae 248

- forms......... fibddlaidax duaudaerdouesanescseoecteesrtnaiadeet _ ROAD bx csszdiieeiceltgansnsaneascsessaasaseeesaretecpexsetscel iver 187
high-level. calls dnsdusscehvsesseossesuesessuariasteatesbiedets Read-MOdify-W Mites: ciasccascsascesessenrnesssoe eee eo 271

12of 19

_Developer Technical Support June 1992

TOACOMIY 3 si isosiccstadeccsmnddanncendtodesvapaieceoaieiadeeensla 269 DPE vScccevcaeseveates st thsesseeecgeeeree eeokannee eee

ReadPack ebicsiwcsscccaseesiiwctsscnecesossoct teeteseestess 5 201 ATVSTAVIALION voce dices ccscbexented-ceaanesasevnepescscaeeeee igi

ReadRest 22) idecice tiscccdinnsceccoaccecessdemuees se sereacece 201 TINGLE bcech evade Scene eens testleeeeaes 153

real time.......... DebdadleSeacsscaca whtatsse sees ees 221 DLO So sedsacscwsed vas douedstewsspaesgeeeseaieteemeceetes 153, 264

Receiving Packets. sisi ssvessssisessecesanscaeeteidsseszvesrene 311 BOY cs ccs atts ooo aseceedaeded sedaqeteodscbevenestossten teases 153

TEGUICE: ICOM ei siadete consedcesivanedetweecssnateshoneseeees 253 MUD: fo peace ie cussed eacceeussas steve tess nateettteces 153,178

TECMUTANCY 2: saad dee scveosnnecgs iasedescteceapoossuesdevideseadtees 285 BUDS oecccesteetexesesduastadeitteertsseotacndetes teste stes 153, 160

PEEIN TIM soso vidavsssacteesiseceaas deve sceadssanveteecemeeesetenee 184 MLIG 2220 stew aseneseapucnecesueiesaresetbatesseses 153, 160, 178

POMMOIN secabereten cevbesdot ntbeectexecsene nex eccosenasteenes 250 IK CBIR (i osscecscesccssadeesesccessateuescstedets 153, 160, 263

MO GION vecasue a sees dosssussnvetengsvanssseccscoamesanss ceauesssacest 193 KIMAP iss sesessesticducboascossveserasdocesscccseeSseeascaaates 160

PO QIONS 3 dees cnadenjcaseeseeeebivectonstccwvapsaceteatsinebcese cae 72 DEP i: svesestsseadsassecsccasstessescccens sassecsoesusbastee 279

REBISLEFNAIME i. cccvsaveccosenwtthbes cheed loaes sorncttesseese0ed 225 maximum number Ofc-s.scsccesesossicadess 141, 210

TOIEASE NOLES i ssi cscacesacvecsascssawnndedavaasevascetobasedousss 274 MBAR 5 ca ciociesseccansescseegs ievsceeeadeceesevecseeececeenene’ 23

FEMAPDING Key: COS acess esestasesdocenssssacceoessseesveese 160 MBDP (600 ssscsesaccessasecsseetaassteedecesa everest. te 23, 227
FEMOVADIE MEDIA cc sive vesscenescsswcsssceiescoeesnces saeteeeres 285 MIDEF 5325 S25 sivacesaeeciavecsssvsnsesdens 23, 172, 194, 222
REMOVE OE cdc ceviccsacscicenadessaceoasaextansedsesseuesereeeese 311 MENU5..20cssczccccsieect occ onesaedetedetesesecocnces 23, 222

FEGCADICL O. vrisswesssasesanzdennecadecerevecssonsoeeseqatessance 311 TSU vs ccd cccces dasseatecenVeetcouessdeevusccbewsensees feece anes 205
POA CADICH iio. cossn ccs lensgscerwssicenbsssewenceeteuseneones 311 IIS EF ooh ds ics cvcsanbads dadocessdestinses Aiesesstovetere Ste Sos 205
FESCRAN GEM | ccseesacseesvcceeetecsecessescevhe tesa ee 111 NENT eicsecateguidtecessiasioucesadsievacsaeseces? 30, 198, 245
RRESEG cc Aiessediseden ous Ses ties Soershcenktddsetonces 40, 231, 274 MICE 4096 s.5 si cnsdcndss sie sessesededecatenewosssorasdetncs 197
IR OSEITOM ada aiacachiactvag ck ideenonsecctaenesteeee ts 116, 185, 214 OWMCO (es occ 25506 teascat cave cose esleweseecues oan tateveesaesasees 23

RES EFL PLOC voit c a ascasessactesauassacternec netted 78 PACK 24096 bsdswesdos2ucarssessssscted cases veiteert ees 197
PRES SE Tae Resi ev cosa sanse enue devaduapauwettessassar taateedes 278 PICU sein even cactiss duaGesonacuacuanacanussestateee 23, 274
ROS OAG) atesciawatesuvenssctasdesiavschvecsttatseccel amare Get 50 DUE. wis sizaciecsresaasbaceabaasuendcces ans cececssebeuseee entice 211
FESNOUEOUNG iescecs.scabscncvcesecccesedeonsiae desc saceseeevecs 161 PO ST haces vscdecdteala vecanseciatocnssenchenask seeteesteuacoen 91
TESOUICE oocS sit iain ic aa ois as Se outs aetiaasueiennan tees 141, 228 PREG whi osned tivacsiasnasuctetnsawenvaseus saa soneysenesegnes 192

ADBS wiviacinasnsss sbsinaarscludagieeateaessus Str mecaeskts 206 FESCEVER LV POs ccsceewassdeckghccssehess extadeterstsetecee® 32
PUR ees dw edeasccuutguattoneinesencutoess tase neeie? 23 SIGN 2 ca ncsteerenndeeevessneeatcee eestearenens 160, 252, 253

PAPER occ csass tie seorcccentisathassedevovadeses see eee eee 29 SIZE ot bh hoses hades tietscensed ess 158, 180, 205, 231

COM tiie bein tae Me chanuantaccsasexaesecuseotneaemeaa ters 75 SIMAP. ncscdvtosaaxnceenadecsaieuesauccbessteccsaesetesn caine 274
BIND ssocaescateutecssscetsouarentemie 29, 48, 147, 210, 217 SIG Sans csssoesswscusauswosanacwadsesibarsecossenweenceceeCnkes 168

BPC DEP a5 cilocievcchsaadnvsseededibeekvaxsesnossee? 23, 196, 212 SUR oie sccconcdesassstancadseca hous eigest caneerteteetes 29, 48
USSCIOM Yah cay cavaceaudes eaendenaGensstis tone Cesasnacmectees tastaes 275 SY SZ os seo savtcctieseiaiestavexeicivsuetesicocaanuesavatiecoes 293

CRAG cose od ona tateeteenwiedeaiaiossases ewes nee 269 VETS Sc ciat feak te Oeas Rouen ta cest cod ooteaen eee saawneets 189, 274
CUI ac saa venenaeese Mownseteuceeastes en eee 120, 244, 277 W DEP eco seccecsateasshessedeseaaeeise 23, 79, 194, 212, 256

CODE keicckiveseiiides seuss Tiseelesduncsdeonasers 220, 228, 256 CMD is fezisess ocetendocnssceusetshesceagevsvusscdis cocorseees 256
CUR: cssccssaseswecexedenvaijeecd wank awniesgienessemeacente 23. ~~‘ Resource Manager................ 198, 203, 204, 210, 214,
CUR Sins acexanconsGreGenssteshiscstaasevtetencsorenouseccecoee DAS ® OP ices ss BOS whe teteeenco chews adewedeces iesesbshaceteeves 232,:252

GUST ssocacackeekscavetaasieses thesssosuastaschaceeesane teas 135 ResourcePS...........0066+ sacnutisedecudneessecsiess eevee vati se 91
DIT ktaciitss Adpedibeadwanstaticnecautaastae atest as 23;:291 TESPONSE PFOCeUIE...........eeeeeee eee saa Seavoascessotastevads 184
|B) A © | € ee gee oe ey 23 ReStoreAS........cccccceseeeeed eacosciistiieiheaccilens 136,.208
SUTIN L Sd cecet tbe sees hes teavosens sxcuetcerieeeskekeceee sees 84 RestoreAS W8ld. scsscccsaccscsaccoeeasaceds snctecsetcaesege S120

gE PAB chu Ios osoe Sued voenbisnadapned uceaaconpaeansensaeieriaotel 84 ReStOreGZPre0ccesescscersopevesescepanavededsstnnteesss059

BOM TD iesescederdvsvesaesaventavceccscasnacstestevaveas coke sties 29 TESULt CODE Sadiceseseacccsstausgecsuvecteecasezacoswsuzeeseness 117
SILC LD. SrssastenestasinasbestobeSexcesctenttttucnacttamea tue os 198 RESUMEZEVENE: 253 suis. oses ccnsesecteseweae ssid Ret Reta eas toes 180

PSION. wsedsdivesastexcsewess iedoseteteansdevdy< chbcacs eee 167 © Sretry MECHANISM viscciscccesesesscserecssssissseceeacee at 270
FRM Gt es cava ct deo Sees donates estos sana Abess vaweo sss Merecestone 46 Retuirit Drive Inf ses csc teccassacsatenseecensscste ants Ble

MUG TEAMED ss, c.2ccbeacoase ova dinae cosansvedeeyvesssnstiiveteonte 61 Return” Format: LoiSt.cc...sssscccecsatccecssesedesseasacey Sone 272

Pat BIE Votes aesteds ccs acee cash soatveresleatsacek ocstisieee 3, 256 Return Media IeOn.c:..2..s003.oss25seeeseesssased,meeesitecss 272

PAS BOB cisedcnnsetevaveduvesenvcdscuvecehteiedwsuannsuawecesheves 29. Return Physical Drive Icon. .:i...¢.cscesescesesencesevede ots 272
PS GRON Decsicsihbickiseas aces state 191, 192, 198, 242, 245 IROZ o& ccc shacvadccnossscsnnancnnes iaeceustaavesessonce 189, 197, 269

RE BON siccas eas secennnvs Unavecticcdedsoeceues 30, 198, 237, 245 RGB COlOR i occci Sheek Ssesacdeeescnssden cease ba eeeteees el e0
HPO LOUK sca sada cos oz steve oSeaate ted eats steels lee cee de 742: @APNTOOBISEIT 4 icccstessesciasevesonctenssissosaamne ethos
PEERER is ccvssiwsaateseaeesd oavecsticeeste 29,48, 217 RU ish tec hOB ote cctoetacarbicecsceresteess vitae bcagotte ieee. 10
PONE»: aca vadevassscadedstexedetsns 29, 48, 55, 147, 217, 252 RmveReference...............csccccseeceecesciescee? wed coteiad ceed
BOON aes SO oa ca des dani dpvnnao ebvasie lhe ePnes 23;. 55,253 ROM 6

TD eisesionersdestceacbesemn sebdcess veacvascaen sees 23, 203 CHECK SUM {ces eresseticedccsstenlediacsrsersisacskouelix iti 139

MUNG eit stick covvcanicaattvredssden keene bs uodhes otteciac eee 75 (01S Nese gan eh ane e peer on re eee Peer 38
AT fsck cede tate ts yest ecawaactosswlet utateweeabeseamere ceca 75 BE DDISKS coatiot fas tusecessaticactaies tiecssvs eee Oe 255
DN scsssstesciesseadvass = taaseateaudsegenste aks 1.129, 247, 256 EXPANSION ws55cisienda cevevcdebasoedessonpedenkecetRaaieee 255

Index 13 of 19

‘Macintosh Technical Notes

PIM ssncas satetesGeesceransicensconesanindanaciinedciuees 176, 230
ROMS 9 3s sessso vs ctysencesscdlescaaitdeeiiessaunedetaoaever cess 117
ROM Base sc vooesscs sesdvcnsssszexcecosnceeessstesevs Piaget tes 100
ROM Map IASC i bcescs cczeencesersaeerecetAssibesxtaettviicbes 78
ROMICBOBIN ve 202.2 oss ania csesuasdatecsececccbsadeedbcaMavextacees 91
PROMS C OME sco aussceneennnencsaseasonsnacbuntionsgucconanseeserk 91
PRROLBLCENG cocc!acsennachetvvese sua toceseslecetoossgetecstaiesebeek 9]
FOUNG: “UP ii ccevsveteescoteactesvdvevidasetiesvesienrieeeeeee 270
TOUIGE As cenivesavechas\Seacucstatteonchenoscestcausseededoee 250, 270
roving allocation Scheme:cecceeeeeeeeeeceeeeues 229
TOWBYI(CS i. ods sascasecvevcssacstecsvneccsssseeedesestedtux 117, 277
PPA GE soc ausdinee oii aescecewessevacedexstaectieeeccebexecoetes 33, 72
TULCS s secescsecavescddenesbediwacpapesaueet see vasseneeveeedaiezesien 227
TUN-CIME:- ENVITONMEN tos i...cccsececsscnsseveeevencecseecedeces 240
RRUMEM GLO Sasnsssiata se nencctanersiecnccceises Rasta Reeaceehiees 256
SADE cies eativativivecnseeesscsvetuvwasnestauueeatienddbeetves tee 280
SADE: MultiFindeh scx. ssccececscersaovsdectexesaceesse 205, 271
safe family GxPerienCe cisccsseisevsssscoessacccenseaseeeieerts 279
SALC NEX is. 2c vei vedas diesses'eccsstesseseuebacsehecssesisceevvedenests 231
SAG IODAIS cscs cessecesscncasuedededebonssocnaseavsteaanseeeen 256
SampleINil. 5 ssssscosavsa cence cveneceandeausdeieteeeserdeedercess 256
SANE eaccvevtentececess oft cces sdexecetevessondsavte 146, 235, 236
Sarah COMMON s cveiecindecsuweccestevedocsieveccuvecsstecctoeens 273
SBIOCK Transferinfvis vs. cecceaisscessceesscieessnssssssseece os 288
S CG os iicescevatansadtevsiss ceateass ss cvncrweeeensectvnns 2,271; a
SCNOIMNG sco csctcastaeeewapecdeheawsepstiavasdostasoaseanoeisesoes
SCFAPCOUNLS sisi ssetcoscczssdecisesienes seseesdesstetessesesesels 1
SCKEOM CED cscissccsseccsctsoontsosccossessenestersdonseessesesss 276
SCTOCN BIS :cccsdsveseceaceavscsesarces ceatooasastenpexteasbass 2,117
SCrEENBitS. DOUNGS::.. cscssececsescsvesesevsedecccsvesvevestsouses 79
SCLIPE“ COME. sc.neleceassdecscveeteceei de vestosecencvecstwa cesses 242
SCTIPL INterfACe SYSIEMs.<sssssccssccsscresersrveessaccssacoods 245
Script Managerse0eeeeee 160, 174, 178, 182, 207,

tdieds scuslsevececoussixtee 241, 242, 243, 245, 263, 264, 267
SPINOR as sesicstsssitned svete anne teninnecsqeaesadininetcanne ees 75
VSCPIPLN Gv. cccS cis ce czsdeeseihees tteeaesseabence aaacsseoancencease 75
ScrnBase........... sisi duvedsladdbwcvstaswonatsscativedestaee ss Ni7
BSC le Piseeess este catgieSty castaets console 134, 159, 271, 273
e COMMECION Ss ecaavagetaes sessed sdsads Shensstaasevscocsscsersosses 65

WUNIVER ssuscceedseosisevesthcanadecatenteaieleevavecaoves isstseoes 258
et HOTOMNINAUON aissnastisusewsacsnserssuudistatanstaamccssenctne 273
SCSI d6VICCtscceccec esos cavevervaiscotesdaaia-neraccs cee cheaveees 293

“SCSI isk Gri VIS: c2csc5cde.scscescccccesacteaed E ecacacdbess 285
SCSI MANA BEF s2rsts A stuvesticsencssesteeeewexie 96, 212, 258

~" -pSeudO DMA.....:....secessseersresccserencensseseteseseneeees 96
: §CsICmds Sia Saescdsenececedeesectevesadeveccatees 96

SC&IComplete «..ccv..cvcccecsestesscessesdedeazesesssedecs fees. 96
SCS Geti.cc.. cssevsessatesecre ave cdeaksbeel i cesuncccsededees 96
SCSIR Binds. sss cccczsctsesti tessseeded ce eae ceccs swoon ce 96
SCSIREAG ssc ceisesedcctevescstticcscaatsccnas seestanccelossesext 96
SOSIS tat -sesszisctaccccssaeass Secistastee iowa cceeseaieee cents 96
SCSIWBlind sedosasteduts Mbdzarteluentesetacensbtedeeveteaseeds 96
SCSIWTite: deci. csettisssccteistersath nec hskcetle ces 96
SearchProe sissy. ecisvcavictexsteaceitenee ttievscceceseaels 289
secondary sound buffer..::......0.0. £ aveetttieahinesscb 13

secondary video buffer Set tlecnatenahatensaetee 13
See yOur GENnuUSt: 225: ssdesei sees eee Se ery 2)
segment... Te inte abebabectdectettewddccsedteteraed “25..53,; 307

a anbeeing 2 Sed Aeaeebe Saves eas’ BicecieNiatitetasete tee |
* Segment Loader244- mhasheeaes Sere fe 220,256

SEQMENIS «. covwuiscddvevevevezevccevancktactesexscendvas-cevetteecs 256
Selected printel...c.eisessesdiordesieddics SES 72
SendRequest...........0+ siusweug a saoecndeois deed ieelts 250, 270
hie Bae ies 56
serial COMMECLOF-sssessserssersseessseerereseesseel Bugs 10, 65
SERIAL CPIVER vaccsedshscedsvesiweseespcstes en , 56, 249, 283, 284
Detial (Manage eT cecci cecssdsccsocceccsevenusavcesorsttess teste 229
Serial Switch cdev..........0. US isecses leas colton 284

SCPS AUS scdevcesictetesess wasesevese msvssteve tv scsiea ttre 56
SCEVETS sisccesssscscesovstevssasva sonsssesecessdvescenenseedesa Soon 20
SOb Lae Buster ic. cnc cessasccvsecosesccactensedecsvessns cote les 272
SOLAS causes chdstesteecdd vesecsevdetseueccceverieeis eee 4.28208
SetAS WO0.ccssescsscconcsseneoes Wissssoasehastaneizo0
SerCilV aie icc k acacsccss cutee ee eT
SetGurrentAs cdicccicacsinccessaccceattoctecr ee et 208
SCIDE PUN wecceeratczscodtevuscssbesseendneeied Seti rece 25.2...216
SCED OM sees baxeesbesewcvedensdcswatexcuvovseveocel coetesets 3.00534

SeCtEVentMask ...:...cscvcccessesodecvesceveveseovssosesssstouee 202
SetLine Width c.:scssccsksscessessceveeccesceodevvesses aed) 915-175
SetMenUB ar sisisccsccsssescsssecncaversesesovesssededoevelseors LOU
SG1PalelteS cacscosiwseuvacketesssexekescsevestecevyoee weit 211
SELRESAUTS .<csecivsccdaccesbosdesssesdiassReleleossectesen lent ho
SetRésl0ad |... se. esssctcsccvavecericeiseadosesseveensveonn £55250
StRESPUPGC s.ciscwseececinecestessssratsesvesssecsncsveteeeselbd
SEtRSlosdsscsscesiessccscessccessaoessdavesvssseseeottttevsaessee 128
SiS VSI USt. ccccsece sce: saseseveccascacevsecesetessres sR ALOT
SCtTrapAGdress ss saises decnues tissue vee tessiseseenstectosseversess 2
SQUUPAS wncaciesicensesessecsnseceusdeasncsesecesecttt tT SOP206
SetWw ord Break siscscaet covieveeesassssaasecacevess tliat o...267

SFG CIFIC nsscscicesssecs sacceosseesesecslaseeors 47,.77, 80, 107
SEPG CtEilé steszsclosestecatinntocsicesteseiveesesteseeen 47; 80
SEPPUthile o..2.cccsessedisscccaadtessocecsdseesereseésesscteevotes 47
SEPUEPIN Cs sé.c<0csccicssssessuessisessstecies cassteeine 47, 80; 107
SFREPLY sce sscescsties sasesexscrcsiseycasesevesencdervess tes ionibende 44
SES AVEDISK vecescacccecaescevecsasuasaeseeloviaceiesaseuetelte ‘80

shared i723

Ditiscssosicescosaivareebesocseadeleadestiats Sesiensoeest sete 116
Pil scccdcacadstciczaccnsbenctawedaveseenveanseewoes cite oll OF 0EBO
PIINED vdcvescnussdevsvtessvansacseussivesisssaaesedaecersasss wiT25

Sharing Setup CdeV s.s..ccessvsscccessesssessesssasest wlei311
SHEC(=[CEU SK. .5 ec ovccae cece Gevessavaswtadtscesocescoece .33

SHEN iscidscccciscttsdesesaveeva gecuneessoxeseseeeee x 126
SHIUTKEY sccsccstacectevertensveaesucecensdacds tases 2.:263
SHOPLV EFSION cassis cacersevecwseehsceestiansant eee 189
SHOW CORELccsesceiveceveees Breer rere are 2.197
SHOWIN T Dissscsiccoiwsstaccccccaststevacceccseees seeks 1cc0A7

SHO WPA Ls scscwsserserivvescveresccnresssoassosesssardecesvocreeede 91
SIGN siicanacttess tee veastvascesectonsteestene ath 160, 352; 253
SICH LASU sce. coseccicascevencssevssoxee cand = 41.252
Seti sac. ton ovciopssvftiadancecteenve 12188
SI QNALULC ss sssccvedese sede ntense<veeovatesccecasavenseans G2..5295748
SEM Miche boscec Sed docotiaseeseaeaveritessssweexsseesses 7 hseMi£ A

Single Inline Memory Module.. ;
single-sided Lf i A IIE :

SIZE. Mesivcisacantiacivistun beset svseeses
SIZE HM IALION ay sisevecsein se dewracencvenesvesoninessscarscbeds 237

SKIPPY sicstoecsnceswreetccciom. wntentva aaa 189
SLA VC sesso deta issmccinn asics dovowsuasis seiwesieesomccccnacteee 288
SIECD MOE srcsssieeeawsrscsseesveesesnvsaetesccssstadetitses ose 254

“14 of 19

_Developer Technical Support __June, 1992

slot SUDO WMlisssssieseses secvcscdssevsvagesterteveessiee ies eee 194
interrupt queue CleMen hee DDT © ESI etivleasewse ts Sowsvanecsas Sosnecccaberarenes cos eeeseaees 29, 48
NBS OMG Seetccsoitass sc occa tienndedeveceeseutest ail oegem 221 SUING BOON .2.2.<0sccdessosussven sesscdecshsoosvenscctegent cleats 91

Slots Manag CFs. cesichecscenesseader nccesccsatevedswtece 22959 30* ~SSUIDGENG oo cases; ccosseeseceassctavedssasscescaassaoseimeat ee atee 91
SMall ACONS is ccccegez 22s onsnadiwecdds vorseseteseSeccsseres 252::253 — Strin SWidth sesebecesccaesecccasescoacvedsesevessauvencoeeveseeas -26
SMa er ANd -fAStEP csi ovz. ices dts cccesestetvaressssecetecees DVB > a ISLYNG rates sReasevede ven teemaaetstevsasssteseanae se eeacenaeeeen ets 207
SIMA Raia sluice decxscaros bemtazits teen et iacesas tere eee 214: ° ‘StylOiAtIDUtE 2.2, ccccccaveossasscaacesesasetnnectera ees 198
sMaxLockedTransferCount:cesscceeeseceeeeeeeee 288. “Styled Fonts:122-:.secessisesissevssesessassacevecessd ters 198
SMR CARCACHE: 0c casnncssdensesgacsieansncaseveesdeteettens 263.!.” Styled Text Ges cccccsssccese ds cenicssi aa sheversaneie ees 207
SMUMINUCLP wis <oeececestdasccacered eset coceasedcceecerds Hesctess 245 SUDIAUNCH o)t05 Sestedossctatectasescubecustasxtesctiaaets 126, 205
SING Aoi siis ans cased acasceossvascassdessedetes Se vedeheasesaceaeets 168 SUPCTDIIVG: cs eccoviasssccsssessesdscccsvensegssssacacesess sents 230
SOCKEL..NIStENEL. .civeasessecccsosessscdseonsassadsaseseeee 201.270 .;SitpervisOr MOE: 6..0ccecsesczecdecesdeezeloavaasseasssexecrtetace
Software Licensing... <. i032 siscdesseesess56 aceoins 198,-206;.271 . ISUSPENG, EVEN iiss. ciscccssieoscecersesseccecevenstenetcbesseey 180
SONYCPIVED cscereee sce ssies ies 28..70;.815. 102; 271M 272.” GS VES wivscanstavedecessassssssescousssanseneseseesseheseeeneeaep 229
S ONCE D yestescnsadacecasteceaaectaie hcesueceesszhestinrne tease: 256 swapping MMU mode...............::ccccccscccecsseseseeee 228
sorting, iMtermational.........cssscssecessessssseeesseseseeees 53); “SWIMS sccesse covet eecsdiectscateesctessepayisseeeees ote 230, 271
SOU eo sods cecsesessaneslavtcvesctecsevedectiendiveedecenens 195268: © SWILCHIN Becicesdecscsseidevevecersvecses ossmsscecaeeses caxteseeers 180
SPOON ixesiassz cence covvavevavernvoncezadateoderveessowesetetea 268 MAJOR sei cndusstoesvaxscevsdedicawtcavasaushdeanedsearie ee 180
ESIGICO)- ca cosesuussswssededs< sdunvesenduaseteneee stee ainan Setcees 230 MITOM: esésacwecainerebanasesncevaunsedart va vcdbossuceseaedearees 180

BOUNGUDIVER Ssscvesassts cesiuavenaldereeee tee vote eee ees 19 UPCALE x xi daszs seas secesegsecsades docuwesdenbarvooveteercere? 180
Sound Manager............... 19, 180, 212, 229, 235, 268 SVNCHTONOUS! “l/O vexiesesesseveavesivsedsssqucdeaanael e-bteeees 271
Source code control SySLOMceeeeceeeeenebeete eres 269° —SYSECbs.sisin cs aserss asisenasoesesasnacstedeveaae cee setecedtectes 215
SPACE ALICNS Sc sevessswswuasshexecobecsaceatenadasdehiastee sete 206 SySENnvirons..........:cccccees 67, 103, 129, 156, 190, 207
SPCONNG yt redscvacavndesceriecats vanaweagabwavenen tates QQA DAD: ~ SVSENVREG). Aecvesd.cctdascaveles sad lenasecduseneseeetetsesn duct 129
“speech system

Pose MEIVER ous ecbedutay vite vonedenccecbeassbetasavancsavaseasmee tes 268 CITON 33 c cxsosscsscessss¥bederuvaeseeadenoanasteastaesiaaatsce 151
SYMMESIZER fi vsccsveccevnisstcessocseacd sen cnuc@ivuneteiweses sc 268 POM asiscessnadivestidacedacdeaons seedas beasts sasenseetats 191, 242

Speed Change Transition Evencseeeeeee 311 NGAP: seesccdeasscdeteccecsevevceyesetonescscsnegeeces 81, 83, 113
SPlASN SCHOEN» tevensstescuecesiiecs si vivecsaseoienxsonhesteces 180.“ “SYStEM! CXtENSLON aaiieccccsieearesssstisvsseossteaasstacthtecen 256
SPN Gav chees sade cnsessericcovhettiswecey catewedaiess cecesncdeaaeaees 91 System Software 6.0.5.........ccseeeees 229, 267, 275, 276
SPOONING ss < ecciersennsdscniecevedenecacecsswescnqieedwecbsedeass 192 System: Software: 7.0 sci sccssececscssecdsesdeseccgasessacnacd 287

PARC sce evdeveversceuscvecseeceeedacescvaseusaasiaesedeesesveeeee 72 System V File SyStem...:cossssssssssessicessesodesecevtaas 229
PPG Ties erase Svecea ca tas Sr caatto ete tixtenses ace thaxedetax 154-. WSYSteMEGit:s.cracscasncsecsscaesrsetevnessareentaeeues 180, 215
SPOQIOE os.0055 sah sestuscuesnaesdcostende otnensaterlesssaadocsusee 133 SYSLEMEVENE .2c50scesreccasdesecenscodeoetascstaace gs farce 5, 85

S OREO. swsed secqanisetseac ve scssenbusnatedoscsevncecuesten eases 257 SYStEMT ASK iwi. doveccsseaedesses essences cosewsastawseceveescouaes «85

ST CB Y(GS sicsdcssdevsctustesasscssvecensssmteesetdencoteene eevee: 171 SYSZ icc seshevoccee cance tess tasevsscccsigvanasscadeas ceatborsseeees 293
*PSRESOUNCE: EN CS oc: gs sveves eceredscsect sssssccees tte ZB8>. SYSZONG oicsesctsescnnccaztecceseasccececeusbeteesieeatoel taleece 2
PGRO DOM ING wéccdiacedeiavsceecvsceebexcevactinsscczediatccosers 206 tablet Gr ver... okcsecssdsdeesdesecseesslevsessscosdaresdieaesteee 266
“stack .. TAGS casdsssaasenssdcesanonetsctanscagescosneavessaseaacceseevieeseors 94

Pe NANI ING: fe psacvaecidasteness tecpavawaesnetpardedhusecreles 208: tall PAtCHeSvcccscccsccscsdsrsscessecgtessstesesacssaqan sdesetocens 212
S MDOMNGE sed convo iedaixendoanss varieoade serene eens Stak Tees 208. 2 SRALK, (RO ccdscaudendeies ezsssidecedanncciciaceswess ease ety anes 206

S Stand -AlONG: COdE «. svasedes ouacvtsvencoarcncdtcvane Sess 239256" © TANSTAABL seisscchantekaderdsspensdecssedeasnaesveerey weeteg03
* Standard File 2, 44, 47, 77, 80, 126, 204,238 TApplication............. ce ceessececeeeeessosepeeeeenss aeeeee-280
-4standard identifer field... scsscssseemmsescariwenesste 209). =diBSY STEM jisrevce beac cessebeteccessaweasceeet Sere erie 229

. Standard String COMPAFISON cece eee ee ee seeeeeeeeeees 178. “PCOMMANGcncs.necssscsoswose ecpsactinsoaxetrentensedts 12203280
Y MM ALL IVAN AGEN sca ceaccoed ecesce adem sstecoosseanavensnve 230258". “TCONUOL sh. occ sesducisswseslaesbeaatecevedsaccssctaeensase ees ...280
PISTAMSOUNG,. sessacesiscosnweceodescpsesienvdecaranstveococt bovietee 19° ST CUM BE oxiuss sscscesttsccscsoasaseraaoeceavertberscnabeesebeaey .280
UStartiip appli CatlOn.....c.csscphecq.tss cea smanns sastecedeptcceecsnce 2 TDeskScrap View icc .ssssissesetecsccsatinececvcesescestedees 280
A Startup, GISK ...2.<0s.nnsasee Sra cbag dbibwars viounSeuwasnanvingew eters 134 “WD ialOS View oc cccseeessccoceesscsssacessdecsddeeasheyieehieees 280
GStATlUP SAOCUMEINS 00, .crarcendiverentdesavelacecacceooesteases 129 PPDOCUMENE 1. ccdcc<ccsGecessnsenetiec sdeswssvecesossfa darters xe 280
HIASEAMC NIN Kas csevececcssbavcnipsceteonectecconccsashteesoustieses QOD", ~FOACHT CX s5caceisccdevadanssscecebeesheessezseeser neces ates 274
OSEAN ONERY 3 soscsiesterestesvesecedestsbsasieds Sieumee et teres 115 te Car Hook e.3 sts sath veadensscoseeseevecdeatenstexss tis STEED

P SLAUNS oF Fes ccases tes auadifuacleoevexneteskincesseeecess wale 262-. “TEContinuousS ty le...ccci-4 ccsstestevecstvescendeeee. 207
SSUALUS: Call fc cascccsadontataovesccveateertseseu edt varsen.ccttes QIQ- ATE COPY xacceccsussedevesencevsls cossnceeytinvesen stveceseticten 42.207
SIIB UL wis cssnchteveauccogespaszissextenesseasts so oiseseustetiuciet 192 sPECUStOMHOOK:.w.cc.ccealesscetsereccnncetsagesetegeecetineees 207
SIGE Sirsiasscesicaceeaesesast cteemepasvechsteotessm eset 203) 2MEEC tities cisievescasdesscsevesssaceasece eestor tcineeiga ins 207
SUS (Ale iv cscesrcceeseatneavens raxpesceanetet ee Seta DO, SPE DCIAG s cccceczs elevates eceteviveessebdusurogets cesecianest ees 207
SlepMtOME1hOG aco dessseeeseactearscotesess eee ee iemO © LBEEDISPAtCh 22 sta cess essaceteeenasacsatstaasasageesepacemens 207

bE LCD MCU Od iicck cc cccssstbocesiendeagedcasedaveceanooeecacesteet? 280°. CSTEDIspatchRee s.2. is. ccersvencecevssccestacecncteauveueraagei2OU
PSTSTEOSOUNG ws sis0ecssssnasedeasnssscsexsseoses Mea scedeeees 230 tePEGUT OX 5, 20025. cespeden ch cenesisepweasecbsasacosc ip staaee reeds 280

~ Index 15. of 19

Macintosh Technical Notes

MEP DOM EX rexceseticteset cores leastecs ood uestnehasscceceetesaeeests 82
TEDrawHook eee 207, 267
ESE Ol HOO Kistcs ci ccncvssecesevescconccaccusexnceantesen ds
NERORCCLSOD eg osscccc ccc ctsensedeseseecnnesstapsbaceeeeters teeters
PEE Handle: ..cscsccceeccscsscesansisssdeaasscabsasgesecetets
tO HD OOK ives ccdeccesiasaccsvasteretedvoscineceeesensbieceuseveess
TEHitTestHook
TEHOOKiy isossssdsosotwaetessssedescacedenccusssssessoenst soveoess
fe) UStCONtGL sarc vines sseceeecesszerceessevacdeaanoxtevesexile
WEDUStLCE bisccccsicssessccaverstcsssconseseascuaresszesievsdeacdecss
RSJ USERI GN Gass cetscdasassecssiscenn eases eeesecsreatisaasevetasass
ER CY as inssusvariheoaszdvauebesesesencessessesteaesdesccsve eee
TEL CN GU: SesvwarsPoacsarssssdassvosscasdonwesseesees
telephone-Style JACK vss eiscecsnersvescsewsasessvecpsswssasseseee
Temp. Memory Allocation... eeeeceeeseeeeees 205
TENUMS ty leSisccssccsccvssvccosascenassescestesssseccsseccucees 207
TRE ROGsic: 0cccs suecnevec texeveseeusnaetewanestevexsshstens 207, 237
TE RECOM seseceveccesetuscodvsteccccussantevnsedtseuvesewderssed es 207
LEFMINALION saz csceevsessiesvessuesseecexcueretersncesestes 271, 273
MPERIMINALOD s ches savonsesuwssncedaylavstnictenttecss eee cddsethesne 273
TE S Croll .sescieses sedweccevcesdecestacotees Areceneenetese 22, 131
FESCEPILEN GIN «ss cwsssccsteewsagcestasaesanstersassessadsusens 82
LOSCIRECE oe iscciacsevasdetensiensavsteseboeestssscootatfersosceads 82
TIE SCtS Cle wasdwicsras sce stuevascasvesdusaxstveusenedssssteesse 127
TESGUS by l@ iwisscnccaccesmatssnaseteeesistnseteenonseenssaas 131, 207
TES ty NSP icccccswscssovntzeneseeadesseccessssrnaerstoccetvece 131
ME SOV ING W casio sees Sdadnccsaversatnsicederscsaaneadaatesdentens 131
TESYSIUS1 ssssscieceatuiccieonscutoceseisssessasecsandeassentaene 267
TE WiGthHOOK s.s4:ss0ccseedsscsenctadedesadeene vaanaeses 207, 267
RENGD wots of oninheecssasassvuseausctsassscordeueeos cet tiecenateiee 84
LOX Deco woets trains ch eusenteadetocewsanncdeas tue soe teese tess 207, 274
DOlGistscasessadesessess sn feeatas scedeassabbcusgaceieonnasecuaces 207
CHIPPING scassssisssscresssneveveswenesennecsesesiancsncessnn 267

ay HALOS" DOXES scsiasacseasevsvesscestecpsussasenas snweassethe 267
WtALIC sscsecshewdeesdettcsaucbecrettecuns seavsvavsareasstnsesaaste 207

= JUSUIFI CATION ..cdcesecnsesnreoniatntscsisenssnvsareaereesseetess 267
A DIAN cis sexssnncesarecinacesannmcrorsiensneenaczdnersstineiye 207

POLALION ivatvasesndeenssckeecxescncacbaavenwausvocsnaths aveseeess 91
Styled vssseeveciscsnsstceaseneceeceeeesceksssspheseesissevoesesve 207

"FOX BOON sah saaccessaviscenres suas edhwseaieu stextauassessteeeenae 91
STOXUBOX -. sezvaecess saszesencads cbinnanibereedestacgebeeseseeenees 207
MMU OEE 25 pics sac ccnatiainsposavorimbenewediatee ave toch 91
TextBdit....... aeihervseees 22, 82, 127, 131,156, 203, 207,

Siva buwatsa vGosttbon eb reetea eater sesesntabactivecebtvadantce 237, 267
data structures...... maeeeuee telsanyeaeecdeenseusiwsveeesscstenl 207

“System CO pci Sedvacetewecestewacteueces dveesauaen Costease tes 207
version: 3.0.06. sscciessssacsssve Aicapcetevereskeneszedeteeves 267

WORE NAc tiicn dente Gifeccenneede Gacsceeetnetes 91
TextlsPostScript wetvussoes’ i nesshudatebereeuathateeeate set ets 9]
“FOxtStyles......ccccccccccccscceenestesesecreceeeees THieesssevees 207
TFextStyletsFace cis: scssseossecescstccsoxzcesccsansesssdeteces 207
VEGCURSI Bi ks ocaceticcrsescssseveesvernessssttsteavsndevsssvssanes 173
PTCA VIEW fxs cds ecu evs eves onsticeciunesdestee cette etd LON reas 280
WEP Orit coechndeeecenaveermansniina ne 25
Thought Police. ::.........csesesceesesseesesodssetSieeL FT; 276
thumbCnl,...025....55..sccetseee.00 seaatienecive eek 1.....196
STACKS sezoves dagetbeubetccnceeoucecodeseeteushs dcaodtawaserreoeees 227
TIGOD so ssiirissstesctascostdessatiacedsticisios manners 280
TID wis ccccectcatisstcssssascecaceisass tisenesscavertwedavnentioess 250

Time! Manager 27 .:.vs,cesesesextadetetheatce Leesecedcneete Dp 180
UMCES S svivebicesiencvcdonseneceusstederteeesencetves5e AY 4270

WACK CACHE. 255265 3s Saswacscasescceoaawedsseeassaes st hems
Track Cache Control é

Transaction Request.............sseeeceees Sdived a Sengenteoees 270
Transaction RespOnse:..icccsscesssssevasndeotioecavessrosotea
transfers, NOBUS. cicctccecvsscecestcececsceovsdesastereocsans 2288

wap

DAC Mesnciesnenduceenissasedeecdcceacacesoosinsaes aceccseyes 255.212

uncompressed data
UNGOCUMENEEMnscrcecerececacestarsessrneditaoetet Sle?

Unimplemented cc ccsevsceseccs.scccttet xsl aeted 55.2.2856
Unique 1ID athe tit

MONED visissenssssuseuarceecteseses hatenseeda tees: on

Update SWIIChING-cecccecereseececeseoneveseeden sevedt8O
Wate GW ONG ss a2 cdeniideesscesasanasddevenvoreseeseevorene ed D
UpdateResFile si Sedan stend caddeenennah aneoss 116,'188
UPSTAGING, MMO irwvccccsccscereinesecencsdsoverssacsvens 2176
Se MP Temp Bit vsserecessascisseseccssesasesdue Sees bisa. 275
user 7 , aren

16 of 19

Developer Technical Support Lerner! June 1992

StACK:. POMtOL csi ..25. wecesssace ducdectbe decedeo ves eee 2,- JOWDREENUIN s.2:5 o.3.eseecctedeasceraatvesneeare esas 126
HSEPLUNCUHON C5... cceecsadeacesversssenxerssdhesseecateeuieres 75 IW DS Ssccecect ecdederoccastceesiewtteacase Sess eee 311
usersinstalled FPU c.ccsccecesvcsssdesseed sacs enttessentieeerns 129 WICKEO TASES ¢.ci.cécs0ecesscescciccsssseccstes<ePacectacdeeeeees: 271
User-Interface Police sss. sscssrdscesesscteeedieets seececesee2 180 Widtly table's. <cc23ccesscedesseecssdecccckoesstadeeaeesmacktenenee

USCEMCM sds ics sods eacdseasatys acs sucendsaneSectts teres acs seeeene 203 window ee:

INSCES Lal Cah ves seseeetia axes Seseeehs eeederss eee 79 Ge fairl State a oacssacsssbendsestbccesvegeshschesse eats 79
NS Pigs dro cae th tos Sea dsacseaderdetavted mexateee eae Wea. Gefinition FUNCLION.............ccccceeeeceeneeceeeeeeceueece 290
WOT AD LEB ASC ss oidesscgdsccctessseesancatiacscesss odes sit doneerebee 250 user-selectable State..............ccccccecceececeaeeeeeeeeeees 79
VBL ZOOMING csscascdessceeviessavenactisnsvotevcsaseanesseteadeyneres 79

ILCITU PIS ss ccsccceaueesiwsdscenwsussseesseceaerasetseseteeenes 221 Window Manager ...cs.cssiecsendscassncdecteseesessscts 79, 203
ASK i cevierscva ic dewareseeiassexcteesRerraeee es 180, 268 WINDOWKING 5 222s sch cswesoedve ices deaudeasgaewes Cheeses 5
WIBR cas eeciueneden costwedeseast ve seevcossvevncesiceseusdesodets eos 292. ~“oAWIMSEP OME ss sseessihecsestanedssteeessacoeheeeecssscaeente 53, 194
WCB ss stacescosdsasas taadececassrasrattaseostese moter 229 Word: break table scsec sescesdecsbeieseethoeiees RRS 182

QUICUE vnc cacaleske sv apidanSeteavweteba en <boceuasAsesten tees 24, 44 WOTKiNg GiFECLOTYeceeeseeeeeeeeeees 44, 77, 126, 190
VEDDRCINUM eccesisisdesscodsccwsscasceevedeocacosss oasacede dd 106 CONIOMDIOCK 22s icdoccsasuvodestadeesicnedeossdects seeesoese 126
VEDDEVINUM csessccadecenceesbdnccbctesapedsessectssandeoes ¥EEe 106 DD is 52s. eat seaecawccvseceeuaveteagesttouassensdessseeahees 238
VECION DASE TESISIER yo sass saccadeesevsvves satetedoasedetee ters DOD) < WHEE sacs ss svessssteavssvsccacseeeessgaseledesvesbeseetsoresgees 187
UVTI IDISK \ aisdoneSbesteacscisnsestevent stat ereiiee haces 212... Write Data: SUUCtUIG 5.3 csccs vcseesscccsceas desea sadtsescetes 311
verify flag indicator byteeeeeeeeeeeeeeeedeeteeeees D25~' . “ WitelGAP os sivetesc access sedonssscidsssuestsdoessanderueeseeeess 250
VETIVER Ag oo. eas sncssenc es canaceussseseatAounass eee 225 WIitCRESOUICE iss cassecseessesvenss eesiweadigeessecssssees 111, 188
CUS desso yas ouseusaseasneaucn ses csaeexconeeeieaeeseeee 189, 274 W State Data ts, 5:50. c: seasauisdoceaes ponataersecedosesvcntes see 79

VGISION iesaaciosdvswsapante sasseeasdaaceceesuass oe tease erase 189 MOOT OK 9 6 iris. sesscccssacchaseesseecatinnssnesesiexsdet iether 146
'WEFSION: <CONUTON «35505 8e0e Svesocesceevsas hein oececedtvencexees 269 ROOT ORS Os vvcniecccsssslossscesscdes dee sendeagesesseeseseiaates 146
VEFSIONREQUESIE” sows scdscsseass since sxvepteextetideereteees cs 1295 KOM D ieetebesessccedacdxtaviiiesetdeats sclassvessiscsiaeiee 256
IVRESINGG: fuicss dansticids chtuuyaenscstvaowasuSeassanss deen ens Reeace 189 XP DRE MY Se onc ctectevevecexs Covade ea edessnnstces tote eeetees 270
WersRecHand le. ...vsnvcccsacsssesessseeensesqassegevverscurecss 189: . SXPPTIMCOUE sic cte nei danevecsatesvseasessaveetresowmeracewies 270
MIEESRECPUD: scécs set eeaarsosevscnsseveiks oosesovemseniseetstinaes 189 ZOD S Oe ae Mice soc toht cas towte abaeseasetag aetencatestueecnee 286
NILA saucoadees os coskucdenngaate tenes «Bas einnees sie aeaae Sauk 2 ZOD FLCC ve. sdesdeaucseses Sods Ae Ssavixbecosassanuexte eee 151

VIA os cid cur teecacsaucasissaueatscea rsa nasosbeneadasssnttensen: 291 AP sak sushincteectsstacsstsSvaxtetuesatesesouee cecascees 9, 250, 270
NTA D a dos duniscanteideivasteeiucdessastecstoedsRecsseeeensatecews 271 Zone Information Protocol..............cccseeee+ 9, 250, 270

VEAB ASC 2.255 shicctiwis Sealine (eve sevanssaus@iessessecdsetivets PLZ °° <ZOOMING: WINdOWS a. .sec sss thavedens shabessnedheighessathoees 79
video COOMREC Utes Acai teisiea osu tecaatvadee een ean 194
UGE Fos Sina da srevahoc neue cn c<osb tee andu ts nee cuca eee 2 PADBOD issosttiatssstadevsscees sqsaiessackoseiescudaetes 160, 206
CBG PIMOUIS nc<2.5e04 eens Fenseceect sacs gdsscarcizsaseteedees 144 PAD BREIUBI fh socessscsesseetscsdtecssascescessadeeiecsstuslen 2200

CONNECLOL. PINOUIS sssiceeccdeedsboces! cadevsssendgateaeboens 144. DAN vcs ccccesconccueccsees senseeasensstacoseadeqtets Seas Mexves 248
WIG WIRCCh coo sidvcueiets teceansncestrcnetntencbacaacteren tiene 82 PAN OCAE Sy csccevtentencswsesys sanscusdevssdhocdesesteeesuestns 229
Viral ANLE Ct ON. cs'ors dts stcesoessensnoupacs icoket Govt vetvetoee 231 PANOCCONUG: Bevis cvcsc Re oxsheccnacasteteeentadheocestees 229
ENATUUGIS KEY. COGC. swscas.cs-2ssteaciexdssesteaiesaveh tastesetets 160 LAUXDispateh.......5sss.ccsscesedeceessesncsnessssneeies 229, 283
Virtual MEMOTY............eeeeeeeeee 203, 229, 285, 292, 313 Bit Cli iiseiececsstes dicta aexsoueeeeeaseveskovesexsess lee 248
VISR M2520) cwedenaneaaciccwaauaadaaedce setunadassdeaurs lareseatete 194 BBIUS Cbcacsscdevesstessdecovevanesestacvtees eit tosseceeaes as 248

VIM Gy cosa Gass eaarvean ses vance adaatibucnssaxssearl oRhetesoe ee 285 Cale Mask sss scccscsvcseascssdeseeseveasdesdeacteavs beecto 193
VIMAUEID woods airccosenteuahaactesksneasaenioenecteehweet kes 186% > +2 CatMOv Gxrszccteccassiesveccsa eters asccasteaeas tates figes 37220
WOU A eS ie ccanctsns nicedeeentarbasesniAosecaresceccestuaaas eee: 274 SCHAIM ec aeodens 3) eden cessvasececaserteoeatovaatweet tees 126; 180
NOMIM Ev ccsiscaesereasdieesaaientiotdccacnssscsssssteeemeee es 24106 ~~ zCIOSEPICUUTE secs cctsccs hesscancenicearistaaascticsesiieees 275
SONS esa oa felacenauvsadiacecedssciiea vowaaesesiteeeeees .106 _CopyBits.............. 41, 120, 252, 259, 275, 277, 289
VOLUME. DitMap nn. ...0<-<eesenecscceuse canpheteensstsleaciaias 287 SC OUNTA DBS 5c scenes ois ccebdesdcesdvsesteacesasseesereetieOo
volume pathname...........ccceeccceeeceeeecn sees ees Bitaa de ta 229 OTE ALG i025 ccs ios can asacasitedo ve satetvesdebaeeateee Reinet 229
SVREENGM wiccsiecsicincccecsensccecswesecessgec 44, 77, 126, 238 A Datal nit xc cctces ccaglenesteaesaeetacsnceacssceussantsttoceuss 100i 93
MSVMG! 6 scot catia toewescundesceecosdcevesestets not teen 271 MELT OSEGEN sou, Mscccdses eaves patveressouscwedoiee see Ate ee 285
WA DES: co FE toi te cds Be ha sbch noche Ras 2:28] PW IBIOSSEIECES .ssussvece egadssesnseecscdeccenessssucstentuqeeueol

IN alt MOUSCUP 3 z5.sxcseevasiassaneces, <cadevezaenee eewek 194 EDIBadMOunt. 53 sseccescascavetscsoasseapescesseeatnas tosses 287

WaitNextEventcncccscssccsscescaesceeces 158, 177, 194 ADIPORMAL cacccteedevcaessancncdssnewseosatoocssoeet el Ane
MWK: LED soseasesssnceasdenecusauass co-sesvestessestteecdeteea hes 254 DIV CCIE cts SoHo a ahinssuncasesvenesexsarnctaxcduepseste ee 287
WOTTAIMY 0 c'os vcve wsissiecenacaeuscdaiensa te osesxaeniaeddeccessucgae P76 PUDIZCIOs iedccsecccieeteewsece st aeeeshes sieceesn ceases teeeeeeOT
IWIDEB wcscstcseugs assanieedaccest inves seta cocen state aesaee aes 126: ce DrasGrayR iivscecsccecsseccscvessahlssssgevesesectes Sheters 193
PW DEP! . ccctscnescseodontsvtcc 23; 79,, 19,:1942:212; 2567290 | @Dra@TheR On c..scsccsccsecstevesceossetessccscaenceetethoak’ 247

BA WIDEN Se ssivsiasedediecnsxansacn cnieeseonste sates ss aeee See eee 72 SDrawCnhar, .ww.0sccescsesseceses asbewedenwe vidseeeeet eee issee 72

WIDPHOCID is scsincenaceterriostrexchleavancsssebshusSt acute 126° . SE DrawPlCture ssc sscseesscssSscethteedecedek Mere rere 259
W DIAW: cassculeutieves sessoncsbesete dee rtie touesejios Gee 290) PD raWS thin’ ..5.2 oo05hac05o08 Sacsoavecs ch Sotasssds soaaeeaed 72, 192
WW GING EIN OI sic. ccs ecnseccestvosessdeuedeccsduacseeaccueeieee: 44,77 PP TAW TEX oes Bs ie tic, sa cesadiccacdseass ctadccec ethan

Index 17 of 19

Macintosh Technical Notes

METASCRECU. <. sdesnensencie tects dawescasvescaateslespadetooexsesoes 72 ~ PBCIOSGs. vcccceeiccssedecesscthtesscactvectes ents Peniesietecs 278
_EventAvailccccccssssscssececessesecececcceceeeeees 180 _PBControl............ satissasstesieetorente os ..293
Find WindOw sec desaviecsesccvaideasaasdeseecsscvevaeloodeeder 79 _PBGetCatInfo3.....2...008 Ueestzasecceeaseed Rucaderd “238
_FONQSCHDE sects sezewesbintscaxecsedesiuccrseecestetswedsetens 242 _PBHGetVInfo..........:.scccce0 dcsedeabattdesdteaesivessves 66
UFOS CTIPE:. sosscchcesenscvcaceses secaseuccsscccneseseecseeaees 242 _PBHGetVolParms...............cceeeees hesihateesed abstored 186

BIOTEC O1OM sexscsassacsrirasnenssucvbseserderverea eens 259 VMA th ocsscestesecisvazeizessscccesastuccsedees pels oeeett 186
UPS ODEN sssesessuteassensesaesanssexscceevsavserscsacareestecescs 2AG” -, SPBILOCKRANGE «ccscecesdsseshezecdtatedsestesssess recess Jesteeesl OO
PS WIG sdcissstencaconscedeessvivesssccexosadencoadeessetonontea 246. -PBOPOn WD iviccsssscsessensedecscsdescenedl tanusdet.osevesece 126
VU GEStal bis. vesseiiccvedesecosecesesdsesatesedsdeevensnets- 146, 283 UPBREAG .cséssssseaveddacdéciecvesstoescadeeeceesd bibs a Cdaaeeevetes 229
IGERADB ING 425202: oie itecesss sents eet 206;:266. _PBStattiSveccc cscs dscccssthsessesteessdisdeensth ne ieee 293
AG OCA LO eeev scsi. 3evenseahaeceteee sce acteeateceses Reese 226 -PBUnIOCKRan ge ..sssssecsccoesncstsccvetesncsctusctensccsdtce 186
M5GOtC Fab kiss sesdvoices Seascensdaxeiviossssnccadoesiesaes eee 244 CSPB WHIlC .220500is8cesscsccsdecectstwenesascasidesevose sien weseastD oO
 GetDIFACCOSS «ss. sassocntsdersdens vedossesevisdensseasieeioes 229 ~ POSLEVENE <csiedoce.isdecccasecewncosdsedaces Seccsexates 180, 229
GOLEM VINONS: 52 .ccisse0 desss cadteseoscvsccceieacote aces 243, 263 PICIOSE host sicessctevasearscsaeveseseeconete ese eecsoetee 161
2GCURGADB coccieciersexttcveckdcetcesseerstie eee 206: ~--PrCtl Call sci cccseiccssecoscseskesan seid sxscbsseoet era eee ees 192
IGEINEW WINdOW a ssessasszessasecnsnsssensseownszanensssessinrs 79 PEDFViOD ED i vesueneseecessscessdueswoessessacsedeeftecwtedieeys 192
 GetNextE Vent vicswndessevecceveseceassseedeseescwns eoee 180; 205. | --PrOPeM si.5c..0s.00sceeecess ca edescstocsscstuattegsatoceose 72, 161
_GetPixBaseAddr..........cccccccccscssrececceeeeeeeeees 213; 289. =PrOpenDOes scsscssccces cousescseccvtavevdtarivessateseses toes 192
_GetReSOUICEccceeceecceeceeccecceeceeceneeesees 228, 263 PROPCNPAGE ievsccicoenss secseerecideten Moreen eres teeters 192
IGetWReIC OM cnc csdeavevcnseccienostssescivesunctacttesaskes tts 227 SPUR 8iiscecssis sewer scasaeseecccsessconscandcsesteenecctivdetees 193

IG OtZON Coins sSessncewetecess dnsnandecdeasecsensechesnanseseete 248 PUUS CLAP. scness.ciaccnccesk vesecevessevecvadesssesssareessooeses 180
JHMandleZones .cissihces sostesssceeceedesssengasesceeatendecwtee 248 SQDOPSCECE i assceeevsececevereivenenevervesivatenestueteietss 275
e Mand Fo angd jwissssscceseasivsscsncvesssesHawrswacesestosdeeee 227 RECOVEF Handle: cscs cecsssveessivavecevceneestiotesass 213,232
SHIGE DIG tii sscsiwesscendccaesewssavlatcaseutesetseoussesteares 251 ~~ SCIECE WINDOW siscevesesenccevescesseredonsebeccaapoesseteece 205

PI WER Vc cesscssesianedeoccvossessueceesencseoweees DOV 271 286. LSetA DBM fO nice cceccavicsewsditsnscecesscatessavesesiace 206, 266
IMICFONtS sczss2ceases id sabcsevessercxasenceeawecxssderderas ceevees 72 AS Ct Cat NO ives sdcsseweisesesesncscesesseuseseesst eueetentes 229
MIG TA bei cs strc sedesstceivssc uct vestanasestoacesueeevastasesees 223 " SCtC CUrSOR 3 sssccsceccessussswocdsntcecsassdcdvescvasoovcossees 244
TRIE WANGOWS | icsciiciscscesdeseresicecedccovdssssseteveosssetee 247 _SGIENVILONS sides coesssesedsecveccssuesessseesvcaeseseavecsssss 243
PYINSGUR OM ictsssasa eevisdcs tents asevesPeriecseiuss <atgdeueveseecmteas 193: - -SCtEOP iescisicwsscccssvecoversasedsscesvecnrevesesecanssersoese 229
IRUSCrIPt sss .asseteraokecteserviraseavteiedtieeeeiintteress DAD: . -SCUPICINI Os. ccccceedsevccosaccnsscendevsseeettueiecseewenceees 229
IMC TOKEMIZE wavtssisccesewsasetosenseswnckaweoeades tina Seeees de 264 USOLEPOS, scsceeccasvessassctesscadenscsssssteccerswsedasessateese 246
KEYS CLIP licnsssscasessesssecsssscesssasoxesesgansssseveceresoue 160. - _SetFractEnable..c.c.cc-cacasseceteeds swestesansvdretewsareeeres 72
KRG Y TPIANS iosocisb dastenstinesstesdeaveteecesssccesivicecniies 160, 263 SCIGrOW ZONGwiscccsseasisssecsacdecsescesessecnsvewsedcesssced 233

MOUNCH scissecscaadescemecasbchecessannseaed concer 126, 180, 205 SSCIMENUB Af ws cavecssccsscesssccesessesesconctecesdehitbessteese 180
LOCA TOG ODal assccsnectencovenstvescsetvowevescoressdceccnts 120: - SClO Mth. sccceecsseovictosacseecssccastebtetiiatecethesavese bes 72
“BongSecs2 Date sscesssiscsasszteessitessseseosessoscdeeete cess 264 ASCUS CLIP brsssesecses ves sdsdecssveesessesaveissennassencstetedsees 160
Memory Dispatch sss sccecssecteccceeseucieceedets deseneteiee 285: - SCT rapAdGresSiesscsccsedsszsvivetvecseteeatseionde Sleseaass 213
MENUS CIECE:. os ance cevcsievescevisicteccnccessteadecouneee sees 180: “SEtWREECOM cc. scsdcccecscssessccsccvsnne cooled dedss ene tects 227
EP MEMGMT OD cree etecsstecdzsscevssdecwccneaceessansecenisheces 205 PSCIZONES. cacsiaautawenteseaaecsetaxesessveeesaseaeeisees te eeewes 248
 MFTempNewHandles.:..s0c0s.00:.0c00eseeeeseeeseserse sees 205 USBGCURUl6 sii. cs cicssacesavsvevecvedetevecteteusessecetoetetes 205
UMPTOPMOM..ciisccece.sccses sseessessticecsscssasesssbardeace 205 STMUNS tall ascesccssscteasscestavnvesessscevdsveedeaeveces 221, 257
MiOdal Dial Oe si cess sececsisecsvevteasasessecinegstansee ees 248 ESIOEV INStall scceseccsedss dececewecesdeacwasesstencssesthveseses 221
NOWHandle....0. scscccserceceveseseceescevessssees 41, 205, 233 STATUS ssc oceans sce hedst snd cusntuvesseseeeuvissdeawsastateseoredute 262
NCW PUR ost eco cad eebeeeeeie aie saddens seuecwudtinetiness 41 ES UN G2 Date xz saessaeccswstaneetecrtv ered wuctvesdtereoess 264

SNOWREN 4 saws ceri secessicteatdecshecs ¥enevteawacseeddectedens 193 USUIPAUAiOSS osegcessscceeccaiedsressaecess 212, 213, 228, 232
E NeW WIindOW.: cs scc eds nse cease ove setacesessccaxedereencene ss 41, 79 “SWaPMMUMOd6:s.cscvesweesacevecevesescateaittves. 213, 228
NGO tT rapA Gress wv sect iss ses sclis souedtesnsseeesceuzantes tees 212 “HS YSBECD vssscasevecsenciaassesnccudecscovensbesselvecsiwane 19, 268
NMI nS tall ccciesersscteciteecsstevceccatithniccstseseeeorene 184. “US YSEGitetisisfiisscs ci eccsakescasehs Kossusintiereavsboedenseste 180
ONMRCMOVEGscscctesticts owaxcousavesnexibinsneestestestedevess 184 WSYSENVIPONS «2.00 icccescsisseesicesereccse 66, 120, 129, 146,
LOPSCUR Cbs ccdcconicxvacaweteccuviavexsddscdéenceicensstesbesdent D2. Macdediec Saks ivinverssweraeeuees 184, 212, 230, 236, 249, 250
POPEN esis Motiec cescitetnecctesteshesveas edt Gieees 224, 229,249 —“SystemT ask. ..icccssecceccssccessecsscevecccsetteccstveveceeses 248
LOPENCPICHING sc ccteress duces bacideeteesseavdetseesessssteetes 275 = TE CalV ext cvccdesnctistessszescovesseasicssivncssaeaereess 267
BO PEN DEVEL so sesiveecatce hi atitecceececcaueesstais ins snes hese 293). “WEG etHe i ohitic.s. szsceecch cs cccancessseeccandccesieteeeeestetss 267
SOPONPIC he as s.ccisczsceces cee secectuddecdeteadeceisteteeesies 275 SPE IGE wcscosecckesSeadessevaeSssoveuceserseanssisstensdsatesttee 251
LOPCRRESFUE skeet sscteclevedscsstcieenrcceeceseti eet 213, 232 9 LEINOW esesszacssecsesecribisacsbasstiweviiwsnteibeesennolenetc 227
OpenRPs. ssectcsssriicctnsserieteteeeradeiveleeast: 229. : . PTEREplaceStyle sis. oc sidovcsstessesnori ct cccatewtsssieeeen 267
OPCRREPEIM ...csicscssecssssessiectesssenvessesectecce 213,232 = TE SCH USE sss: eseavsecwavesanveaseencueessetsvestecceveatiaded 267
OPCNW D wesscccsesascscssasedivsszscasesveosseceesededsedeteteas 126 a RES CUS ty Gaicckssiecccsctccsiesescensvesessssdenesesacest otis 267

CPACKBUIS) sveseascovnceeweascaneszieses sgocnvenouvetacaeees 86, 171 UTEUPdAle ss: ssscsanevtatesdeceosnstusestsoxteseseadesseeestoces 267
“PBCAatMOVGscdcsidetitincec te tenis 226: 229. ~ TORUB OX esdascccesnsaccsennastessadcccaveaas cess seusteeness 72, 267

“18 of 19 ‘Tidex

June 1992
Develo x t Technical Su Ort

—~TickCount......... Sexi Sateesaivebasestaeceasdessaeusescthence 227

@ TTACK BON ses sactsbideagvscis saccuecgaasatDicgees>ohs sen ageaess 79

os BACK CONUO! vsizsteryeteceuasta conten sa beeressteceteteeevess 196

FrackGOA WAY sé-0ssosseseeegeosseesesbvesvenetieccestpecsores 247 iat

UMIONR ON s. s.sstesevsged scar gccussveresvesbennees ensaseseenede's 193 r

i AJAMOUMLV Ol segsneves sesteedseveensinsscasepssnessndseesedees 180

SUNPACKBINS: < .scecccsreseneccetbawseesscsseesss vesewerese 86, 171
aWaltNextEvent, .cccccsiesivesseeschiesioweeeesd 126, 180, 205
_LETOS CRA wicccetscscnsssecteseesoase As ccugetastcet need tusestes 180
= ZOOM WINDOW sca vsesnessogsecenssyesse sossosesssnnwusesssnaeee 79

(SLOADY iacc0 sc Setcsaseteees oe atasiat eta Sede tieaa tence etes 93
{[MC6888 le} sccccessecsgetesedesssstcnasessennssssasuetsdtecsees 146

K

Index 19 of 19

ees ae

x

a

é

-

y
.

Ane

*

Lan

4

@.

Developer Technical Support

Macintosh
Technical Notes

#0: About Macintosh Technical Notes June 1992

Technical Note #0 (this document) accompanies each release of Macintosh Technical Notes. This

release includes new Notes 317, 318, and an index to all released Macintosh Technical Notes. If

there are any subjects which you would like to see treated in a Technical Note (or if you have any

questions about existing Technical Notes), please contact us at one of the following addresses:

Macintosh Technical Notes
Developer Technical Support
Apple Computer, Inc.
20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014
AppleLink: MacDTS
MCI Mail: MacDTS
Internet: MacDTS@AppleLink.Apple.com

We want Technical Notes to be distributed as widely as possible, so they are sent to all Partners
and Associates at no charge; they are also posted on AppleLink in the Developer Services bulletin
board and other electronic sources, including the Apple FTP site (IP 130.43.2.3). You can also
order them through APDA. As an APDA customer, you have access to the tools and
documentation necessary to develop Apple-compatible products. For more information about
APDA, contact:

APDA
Apple Computer, Inc.
20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014
(800) 282-APDA or (800) 282-2732
Fax: (408) 562-3971
Telex: 171-576
AppleLink: APDA
Internet: APDA@AppleLink.Apple.com

We place no restrictions on copying Technical Notes, with the exception that you cannot resell
them, so read, enjoy, and share. We hope Macintosh Technical Notes will provide you with lots
of valuable information while you are developing Macintosh hardware and software. The
bone pages list all Macintosh Technical Notes that have been released (both by number and by
subject).

SN

#0; About Macintosh Technical Notes 1 of 15

Released Macintosh Technical Notes

Indexed by Number

Number

WOmnrntnAMNABRWNHNre

Title
Desk Accessories and System Resources
Compatibility Guidelines
Command-Shift-Number Keys
Error Returns from GetNewDialog
Using Modeless Dialogs from Desk Accessories
Shortcut for Owned Resources
A Few Quick Debugging Tips
RecoverHandle Bug in AppleTalk Pascal Interfaces
Will Your AppleTalk Application Support Internets?
Pinouts
Memory-Based MacWrite Format
Disk-Based MacWrite Format
MacWrite Clipboard Format
The INIT 31 Mechanism
Finder 4.1
MacWorks XL
Low-Level Print Driver Calls
TextEdit Conversion Utility
How to Produce Continuous Sound Without Clicking
Data Servers on Appletalk
QuickDraw’s Internal Picture Definition
TEScroll Bug
Life With Font/DA Mover—Desk Accessories
Available Volumes
Don’t Depend on Register A5 Within Trap Patches
Fond of FONDS
MacDraw ‘PICT’ File Format
Finders and Foreign Drives
Resources Contained in the Desktop File
Font Height Tables

Reserved Resource Types
ImageWrniter IT Paper Motion
User Items in Dialogs
DrawPicture Problem
Drive Queue Elements
Differentiating Between Logic Boards
The ROM Debugger
Segment Loader Patch
Finder Flags
Drawing Into an Off-Screen Bitmap’ ~~
Pascal Routines Passed by Pointer
Calling LoadSeg
HFS Compatibility
Inside Macintosh Quick Reference —
Separate Resource Files
Customizing Standard File
Bundles a ae .

June 1992

New KK

Revised *R*

Released
obsolete 3/88

3/88
3/88
3/88
3/88
3/88
3/88

obsolete 3/88
4/90
3/88

obsolete 8/89
obsolete 8/89
obsolete 8/89
obsolete 3/88
obsolete 3/88
obsolete 3/88
obsolete 3/88

3/88
6/89
3/88
3/88
3/88
3/88
3/88
3/88
5/92

obsolete 8/89
3/88
3/88
3/88

unused
3/88
3/88

10/88
obsolete 3/88

3/88
obsolete 3/88

3/88
obsolete 3/88

3/88
6/90
3/88

obsolete 3/88
3/88

_ obsolete 3/88
3/88
3/88
3/88

unused

.,,,#0: About Macintosh Technical Notes

Developer Technical Support June 1992

50
51
52
a5
54
55
56
a7
58
oo
60
61
62
63
64
65
66
67
68
69
70
71
v2
73
74
75
76
Vd
78
19
80
81
82
83
84
85
86
87
88
89
90
91
92
a3
94
oD
96
97
98
O95
100
101
102
103
104

Calling SetResLoad
Debugging With PurgeMem and CompactMem
Calling Launch From a High-Level Language
MoreMasters Revisited
Limit to Size of Resources
Drawing Icons
Break/CTS Device Driver Event Structure
Macintosh Plus Overview
International Utilities Bug
Pictures and Clip Regions
Drawing Characters in a Narrow GrafPort
GetItemStyle Bug
Don’t Use Resource Header Application Bytes
WriteResource Bug Patch
IAZNotify
Macintosh Plus Pinouts
Determining Which File System is Active
Finding the “Blessed Folder”
Searching Volumes-Solutions and Problems
Setting ioFDirIndex in PBGetCatInfo Calls
Forcing Disks to be Either 400K or 800K
Finding Drivers in the Unit Table
Optimizing for the LaserWriter—Techniques
Color Printing
Don’t Use the Resource Fork for Data
Apple’s Multidisk Installer
The Macintosh Plus Update Installation Script
HFS Ruminations
Resource Manager Tips
_ZoomWindow
Standard File Tips
Caching
TextEdit: Advice & Descent
System Heap Size Warning
Edit File Format
GetNextEvent; Blinking Apple Menu
MacPaint Document Format
Error in FCBPBRec
Signals
DrawPicture Bug
SANE Incompatibilities é
Optimizing for the LaserWriter—Picture Comments
The Appearance of Text
MPW: {$LOAD} ;_DatalInit; % _MethTables. :
Tags
How to Add Items to the Print Dialogs
SCSI Bugs
PrSetError Problem
Short-Circuit Booleans in Lisa Pascal
Standard File Bug in System 3.2
Compatibility with Large-Screen Displays:
CreateResFile and the Poor Man’s: Search Path
HFS Elucidations
Using MaxApplZone and MoveHHi from Assembly
MPW: Accessing Globals From Assembly Language

- #0: About Macintosh Technical Notes

3/88
3/88

obsolete 4/89
3/88

obsolete 3/88
3/88
3/88

obsolete 3/88
obsolete 3/88

3/88
3/88

obsolete 3/88
3/88

obsolete 3/88
obsolete 3/88

3/88
8/90
5/92
1/92
3/88
3/88
3/88

10/90
3/88
3/88
1/92

obsolete 3/88
3/88
3/88
4/90
3/88
3/88
3/88
3/88
3/88
3/88
6/89
3/88
3/88

obsolete 3/88
obsolete 3/88

3/88
3/88
3/88
3/88
3/88
3/88

obsolete 3/88
obsolete 3/88
obsolete 3/88

3/88
3/88
3/88
3/88
3/88

3 0f 15

Macintosh Technical Notes Indexed by Number

105 MPW Object Pascal Without MacApp 3/88
106 The Real Story: VCBs and Drive Numbers 3/88
107 Nulls in Filenames 3/88
108 _AddDrive, _Drvrinstall, and _DrvrRemove 12/88

109 Bug in MPW 1.0 Language Libraries obsolete 3/88
110 MPW: Writing Stand-Alone Code obsolete 8/90
111 MoveHHi and SetResPurge 3/88
112 FindDItem 3/88
113 Boot Blocks 3/88
114 AppleShare and Old Finders 3/88
115 Application Configuration with Stationery Pads 3/88
116 AppleShare-able Apps. and the Resource Manager 3/88
117 Compatibility: Why and How 3/88
118 How to Check and Handle Printing Errors obsolete 10/90
119 Determining if Color QuickDraw Exists obsolete 3/88
120 Principia Off-Screen Graphics Environments 3/92

121 Using the High-Level AppleTalk Routines 3/88
122 Device-Independent Printing 3/88
123 Bugs in LaserWriter ROMs 3/88
124 Using Low-Level Printing Calls With AT ImageWrniters 3/88
125 Effect of Spool-a-page/Print-a-page on Shared Printers 3/88
126 Sub(Launching) from a High-Level Language 4/89
27 TextEdit EOL Ambiguity 3/88

128 PrGeneral 3/88
129 _Gestalt & _SysEnvirons—A Never-Ending Story 5/92
130 Clearing ioCompletion 3/88
131 TextEdit Bugs in System 4.2 3/88
132 AppleTalk Interface Update 3/88
133 Am] Talking to a LaserShare Spooler? 3/88
134 Hard Disk Medic & Booting Camp 3/88
135 Getting through CUSToms 3/88
136 Register AS Within GrowZone Functions. 3/88
137 AppleShare 1.1 Server FPMove Bug .. i 3/88
138 Using KanjiTalk with a non-Japanese Macintosh Pliis 3/88
139 Macintosh Plus ROM Versions ? ; : = 3/88
140 Why PBHSetVol is Dangerous Bie BOOK vg) 3/88
141 Maximum Number of ResourcesinaFile |. °- « 3/88
142 Avoid Use of Network Events o v 3/88
143 Don’t Call ADBRelnit on the SE with Sem 4. - = 3/88
144 Macintosh Color Monitor Connections — ., - 2/91
145 Debugger FKEY ira eu te ‘ “obsolete 8/90
146 Notes on MPW’s —mc68881 Option: . abr thas yids 5/92
147 Finder Notes: “Get Info” Default & Icon Masks. ~*~» Si6 3/88

hy 148 Suppliers for Macintosh II Board Developers ._ ue ee" 3/88

wa 149 Document Names and the Printing Manager ~ é. & 3/88
_ 150 Macintosh SE Disk Driver Bug Parnes , obsolete 3/88

151 System Error 33, “zcbFree has gone negative”. eS ae bie 3/88
152 Using Laser Prep Routines : 1 ete on 3/88
153 Chang ges in International Utilities and Resources” ’ re] = 3/88
154 Displaying Large PICT Files x a ma 3/88
155 Handles and Pointers—Identity Crisis ... ©) wie 3/88
156 Checking for Specific Functionality 9... © “7? > * 3/88
is] Problem with GetVInfo .. : og: Pee NAO ee 3/88

Bd as. cx AOS Frequently Asked MultiFinder Questions... © ° i 3/88
~"T59°° - Hard Disk Hacking eg ~ 3/88

4 of 15 ~ “#0 About Macintosh Technical Notes

Developer Technical Support June 1992

160
161
162
163
164
165
166
167
168
169
170
171
172
i735
174
175
176
177
178
7
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

“200
201
202
203
204

west 205
206
207
208
209
210
Zi
PH
213
214

~~” “40° "AboutMacintosh Technical Notes _ i em

Key Mapping
A Printing Loop That Cares...
MPW 2.0 Pascal Compiler Bug
Adding Color With CopyBits
MPW C Functions: To declare or not to declare, ..
Creating Files Inside an AppleShare Drop Folder
MPW C Functions Using Strings or Points as Arguments
AppleShare Foreground Applications
HyperCard And You: Economy Edition
HyperCard 1.0.1 And 1.1 Anomalies
HyperCard File Format
Things You Wanted to Know About _PackBits*
Parameters for MDEF Message #3
PrGeneral Bug
Accessing the Script Manager Print Action Routine
SetLine Width Revealed
Macintosh Memory Configurations
Problem with WaitNextEvent in MultiFinder 1.0
Modifying the Standard String Comparison
Setting ioNamePtr in File Manager Calls
MultiFinder Miscellanea
Every Picture [Comment] Tells Its Story, Don’t it?
How to Construct Word-Break Tables
Position-Independent PostScript
Notification Manager
OpenRFPerm: What your mother never told you
Lock, Unlock the Range
Don’t Look at ioPosOffset
ChangedResource: Too much of a good thing
Version Territory
Working Directories and MultiFinder
Font Names
Surprises in LaserWriter 5.0 and Newer
So Many Bitmaps, So Little Time
WMegrPortability
ASP and AFP Description icoancies
CDEF Parameters
Chooser Enhancements’:
Font/DA Mover, Styled Fonts, and NFNTs
KillNBP Clarification Z
MPW 2.0.2 Bugs
ReadPacket Clarification | , . ; :
Resetting the Event Mask
Don’t Abuse the Managers
HFS Tidbits wy rr
MultiFinder Revisited, The 6.0 System Release ~
Space Aliens Ate My Mouse (ADB-The Untold Story)
Styled TextEdit Changes in System 6.0
Setting and Restoring A5
High Sierra & ISO 9660 CD ROM Formats
The Desktop File’s Outer Limits 5
Palette Manager Changes in System 6.0: i,
The Joy of Being 32-Bit Clean.
_StripAddress: The Untold Story
New Resource Manager Calls

2/91
10/90

obsolete 3/88
3/88
3/88
3/88
3/88
3/88
2/91

obsolete 2/91
obsolete 2/91

1/92
3/88
3/88
3/88
3/88
4/92
3/88
3/88
3/88
8/89
3/88
3/88
3/88

12/89
4/88
2/91
4/88
4/88

10/90
4/88
8/88
2/90

12/89
3/88
8/88

10/89
8/88
5/92
8/88

10/88
8/88

12/88
8/88
8/88
4/90

10/91
12/88
6/89
8/88
8/88

10/88
8/91
8/90

10/88

5 of 15

Macintosh Technical Notes : Indexed by Number

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

: 248
| 249

250
251
252
253
254
255
256
257

si 258
oo 259
2 260

261
262
263
264
265

was sae 266

267
268
269

“New” cdev Messages 10/88
AppleShare 1.1 and 2.0 Limits 10/88
Where Have My Font Icons Gone? 4/91
New High-Level File Manager Calls 12/88
New Memory Manager Glue Routines 12/88
Segment Loader Limitations 12/88
NuBus Interrupt Latency (I Was a Teenage DMA Junkie) 10/89
Custom Menu Flashing Bug 2/89
Assembly Language Use of _InitGraf with MPW 2/89
Opening AppleTalk 2/89
Using RegisterName 2/89
Moving Your Cat 2/91
Toolbox Karma 2/89
Use Care When Swapping MMU Mode 2/90
A/UX 2.0 Compatibility Guidelines 2/91
Pertinent Information About the Macintosh SE/30 6/89
Macintosh Allegro Common Lisp Features 2/90
Strip With _OpenResFile and _OpenRFPerm 4/89
MultiFinder and _SetGrowZone 6/89
NuBus Physical Designs—Beware 12/89
Cooperating with the Coprocessor 10/90
Speedy the Math Coprocessor 6/89
TextEdit Record Size Limitations Revisited 6/89
Getting a Full Pathname 10/89
Inside Object Pascal 6/89
Using MPW for Non-Macintosh 68000 Systems 6/89
Script Manager’s Pixel2Char Routine 8/89
Fonts and the Script Manager 6/89
Script Manager Variables 6/89
A Leading Cause of Color Cursor Cursing 10/89
Font Family Numbers 3/91
Mixing HFS and C File I/O 2, 8/89
Giving the (Desk)Hook to INITs ee er . 10/89
DAs & Drivers in Need of (aGood) Time es 10/89
Opening the Serial Driver en SoD EQ 12/89
AppleTalk Phase 2 onthe Macintosh ~ © °° | =; a: 12/89
Safe cdevs mae es “G : 8/89
Plotting Small Icons PP ag, Se Pe aele 10/89
'SICN' Tired of Large Iconsin Menus? ; ry 10/89
Macintosh Portable PDS Development- = 5, ss “%g 2/90
Macintosh Portable ROM Expansion salle cn el 10/89
Stand-Alone Code, ad nauseam oe rey 8/90
Slot Interrupt Prio-Technics : poke RECT. a 10/89
Our Checksum Bounced : D Sg ey af 10/89
Old Style Colors 8/90
NuBus Power Allocation 10/89
Cache As Cache Can 4/92
High-Level Control & Status Calls: When a Good Call Goss Bad xe: 1/92
International Canceling. — - a ty , - = 2/90
Script Manager 2.0 Date & Time Problems * : 2/90
Pascal to C: PROCEDURE Parameters b eae ee St SOO

“Absdliite Pointing Device Memory Structure 4/92
TextEdit Technicalities 4/90
MacinTalk—The Final Chapter 2/90
'ckid' Resource Format 4/90

#0.’ About Macintosh Technical Notes

June 1992
Develop: Technical Support

asta)

270 AppleTalk’ Timers Explained 4/90

271 Macintosh IIfx: The Inside Story 4/90

212 What Your Sony Drives For You 6/90

215 SCSI Termination 5/92

274 The Compleat Guide to TeachText 4/90

275 32-Bit QuickDraw: Version 1.2 Features 4/90

276 Gimmie Depth or Gimmie Death 6/90

art Of Time and Space and _CopyBits 6/90

278 _PBClose the Barn Door 6/90

279 "LDEF' Madness 6/90

280 “Bugs in MacApp? Yes, But I Love It!” 10/90

281 Multiple Inheritance and HandleObjects 8/90

282 Smear Tactics 8/90

283 A/UX System Calls From Macintosh Software 1/91

284 IOP-Based Serial Differences Under A/UX 8/90

285 Coping With VM and Memory Mappings 4/91

286 The Serial General-Purpose Input (GPi) 2/91

287 Hey Buddy, Can You Spare A Block? 2/91

288 NuBus Block Transfer Mode sResource Entries 2/91

289 Deaccelerated _CopyBits & 8°24 GC QuickDraw 2/91

290 Custom WDEF and wDraw 2/91
291 CMOS On Macintosh LC PDS 2/91
292 Bus Error Handlers 392
293 Most Excellent CD Notes 2/91
294 Me And My pldle Proc (or how to let users know

what's going on during print time...) 4/91
295 Feeder Fodder 4/91
296 The Lo Down on Dictionary Downloading 4/91
297 Pictures and the Printing Manager 4/91
298 Color, Windows and 7.0 5/92
299 N/A N/A
300 My Life as a PascalObject 4/91
301 File Sharing and Shared Folders 8/91
302 Help for Movable Modal Dialogs 8/91
303 Using a PurgeProc 8/91

304 Pending Update Perils 10/91
305 PBShare, PBUnshare, and PBGetUGEntry 1/92

: 306 Drawing Icons the System 7 Way 5/92
att 307 MPW C++ Pitfalls 5/92
co 308 What Is a 'pslt' resource? 1/92
: 309 Routes from the Source 1/92

« 310 Who Put That Resource in My CDEV?.: 2/92
pac 311 What’s New With AppleTalk Phase 2: 4/92

312 Fun with PrJobMerge i 5/92
pas 313 Performance Tuning with Development Tools 5/92
Mae 314 OmegaSANE 5/92

“! 315 Resolving Alias Files Quietly 5/92
316 Data Access Extensions 5/92

dma” Uf FPU Operations on Macintosh Quadra Computers 6/92
Eee O18 Serial PollProc 6/92

#0: About Macintosh Technical, Notes 7 of 15

Released Macintosh Technical Notes . June 1992

Indexed by Subject New **#*

Revised *R*

CO .:?

ADB

143 Don’t Call ADBRelnit on the SE with System 4.1 3/88
160 Key Mapping 2/91
206 Space Aliens Ate My Mouse (ADB-The Untold Story) 2/90
266 Absolute Pointing Device Memory Structure 4/92

Alias Manager

315 Resolving Alias Files Quietly 5/92

AppleShare

114 AppleShare and Old Finders 3/88
1 Application Configuration with Stationery Pads 3/88
116 AppleShare-able Apps. and the Resource Manager 3/88
137 AppleShare 1.1 Server FPMove Bug 3/88
165 Creating Files Inside an AppleShare Drop Folder 3/88
167 AppleShare Foreground Applications 3/88
216 AppleShare 1.1 and 2.0 Limits 10/88
305 PB Share, PBUnshare, and PBGetUGEntry 1/92

AppleTalk Manager

9 Will Your AppleTalk Application Support Internets? 4/90
20 Data Servers on Appletalk 3/88

121 Using the High-Level AppleTalk Routines sue 3/88
132 AppleTalk Interface Update SSE EOL 6f D388
142 Avoid Use of Network Events : . 3/88
195 ASP and AFP Description Discrepancies ~.- rere ee oa 8/88
199 KilINBP Clarification aS a] 8/88

201 ReadPacket Clarification 8/88
224 Opening AppleTalk ve ME hve gp QyBo
225 Using RegisterName 2/89

a 250 AppleTalk Phase 2 on the Macintosh er 12/89

270 AppleTalk Timers Explained ae ies 4/90
311 What’s New With AppleTalk Phase 2 4/92

Bonn glia ghar

Applications

84 Edit File Format : 3/88
86 MacPaint Document Format 6/89

168 HyperCard And You: Economy Edition cepsny gf atl
274 The Compleat Guide to TeachText ae teh 24 “400

~ #0: About Macintosh Technical Notes def win io caries? | > 18 RIS

Developer Technical Support June 1992

A/UX

229 A/UX 2.0 Compatibility Guidelines
283 A/UX System Calls From Macintosh Software
284 IOP-Based Serial Differences Under A/UX

CD ROM

209 High Sierra & ISO 9660 CD ROM Formats
293 Most Excellent CD Notes

Compatibility

2 Compatibility Guidelines
25 Don’t Depend on Register AS Within Trap Patches
44 HFS Compatibility
83 System Heap Size Warning

100 Compatibility with Large-Screen Displays
103 Using MaxApplZone and MoveHHi from Assembly
117 Compatibility: Why and How
129 _Gestalt & _SysEnvirons—A Never-Ending Story
155 Handles and Pointers—Identity Crisis
156 Checking for Specific Functionality
194 WMegrPortability
203 Don’t Abuse the Managers
208 Setting and Restoring A5
212 The Joy of Being 32-Bit Clean
213 _StripAddress: The Untold Story
227 Toolbox Karma
247 Giving the (Desk)Hook to INITs
248 DAs & Drivers in Need of (a Good) Time
249 Opening the Serial Driver

Control Manager

196 CDEF Parameters
310 Who Put That Resource in My CDEV?

Control Panel

Z1D “New” cdev Messages
2A Safe cdevs

Data Access Manager

316 Data Access Extensions

‘Debugging

7 A Few Quick Debugging Tips
38 The ROM Debugger
42 Pascal Routines Passed by Pointer

-#0: About Macintosh Technical Notes

2/91
1/91
8/90

Macintosh Technical Notes ___._Indexed by Subject

ay Debugging With PurgeMem and CompactMem 3/88
[5 System Error 33, ““zcbFree has gone negative” . 3/88

Desk Accessories

5 Using Modeless Dialogs from Desk Accessories 3/88
Pi: Life With Font/(DA Mover—Desk Accessories 3/88

Device Manager

36 Drive Queue Elements 3/88
56 Break/CTS Device Driver Event Structure 3/88
71 Finding Drivers in the Unit Table 3/88

187 Don’t Look at ioPosOffset 4/88
197 Chooser Enhancements 8/88
Zor Slot Interrupt Prio-Technics 10/89
262 High-Level Control & Status Calls: When a Good Call Goes Bad 1/92
212 What Your Sony Drives For You 6/90
278 _PBClose the Barn Door 6/90

Devices

eee 31S Serial PollProc 6/92

Dialog Manager

4 Error Returns from GetNewDialog 3/88
34 User Items in Dialogs 10/88

112 FindDItem 3/88
304 Pending Update Perils 10/91

_Disk Initialization Package

70 Forcing Disks to be Either 400K or 800K | — n 3/88
287 Hey Buddy, Can You Spare A Block? Ar ae = 2/91

Event Manager

3 Command-Shift-Number Keys ae _ 3/88
85 GetNextEvent; Blinking Apple Menu i eral s 3/88

202 Resetting the Event Mask at an: 12/88
304 Pending Update Perils y i: gh? 2 10/91

File Manager - :

e 24 Available Volumes i ae 3/88
- 66 Determining Which File System is Active : 8/90
ey 67 Finding the “Blessed Folder” : fe 5/92

68 Searching Volumes-Solutions and Problems = 1/92

69 Setting ioFDirIndex in PBGetCatInfo Calls ie 3/88

77 HFS Ruminations “s te ak 3/88
81 Caching a 3/88

“10 of 15 #0: About Macintosh Technical Notes

Developer Technical Support June 1992

87 Error in FCBPBRec 3/88
94 Tags 3/88
102 HFS Elucidations 3/88
106 The Real Story: VCBs and Drive Numbers 3/88
107 Nulls in Filenames 3/88
108 _AddDrive, _DrvrInstall, and _DrvrRemove 12/88
130 Clearing ioCompletion 3/88
140 Why PBHSetVol is Dangerous 3/88
157 Problem with GetVInfo 3/88
179 Setting ioNamePrr in File Manager Calls 3/88
186 Lock, Unlock the Range 2/91
190 Working Directories and MultiFinder 4/88
204 HFS Tidbits 8/88
218 New High-Level File Manager Calls 12/88
226 Moving Your Cat 2/91
238 Getting a Full Pathname 10/89
246 Mixing HFS and C File I/O 8/89
305 PB Share, PBUnshare, and PBGetUGEntry 1/92

Finder

306 Drawing Icons the System 7 Way 5/92

Font Manager

30 Font Height Tables 3/88
191 Font Names 8/88
198 Font/DA Mover, Styled Fonts, and NFNTs 5/92
245 Font Family Numbers 3/91

Hardware

10 Pinouts 3/88
65 Macintosh Plus Pinouts 3/88

144 Macintosh Color Monitor Connections 2/91
148 Suppliers for Macintosh II Board Developers 3/88
176 Macintosh Memory Configurations 4/92
221 NuBus Interrupt Latency (I was a teenage DMA junkie) 10/89
230 Pertinent Information About the Macintosh SE/30 6/89
234 NuBus Physical Designs—Beware 12/89
235 Cooperating with the Coprocessor me 10/90
236 Speedy the Math Coprocessor 6/89
254 Macintosh Portable PDS Development. 2/90
255 Macintosh Portable ROM Expansion G 10/89
260 NuBus Power Allocation 10/89
261 Cache As Cache Can ’ 4/92
271 Macintosh Ilfx: The Inside Story 4/90
273 SCSI Termination 5/92
282 Smear Tactics a: 8/90
285 Coping With VM and Memory Mappings rene 4/91
286 The Serial General-Purpose Input (GPi) |... er 2/91
288 NuBus Block Transfer Mode sResource Entries... - - - 2/91
291 CMOS On Macintosh LC PDS peasy 2/91
292 Bus Error Handlers : 392

#0: About Macintosh Technical Notes 11 of 15

_Macintosh Technical Notes Indexed by Subject

308 What Is a 'psit' resource?

International

138 Using KanjiTalk with a non-Japanese Macintosh Plus
153 Changes in International Utilities and Resources
178 Modifying the Standard String Comparison
263 International Canceling

List Manager

279 "LDEF' Madness

Memory Manager

53 MoreMasters Revisited
111 MoveHHi and SetResPurge
136 Register A5 Within GrowZone Functions
219 New Memory Manager Glue Routines
228 Use Care When Swapping MMU Mode

Menu Manager

172 Parameters for MDEF Message #3
2o2 Custom Menu Flashing Bug
300 My Life as a PascalObject

MPW & MacApp

93 W: {SLOAD} ;_Datalnit; %_MethTables
104 MPW. Accessing Globals From Assembly Language
105 MPW Object Pascal Without MacApp
146 Notes on MPW’s —mc68881 Option
164 MPW C Functions: To declare or not to declare, .
166 MPW C Functions Using Strings or Points as Arguthents
200 MPW 2.0.2 Bugs
223 Assembly Language Use of _InitGraf’ with MPW
240 Using MPW for Non-Macintosh 68000 Systems
256 Stand-Alone Code, ad nauseam
269 ‘ckid' Resource Format
280 “Bugs in MacApp? Yes, But I Love It!”
281 Multiple Inheritance and HandleObjects he
300 My Life as a PascalObject
307 MPW C++ Pitfalls
313 Performance Tuning with Development Tools

-MultiFinder

158 Frequently Asked MultiFinder Questions ~
177 Problem with WaitNextEvent in MultiFinder 1 0

180 MultiFinder Miscellanea
205 MultiFinder Revisited, The 6.0 System’Release ~

ees

1/92

3/88
3/88
3/88
2/90

6/90

= 12 of 15 - #0/ About-Macintosh Technical Notes

Developer Technical Support June 1992

233 MultiFinder and _SetGrowZone 6/89

Notification Manager

184 Notification Manager 12/89

Palette Manager

211 Palette Manager Changes in System 6.0.2 10/88

Programming Languages & Tips

88 Signals 3/88
135 Getting through CUSToms 3/88
221 Macintosh Allegro Common Lisp Features 2/90
239 Inside Object Pascal 6/89
265 Pascal to C: PROCEDURE Parameters 8/90
300 My Life as a PascalObject 8/91

Printing Manager

33 ImageWriter IT Paper Motion 3/88
72 Optimizing for the LaserWriter—Techniques 10/90
a3 Color Printing 3/88
91 Optimizing for the LaserWriter—Picture Comments 3/88
92 The Appearance of Text 3/88
95 How to Add Items to the Print Dialogs 3/88

122 Device-Independent Printing 3/88
123 Bugs in LaserWriter ROMs 3/88
124 Using Low-Level Printing Calls With AT ImageWniters 3/88
125 Effect of Spool-a-page/Print-a-page on Shared Printers 3/88
128 PrGeneral ” 3/88
133 Am I Talking to a LaserShare Spooler? 3/88
149 Document Names and the Printing Manager 3/88
152 Using Laser Prep Routines , 3/88
161 A Printing. Loop That Cares... . 10/90
173 PrGeneral Bug 3/88
175 SetLineWidth Revealed mk 3/88
183 Position-Independent PostScript 3/88
192 Surprises in LaserWriter 5.0 and Newer , 2/90
217 Where Have My Font Icons Gone? 4/91
295 Feeder Fodder 4/91
297 Pictures and the Printing Manager iS 4/91
32 Fun with PrJobMerge ae, 5/92

> QuickDraw

21 QuickDraw’s Internal Picture Definition bts : 3/88
26 Fond of FONDS 5/92
4] Drawing Into an Off-Screen Bitmap ——- 6/90
55 Drawing Icons — ; . - 3/88
59 Pictures and Clip Regions . : 7 3/88
60 Drawing Characters in a Narrow GrafPort as . ce 3/88

-.#0: About.Macintosh Technical Notes 13 of 15

Macintosh Technical Notes Indexed by Subject

120 Principia Off-Screen Graphics Environment \ ; 3/92
154 Displaying Large PICT Files 3/88
163 Adding Color With CopyBits 3/88
171 Things You Wanted to Know About _PackBits* 1/92
181 Every Picture [Comment] Tells Its Story, Don’t it? 3/88
193 So Many Bitmaps, So Little Time 12/89
244 A Leading Cause of Color Cursor Cursing 10/89
259 Old Style Colors 8/90
oA he) 32-Bit QuickDraw: Version 1.2 Features 4/90
276 Gimmie Depth or Gimmie Death 6/90
277 Of Time and Space and _CopyBits 6/90
289 Deaccelerated _CopyBits & 8°24 GC QuickDraw 2/91
297 Pictures and the Printing Manager 4/91
306 Drawing Icons the System 7 Way 5/92

Resource Manager

6 Shortcut for Owned Resources 3/88
32 Reserved Resource Types 3/88
46 Separate Resource Files 3/88
50 Calling SetResLoad 3/88
62 Don’t Use Resource Header Application Bytes 3/88
74 Don’t Use the Resource Fork for Data 3/88
78 Resource Manager Tips 3/88

101 CreateResFile and the Poor Man’s Search Path 3/88
141 Maximum Number of Resources in a File 3/88
185 OpenRFPerm: What your mother never told you 4/88
188 ChangedResource: Too much of a good thing 4/88
214 New Resource Manager Calls 10/88
232 Strip With _OpenResFile and _OpenRFPerm 4/89
202 Plotting Small Icons 10/89
253 'SICN' Tired of Large Icons in Menus? 10/89

SANE (Standard Apple Numerics Environment)

314. | OmegaSANE oe 2 - 5/92

SANE/Math Coprocessors j |

(ke SF FPU Operations on Macintosh Quadra Computers “ 6/92

Script Manager

174 Accessing the Script Manager Print Action Routine grt vqst OOO
182 How to Construct Word-Break Tables oe "388
241 Script Manager’s Pixel2Char Routine . = 8/89
242 Fonts and the Script Manager . 6/89
243 Script Manager Variables ct Sea's ~, <Ore?
264 Script Manager 2.0 Date & Time Problems 7 = ee 20

SCSI Manager

| 96 SCSI Bugs i | 3/88

14 of 15 #0: About Macintosh Technical Notes

Developer Technical Support ' June 1992

159 Hard Disk Hacking 3/88
258 Our Checksum Bounced 10/89

Segment Loader

126 Sub(Launching) from a High-Level Language 4/89
220 Segment Loader Limitations 12/88

Sound Manager

19 How to Produce Continuous Sound Without Clicking 6/89
268 MacinTalk—The Final Chapter 2/90

Standard File Package

47 Customizing Standard File 3/88
80 Standard File Tips 3/88

System Software

28 Finders and Foreign Drives 3/88
29 Resources Contained in the Desktop File 3/88
40 Finder Flags 3/88
48 Bundles 3/88
i= Apple’s Multidisk Installer 1/92

113 Boot Blocks 3/88
134 Hard Disk Medic & Booting Camp 3/88
139 Macintosh Plus ROM Versions 3/88
147 Finder Notes: “Get Info” Default & Icon Masks 3/88
189 Version Territory 10/90
210 The Desktop file’s Outer Limits 8/88

TextEdit =

18 TextEdit Conversion Utility 3/88
22 TEScroll Bug 3/88
82 TextEdit: Advice & Descent ; 3/88

127 TextEdit EOL Ambiguity 570% 3/88
131 TextEdit Bugs in System 4.2 3/88
207 Styled TextEdit Changes in System 6.0 12/88
237 TextEdit Record Size Limitations Revisited 6/89
267 TextEdit Technicalities 4/90

-Token Ring

309 Routes from the Source 1/92

Window Manager

79 _ZoomWindow . _ 4/90
290 Custom WDEF and wDraw _ - 4 2/91
298 Color, Windows and 7.0 5/92

#0: About Macintosh Technical Notes 15 of 15

‘

«

t

ord x *

3

P A

“ae an Et

oe

cee mh creme neem em oa OS meee me a oe meme + seme + ae

es

a
a.

Macintosh 4

Technical Notes @.

Developer Technical Support

#250: AppleTalk Phase 2 on the Macintosh

Revised by: Sriram Subramanian December 1989
Written by: Pete Helme & Sriram Subramanian August 1989

This Technical Note discusses the new features and calls available with AppleTalk Phase 2.
Changes since August 1989: Incorporated the ClosePrep and CancelClosePrep
transitions and the new control calls to the .MPP driver.

AppleTalk Phase 2 is only available on Macintosh Plus or later Macintosh platforms, and it
requires the installation of AppleTalk file V53, or greater. Both EtherTalk 2.0 and TokenTalk 2.0
automatically install this AppleTalk file. Developer Technical Support can supply the Phase 2
drivers for development use; however, if you need to include the Phase 2 drivers in your product,
you must license them from Software Licensing. For more information, contact:

Apple Software Licensing
Apple Computer, Inc.,
20525 Mariani Avenue, M/S 38-I
Cupertino, CA, 95014
(408) 974-4667
AppleLink: SW.LICENSE

What is AppleTalk Phase 2?

AppleTalk Phase 2 contains enhancements to the routing and naming services of AppleTalk.
Among these enhancements is the ability to create AppleTalk networks which support more than
254 nodes, and to do so in a manner that is, to the greatest extent possible, compatible with current
AppleTalk implementations and applications. Multiple zones per network are now supported, and
users can choose their machine’s zone. Benefits include improved network traffic and better router
selection. New calls and features have been implemented with this enhancement and are
documented in this Note. The AppleTalk Phase 2 Protocol Specification, which details the
changes to the AppleTalk protocol suite, is available from Developer Technical Support at the
address listed in Technical Note #0.

Are AppleTalk Phase 2 Drivers Present?

So you want to use these new calls and features, but can you? First, one needs to check to see if
the node is running AppleTalk Phase 2. There are two ways this can be accomplished. The easiest
way is tomake a_SysEnvirons call and check the returned at DrvrVersNun field. If this
byte is greater than or equal to 53, then AppleTalk Phase 2 drivers are present. If, for some
reason, a SysEnvirons call is not practical or otherwise not possible, one can check 7 bytes
off the device control entry for the .MPP driver for a single byte, which is the driver version

#250: AppleTalk Phase 2 on the Macintosh 1 of 14

Macintosh Technical Notes

(actually the low byte of the qF lags field of DCt 1QHdr in the DCE). Again, if this byte is 53 or
greater, AppleTalk Phase 2 is present, and the calls and features outlined in this Note may be used.

Calls to the .MPP Driver

AppleTalk Phase 2 introduces many new variables, and we highly recommend that you use the
new GetAppleTalkInfo call instead of looking at MPP globals directly. In addition, on a
Macintosh running the AppleTalk Internet Router software, there may be more than one .MPP
driver present. These additional drivers can be found by walking through the unit table
(UTableBase $11C) and looking for drivers named .MPP other than at unit slot 9. Generally,
the only port of interest to you is the user port, reflected in this call as Port ID 0 with a refnum
of -10.

GetAppleTalkInfo

Parameter Block

--> 26 csCode word ; always GetAppleTalkInfo (258)

--> 28 Version word ; requested info version

<-- 30 VarsPtr pointer ; pointer to well known MPP vars

<== 34 DCEPtr pointer + pointer to MPP DCE

<-- 38 PortID word ; port number [0..7]

<-- 40 Configuration long ; 32-bit configuration word

<== 44 SelfSend word * non zero if SelfSend enabled

<-- 46 NetLo word ; low value of network range

<-- 48 NetHi word ; high value of network range

<-- 50 OurAddr long ; our 24-bit AppleTalk address

<-- 54 RouterAddr long ; 24-bit address of (last) router

<-- 58 NumOfPHs word ; max. number of protocol handlers

<-- 60 NumOfSkts word ; max. number of static sockets

<-- 62 NumNBPEs word ; max. concurrent NBP requests

<== 64 NTQueue pointer ; pointer to registered name queue

<-> 68 *LAlength word ; length in bytes of data link addr

--> 70 *LinkAddr pointer ; data link address returned

--> 74 *ZoneName pointer ; zone name returned

* for extended networks only

This call is provided to simplify the task of obtaining details about the current AppleTalk network
connection. The following are the parameters which this call returns:

Version is passed by the caller. The concept is similar to one used by
SysEnvirons, where a version ID is passed to the function to

return a requested level of information. If the driver cannot respond
because this number is too high, paramErr is returned. The
current version number is 1.

VarsPtr is the pointer to AppleTalk variables. This points to the well known
sysLapAddr and read header area or RHA.. This pointer may not
be equal to $2D8 (ABusVars) for other than port 0.

DCEPtr is a pointer to the driver’s device control entry. See the Device
Manager chapters of Inside Macintosh for details.

Port ID is the port number, and it is always zero, unless a router is active
and a driver refnum other than -10 is used.

Configuration is a 32-bit word of configuration flags. Currently only the
following bits are returned:
31 (SrvAdrBit) is true if server node-ID was requested at

open time. Note that even if server
address is requested, it may be ignored

2 of 14 #250: AppleTalk Phase 2 on the Macintosh

Developer Technical Support December 1989

by those ADEVs which do not honor it
(i.e., EtherTalk, TokenTalk, etc.).

is true if an AppleTalk Internet Router
was loaded at system startup. Note that a
router may be loaded, but not active.

7 (BadZoneHintBit) is true if the node’s zone name hint is
invalid, thus causing a default zone to be
selected.
is true if only one zone is assigned to an
extended network.

30 (RouterBit)

6 (OneZoneBit)

SelfSend (the ability for a node to send packets to itself) is non-zero if this
feature is currently enabled.

Net Lo is the low value of the network range. Non-extended networks
always have a range of exactly one network, if the network number
is known.

NetHi is the high value of the network range.
OurAddr is the 24-bit AppleTalk network address of the node. The most

significant byte is always zero.
RouterAddr is the 24-bit AppleTalk address of the router from which we last

heard. Users should always use this address when attempting to
communicate directly with a router.

NumOfPHs, are maximum capacities for the driver. They are number of protocol
NumOfSkts, and handlers, number of static sockets, and number of concurrent NBP

NumNBPEs requests allowed, respectively.
NTQueue is a pointer to the registered names table queue. See Jnside

Macintosh, Volume II, The AppleTalk Manager, for NT Queue
details.

LALength is passed by the caller to indicate how much (if any) of the data link
address is to be copied to a user-suppled buffer (pointed to by
LinkAddr). The actual length is returned by the driver. If the
caller requests more bytes than the actual number, then data in the
buffer after the address is undefined. The caller is responsible for
providing sufficient buffer space.

LinkAddr is a pointer to a user-supplied buffer into which the data link address
data is copied. If the pointer is NIL, no data is copied.

ZoneName is a pointer to a user-supplied buffer into which the node’s stored
zone name is copied. If the pointer is NIL, no data is copied. The
user buffer must be 33 bytes or more in size.

Calls to the .ATP Driver

KillAllGetReq

Parameter Block

--> 26 csCode word ; always KillAllGetReq (259)

--> 28 atpSocket byte ; socket on which to kill all pending GetRequests

Kil1A11GetReq aborts all outstanding GetRequest calls on the specified socket and
completes them with reqAborted errors (it does not close the specified socket, it only kills all
pending GetRequest calls on that socket). To kill all the Get Request calls, simply pass the
desired socket number in the at pSocket field.

#250: AppleTalk Phase 2 on the Macintosh 3 of 14

Macintosh Technical Notes

Result codes noErr No Error (0)
cbNotFound control block not found (-1102)

Setting the TRel Timer in SendRequest Calls

It is now possible to set the TRel timer in SendRequest or NSendRequest calls with ATP
XO (exactly once) service so as not to be locked into the pre-AppleTalk Phase 2 time of 30
seconds. This is done by setting bit 2 in the atpF lags field to indicate to the driver that an
extended parameter block is being used. Make a standard SendRequest call, but add the timeout
constant desired in the new TRe1Time field byte of the parameter block. Both nodes must be
running AppleTalk Phase 2 for this feature to be supported.

The timeout constants are enumerated as follows in the lower three bits of the TRe1 Time ($32
offset) byte:

000 86$0 TRel timer set to 30 seconds
001 ~=$i1 TRel timer set to one minute
010 $2 TRel timer set to two minutes
011 $3 TRel timer set to four minutes
100 $4 TRel timer set to eight minutes

All other values are reserved.

Parameter Block

--> 50 TRelTime byte ; indicates time to wait for TRel packet

Name Binding Protocol (NBP) Change: Wildcard Lookup

In AppleTalk Phase 2, NBP is enhanced to provide additional wildcard support. The double tilde
(=), $C5, is now reserved in the object name and type strings and used in a lookup to mean a
match of zero or more characters. Thus “cliff” matches “cliff,” ’the cliff,” ’ grazing off the cliff,”
etc., and “123=456” matches “123456,” “123zz456,” etc. At most one = is allowed in any string.
A single = has the same meaning as a single =, which also must continue to be accepted. The =
has no special meaning in zone names. Clients of NBP must be aware that “old” (pre-AppleTalk
Phase 2) nodes may not process this new wildcard feature correctly. This feature should probably
only be used when it is known that the responding devices are running Phase 2 drivers as well.

Obtaining Zone Information Using the New .XPP Driver Calls

Previously, Zone Information Protocol (ZIP) functions were accomplished via direct ATP calls to
the local router. It was rather nasty business, having to mess with the ATPUSerData on
subsequent calls to retain state information. We now recommend the use of the following XPP
driver calls to access ZIP. Old ATP calls will continue to be supported for compatibility. It should
also be noted that with Phase 2 drivers present, the .XPP driver is automatically opened by MPP.

4 of 14 #250: AppleTalk Phase 2 on the Macintosh

@)

Developer Technical Support December 1989

GetZoneList

Parameter Block

==> 26 csCode word ; always xCall (246)

--> 28 xppSubCode word ; always zipGetZoneList (6)

--> 30 xppTimeout byte ; retry interval (seconds)

“=> 31 xppRetry byte ¢ retry count

32 <unused> word ; word space for rent. see the super.

--> 34 zipBuffPtr pointer + pointer to buffer (must be 578 bytes)

<-- 38 zipNumZones word ; no. of zone names in this response

<-- 40 zipLastFlag byte + non-zero if no more zones

41 <unused> byte ; filler

--> 42 ziplnfoField 70 bytes ; on initial call, set first word to zero

Get ZoneList is used to obtain a complete list of zones on the internet. ZipBuffPtr points to
a buffer that.must be 578 bytes (ATPMaxData) in length. The actual number of zone names
returned in the buffer is returned in zipNumZones. The fields xppTimeout and xppRetry
contain the ATP retry interval (in seconds) and count, respectively.

The first time this call is made, the first word of the zip1nfoField should be set to zero. When
the call completes, zipLastFlag is non-zero if all the zone names fit into the buffer. If not, the
call should be made again immediately, without changing zipInfoField (it contains state
information needed to get the next part of the list). The call should be repeated until
zipLastFlag is non-zero. The 70-byte zipInfoField must always be allocated at the end of
the parameter block.

Result codes noErr No Error (0)
noBridgeErr No router is available (-93)

ReqFailed SendRequest failed; retry count exceeded (-1096)

Following are short examples of using Get ZoneList.

Pascal

const

{ csCodes for new .XPP driver calls }

xCall = 246;

{ xppSubCodes }

zipGetLocalZones =

zipGetZoneList = 6;

zipGetMyZone = 7;

53

type

{ offsets for xCall queue elements }

xCallParam = packed record

qLink: QElemPtr;

qType: INTEGER;

ioTrap: INTEGER;

ioCmdAddr: Ptr;

ioCompletion: ProcPtr;

ioResult: OsErr;

ioNamePtr: StringPtr;

ioVRefNum: INTEGER;

ioRefNum: INTEGER;

csCode: INTEGER;

xppSubCode: INTEGER;

xppTimeOut: Byte;

xppRetry: Byte;

filler: INTEGER;

ee, EEE

#250: AppleTalk Phase 2 on the Macintosh 5 of 14

Macintosh Technical Notes

zipBuffPtr: Ptr;

zipNumZones: INTEGER;

zipLastFlag: INTEGER;

zipInfoField: packed array[1..70] of Byte;

end;

procedure doGetZoneListPhs2;

type
XCallParamPtr = *XCallParam;

var

xpb: XCallParamPtr;

resultCode: OSErr;

zoneBuffer, theBufferPtr: Ptr;

totalZones: integer;

begin

xpb := XCallParamPtr(NewPtr (sizeof (XCallParam)));

zoneBuffer := NewPtr(33 * 100); { size of maxstring * 100 zones }

theBufferPtr := NewPtr (578); { size of atpMaxData }

xpb*.zipInfoField[1] := 0; { ALWAYS 0 on first call. contains state info on}

{ subsequent calls }

xpb*.zipInfoField[2] := 0; { ALWAYS O on first call. contains state info on }

{subsequent calls }

xpb*.ioRefNum := XPPRefNum; { driver refNum -41 }

xpb*.csCode := xCall;

xpb*.xppSubCode := zipGetZoneList;

xpb*.xppTimeOut :=

xpb*.xppRetry := 4;

xpb*.zipBuffPtr := Ptr (theBufferPtr); { this buffer will be filled with }

{ packed zone names }

{ initialization for loop }

xpb*.zipLastFlag := 0;

totalZones := 0;

resultCode := 0;

{ loop until zipLastFlag is non-zero or an error occurs }

while ((xpb*.zipLastFlag = 0) and (resultCode = 0)) do

begin

resultCode := PBControl(ParmBlkPtr(xpb), false);

if (resultCode = noErr) then

begin

totalZones := xpb*.zipNumZones + totalZones;

{ you can now copy the zone names into the zoneBuffer }

end;

end;

DisposPtr (theBufferPtr) ;

DisposPtr (zoneBuf fer) ;

DisposPtr(Ptr(xpb));

end;

6 of 14 #250: AppleTalk Phase 2 on the Macintosh

Developer Technical Support December 1989

C

/*

csCodes for new .XPP driver calls

Ly

#define xCall

/*

xppSubCodes

sy
#define zipGetLocalZones

#define zipGetZoneList

#define zipGetMyZone

/*

246

fey)

offsets for xCall queue elements

*/
typedef struct

{

QElemPtr

short

short

Ptr

ProcPtr

OsErr

StringPtr

short

short

short

short

unsigned char

unsigned char

short

Ptr

short

short

unsigned char

} xCallParam;

doGet ZoneListPhs2 ()

{

qLink;

qType;
ioTrap;

ioCmdAddr;

ioCompletion;

ioResult;

ioNamePtr;

ioVRefNum;

ioRefNum;

csCode;

xppSubCode;

xppTimeOut ;

xppRetry;

filler;

zipBuffPtr;

zipNumZones;

zipLastFlag;

zipInfoField[70];

xCallParam xpb;

OSErr resultCode = 0;

Ptr zoneBuffer, theBufferPtr;

short totalZones = 0;

zoneBuffer = NewPtr (33*100); /* size of maxstring * 100

theBufferPtr = NewPtr (578); /* size of atpMaxData */

xpb.zipInfoField[0] = 0; /* ALWAYS O on first call.

on subsequent calls */

xpb.zipInfoField[1] = 0; /* ALWAYS 0 on first call.

/* initialization for

xpb.zipLastFlag = 0;

on subsequent calls */

loop */

zones */

contains state info

contains state info

xpb.ioCRefNum = XPPRefNum; /* driver refNum -41 */

xpb.csCode = xCall;

xpb.xppSubCode = zipGetZoneList;

xpb.xppTimeOut = 3;

xpb.xppRetry = 4;

xpb.zipBuffPtr = (Ptr) theBufferPtr; /* this buffer will be filled with

the packed zone names */

re

#250: AppleTalk Phase 2 on the Macintosh 7 of 14

Macintosh Technical Notes

/* loop until zipLastFlag is non-zero or an error occurs */

while(xpb.zipLastFlag == 0 && resultCode == 0) {

resultCode = PBControl(&xpb, false);

if (resultCode == noErr) {

totalZones += xpb.zipNumZones;

/* you can now copy the zone names into the zoneBuffer */

}

DisposPtr (theBufferPtr) ;

DisposPtr (zoneBuffer) ;

}

}

GetLocalZones

Parameter Block

--> 26 csCode word 7 always xCall (246)

==> 28 xppSubCode word ; always zipGetLocalZones (5)

--> 30 xppTimeout byte ; retry interval (seconds)

==> 31 xppRetry byte ; retry count

32 <unused> word ; filler

--> 34 zipBuffPtr pointer ; pointer to buffer (must be 578 bytes)

<== 38 zipNumZones word ; no. of zone names in this response

<-- 40 zipLastFlag byte ; non-zero if no more zones

41 <unused> byte ; filler

--> 42 ziplnfoField 70 bytes ; on initial call, set first word to zero

; on subsequent calls, do not modify!

This call has the same format and procedures as Get ZoneList, the difference being that

GetLocalZones returns a list of zone names currently defined only on the node’s network cable
rather than the entire network. The 70-byte zipInfoField must always be allocated at the end
of the parameter block.

Result codes noErr No Error (0)
noBridgeErr No router is available (-93)

ReqFailed SendRequest failed; retry count exceeded (-1096)

Note: The examples for Get ZoneList will also work for Get LocalZones if you
substitute the xppSubCode.

GetMyZone

Parameter Block

--> 26 csCode word ; always xCall (246)

-=> 28 xppSubCode word ; always zipGetMyZone (7)

--> 34 zipBuffPtr pointer ; pointer to buffer (must be 33 bytes)

--> 42 ziplnfoField 70 bytes ; first word must be set to zero on every call

GetMyZone returns the node’s AppleTalk zone name. This is the zone in which all of the node’s
network visible entities are registered. ZipBuffPtr points to a buffer that must be 33 bytes in
length. If noBridgeErr is returned by the call, there is no internet, and the zone name is

effectively an asterisk (*). The 70-byte zipInfoField must always be allocated at the end of
the parameter block.

Result codes noErr No Error (0)
noBridgeErr No router is available (-93)

ReqFailed SendRequest failed; retry count exceeded (-1096)

8 of 14 #250: AppleTalk Phase 2 on the Macintosh

Developer Technical Support
December 1989

Following are short examples of using Get MyZone.

Pascal

procedure getMyZonePhs2;

var

xpb:xCallParam;

resultCode :OSErr;

myZoneNameBuffer:Ptr;

begin

myZoneNameBuffer := NewPtr (33);

xpb.ioCRefNum := xppRefNum;

xpb.csCode := xCall;

xpb.xppSubCode := zipGetMyZone;

xpb.zipBuffPtr := myZoneNameBuf fer;

xpb.zipInfoField[1] := 0; { ALWAYS 0 }

xpb.zipInfoField[2] := 0; { ALWAYS 0 }

resultCode := PBControl(@xpb, false);

end;

getMyZonePhs2 ()

{
xCallParam xpb;_

OSErr resultCode;

Ptr myZoneNameBuf fer;

myZoneNameBuffer := NewPtr (33);

xpb.ioCRefNum = xppRefNum;

xpb.csCode = xCall;

xpb.xppSubCode = zipGetMyZone;

xpb.zipBuffPtr = (Ptr) myZoneNameBuf fer;

xpb.zipInfoField[0] = 0; /* ALWAYS O */

xpb.zipInfoField[1] = 0; /* ALWAYS O */

resultCode = PBControl(&xpb, false);

}

Potential Nastiness

When running on a node with Phase 2 compatible drivers, we always recommend using the .XPP
calls outlined in the previous section. Care was taken to keep backward compatibility with the
already existing ATP ZIP calls (they are being trapped out with the Phase 2 drivers), but there are
problems about which you should be aware.

¢ Do not rely on checking the TID (transaction ID validity bit) or other bits in the
atpF lags, as some of you have been doing. The atpF lags are not guaranteed
to be correct on an ATP ZIP call with a Phase 2 driver present.

¢ Do not repeatedly stuff the router address back into the ATPParamBlock on
subsequent ATP ZIP Get ZoneList calls. There exists the possibility of
concurrent Get ZoneList calls being made by other tasks and wrong router
addresses being used (a small possibility yes, but it does exist).

#250: AppleTalk Phase 2 on the Macintosh 9 of 14

Macintosh Technical Notes

The AppleTalk Transition Queue

To keep applications and other resident processes on the Macintosh informed of AppleTalk events,
such as the opening and closing of AppleTalk drivers, a new transition queue has been
implemented. Processes can register themselves with the AppleTalk Transition Queue, and when a
significant event occurs, they will be notified of this fact. Each transition queue element has the
following MPW assembly-language format:

AeQentry RECORD 0

QLink DS.L 1 7 link to next record

QType DS.W 1 7 unused

CallAddr DS.L 1 + pointer to task record

ENDR

Three calls have been provided in the LAP Manager to add an entry, remove an entry, and return a
pointer to the AppleTalk event queue header. The method for making calls to the LAP Manager is
explained in the following section. The queue is maintained by the LAP Manager, so it can be
active even when AppleTalk (MPP) is not.

Making a LAP Manager Call

The LAP Manager is installed in the system heap at startup time, before the AppleTalk Manager
opens the .MPP driver (hence, the inclusion of the AppleTalk Transition Queue in LAP Manager
rather than under .MPP). Calls are made to the LAP Manager by jumping through a low-memory
location, with register DO equal to a dispatch code that identifies the function. The exact sequence
is:

MOVEQ #Code, DO ; DO = ID code of wanted LAP call

MOVE.L LAPMgrPtr,An ; An -> start of LAP manager (from $B18)

JSR LAPMgrCall (An) + Call the LAP manager at entry point

LAPMgrPtr EQU $B18 ; This points to our start (more

; commonly known as ATalkHk2)
LAPMgrCall EQU 2 ; Offset to make LAP manager calls

The AppleTalk Transition Queue LAP Calls

LAddAEQ (D0=23)
Call: AOQ--> Entry to be added to the AppleTalk event queue.

The LAddAEQ call adds an entry, pointed to by AO, to the AppleTalk event queue.

MOVEQ #LAddAEQ,DO ; DO = 23 code of LAddAEQ LAP call

MOVE.L LAPMgrPtr,An ; An -> start of LAP manager (from $B18)

JSR LAPMgrCall (An) ; Call the LAP manager at entry point

LRmvAEQ (D0=24)

Call: AQ--> Entry to be removed from the AppleTalk event queue.

The LRmvAEQ call removes an entry, pointed to by AO, from the AppleTalk event queue.

MOVEQ #LRmvAEQ,DO ; DO = 24 code of LRmvAEQ LAP call

MOVE.L LAPMgrPtr,An ; An -> start of LAP manager (from $B18)

JSR LAPMgrCall1 (An) ; Call the LAP manager at entry point

10 of 14 #250: AppleTalk Phase 2 on the Macintosh

Developer Technical Support December 1989

LGetAEQ (D0=25)
Return: Al--> Pointer to the AppleTalk event queue header.

The LGetAEQ call returns a pointer in Al to the AppleTalk event queue header, previously
described.

MOVEQ #LGetAEQ,DO ; DO = 25 code of LGetAEQ LAP call

MOVE.L LAPMgrPtr,An ; An -> start of LAP manager (from $B18)

JSR LAPMgrCall (An) ; Call the LAP manager at entry point

The Transitions

Each process is called at Call Addr when any significant transitions occur. A value is passed in,
which indicates the nature of the event. Additional parameters may also be passed and a pointer to
the task’s queue element is also passed. This is provided so processes may append their own data
structures (e.g., a globals pointer) at the end of the task record, which can be referenced when they
are called. Processes should follow the MPW C register conventions. Registers DO, D1, D2, AO,
and A1 are scratch registers that are not preserved by C functions. The arguments passed to the
process should be left on the stack, since the calling routine removes them. All other registers
should be preserved.

The Open Transition

For AppleTalk open transitions, the process has the following interface:

From assembly language, the stack upon calling looks as follows:

OpenEvent RECORD 0

ReturnAddr DS.L 1 ; address of caller

theEvent DS.L 1 +; = 0; ID of Open transaction

age DS.L 1 ; pointer to task record

SlotDevParam DS.L pi ; pointer to Open parameter block

ENDR

This routine is called only when the open routine for .MPP executes successfully. Every entry in
the transition queue is called in the same order that the entries were added to the queue. If
AppleTalk is already open and an_Open call is made, no process is called. The process should
return a function result in DO, which is currently ignored.

A pointer to the open request parameter block is passed to the open event process for information
only (i.e., the event process may not prevent AppleTalk open calls). Those fields which are of
interest are OpenPB->ioPermssn, passed by the caller, and OpenPB->ioMix, which is both
passed by the caller and updated by the .MPP open (see Jnside Macintosh, Volume V, The
AppleTalk Manager).

The Close Transition

For AppleTalk close transitions, the process has the following interface:

From assembly language, the stack upon calling looks as follows:

CloseEvent RECORD 0)

ReturnAddr DS.L 1 ; address of caller

theEvent DS.L i ; = 2 ; ID of Close transaction

age DS.L 1 + pointer to task record

ENDR

ee ee ee Ee eee aD

#250: AppleTalk Phase 2 on the Macintosh 11 of 14

Macintosh Technical Notes

The process is being told that AppleTalk is closing, which gives the process an opportunity to
close gracefully. Every entry in the event queue is called, one after the other, in the same order that U
the entries were added to the queue. The close action cannot be cancelled. The process should

return a function result in DO, which is currently ignored.

The ClosePrep and CancelClosePrep Transitions

The AtalkClosePrep and the CancelAtalkClosePrep control calls are used by various
elements of the System, such as the Chooser, to inform or query AppleTalk clients of the closing
of network drivers. For example, on a machine equipped to go to sleep or to wake up, the
_ Sleep trap is used by such entities as sleeptimer, Finder, and Shutdown to inform AppleTalk
clients that it is desirable for the the network driver (.MPP) to be closed. The Sleep trap may
be trying to do any of the following three things: request permission for sleep, alert for impending
sleep, or inform that wake up is underway. The sleep request calls the following two .MPP
control calls; these calls are made before sleep queue procedures are called.

The first control call, AtalkClosePrep, is used to inform or query AppleTalk clients that the
network driver might be closed in the very near future. The call has the following interface:

AtalkClosePrep (csCode = 259)

Parameter Block

--> 26 csCode word ;always AtalkClosePrep

<-- 28 clientName pointer j-> name of client using driver

Result codes noErr The AppleTalk network driver (.MPP) may be closed
closeErr The AppleTalk network driver (.MPP) may not be closed

clientName is a pointer to an identifying string that is returned only if the result is closeErr.
Note that the pointer may be NIL in this case, while the pointer is always NIL if the return code is
noErr.

All tasks in the AppleTalk Transition Queue are called with the event ClosePrep. The tasks can
prevent driver closure with a negative response to the event call. Each task is called with the
following interface:

From assembly language, the stack upon calling looks as follows:

ClosePrep RECORD 0 ;top of the stack

ReturnAddr DS.L 1 ;addr of caller

theEvent DS.L 1 7=3

age DS.L z 7—->task rec.

clientName DS.L 1 jptr. to ptr. to name of client

ENDR

For this event, theEvent = 3, and the task is being both informed and asked if closing the
network driver is acceptable. If driver closure is acceptable, the task need only to reply affirmative
(DO = 0), or if not acceptable, deny the request (DO # 0). The task may use the event as an
opportunity to “prepare to die” or may simply respond. For example, a task may prevent further
sessions from forming while waiting for the actual close event.

clientName is a pointer to a field in the .MPP control call parameter block where the task may
optionally store a string address. This string identifies the client who has AppleTalk in use and is

12 of 14 #250: AppleTalk Phase 2 on the Macintosh

Developer Technical Support
December 1989

denying the request to close it. This string may be used in a dialog to inform the user to take

appropriate action or explain why the requested action could not be performed.

If any task responds negatively, no subsequent tasks are called. Any tasks called prior to the one

that denied a query are recalled with another event, CancelClosePrep (described below),

enabling them to “undo preparations to die,” and the control call then completes with a closeErr

error.

From assembly language, the stack upon calling looks as follows:

CancelClosePrep RECORD 0 ;top of the stack

ReturnAddr DS.L 1 ;addr of caller

theEvent DS.L a 7=4

age DS.L a 7->task rec.

ENDR

For this event, theEvent = 4, and the task is being informed that although it has recently
approved a request to close the network driver, a subsequent task in the AppleTalk Transition
Queue has denied permission. This event permits the task to undo any processing that may have
been performed in anticipation of the network driver being closed. The process should return a
function result in DO, which is currently ignored.

The second new control call, CancelAtalkClosePrep, is used to undo the effects of a

successful AtalkClosePrep control call. Even though all queried tasks in the AppleTalk
Transition Queue approved of network driver closure, other conditions may exist after making the
AtalkClosePrep control call which prohibit network driver closure. In this case, it is
necessary to recall all tasks to undo any processing that may have been performed in anticipation of
the network driver being closed. The control call to do this has the following interface:

CancelAtalkClosePrep (csCode = 260)

Parameter Block

==> 26 csCode word jalways CancelAtalkClosePrep

Result codes noErr Nothing could possibly go wrong

All tasks in the AppleTalk Transition Queue are called with the event Cancel1ClosePrep as
described above.

Note: The use of the low-memory global ChooserBits ($946) is no longer an acceptable
means of preventing AppleTalk from closing when AppleTalk Phase 2 is present.
Transitions other than defined above must be ignored and are reserved for future
implementation. In the future transitions may be defined for notifying processes when a
change in zone name occurs.

#250: AppleTalk Phase 2 on the Macintosh 13 of 14

Macintosh Technical Notes

Potential Compatibility Problems

Using DDP and Talking to Routers

If, for some reason, you need to talk to any router via DDP, always use the
GetAppleTalkInfo call outlined in this Note to get the router’s actual 24-bit address.

The WriteLAP function (csCode = 243) to the .MPP driver is no longer supported, since a
node is no longer identified only by its eight-bit (LAP) node ID.

On a Macintosh running the AppleTalk Internet Router software, the Sel fSend flag is always
set, so if you try to clear this flag using the PSet Sel fSend call (Inside Macintosh, Volume V-
514), you will get an error.

Further Reference:
Inside AppleTalk
Inside Macintosh, Volume II, The AppleTalk Manager
Inside Macintosh, Volume V, The AppleTalk Manager
EtherTalk and Alternate AppleTalk Connections Reference, May 5, 1989—Draft (DTS)
AppleTalk Phase 2 Protocol Specification (DTS)
Macintosh Portable Developer Notes (DTS)

14 of 14 #250: AppleTalk Phase 2 on the Macintosh

CY

Macintosh U
Technical Notes e.

Developer Technical Support

#251: Safe cdevs

Written by: John Harvey August 1989

This Technical Note describes a potential problem with Control Panel devices (cdevs) that contain
EditText fields and presents a way to avoid it.

The Control Panel chapter in Inside Macintosh, Volume 5 describes, in detail, how run-time errors
are handled by the Control Panel and a cdev. There is, however, a potential problem with cdevs
that contain Edit Text items that this chapter does not cover.

When a cdev is called by the Control Panel, the cdev’s 'DITL"' resource is concatenated to the
Control Panel’s 'DITL'. The Control Panel then lets the Dialog Manager update the window. If
the cdev contains an item of type Edit Text, the Dialog Manager allocates and activates a
TEHand1e to be used for displaying and editing text. All of this action happens before the cdev
gets the initDev message from the Control Panel.

As detailed in The Control Panel chapter, if an error occurs from which a cdev cannot recover, the
cdev should dispose of any private memory and return the appropriate error code or a NIL value to
the Control Panel. The Control Panel then grays out the cdev’s area, displays the appropriate error
dialog, and then deletes the items that were added to its 'DITL'.

All of this is fine, except that the TEHand1e does not get deallocated. The Edit Text items get
thrown away, including the strings in the item list that the Dialog Manager would use to store text
entered into the Edit Text field, but the TEHandle stays there and stays active. Figure 1
illustrates what this would look like.

This line is a result of _DialogSelect calling
_TEIdle

Figure 1-Erroneous Insertion Point

#251: Safe cdevs 1 of 2

Macintosh Technical Notes

So the Dialog Manager, knowing that it allocated a TEHand1e for an item that was visible, goes
merrily on its way flashing the insertion point. The problem is not simply one of appearance. Ifa
user hits a key, the Dialog Manager tries to process the key-down event just as if the Edit Text
item was still available, and this series of events causes a rather nasty crash.

Fortunately, the solution for this problem is a very simple one. If an Edit Text item is hidden
with a_HideDItem call, the Dialog Manager does not consider it active and will not try to
process key-down events for it. So if your cdev contains Edit Text items, part of your error
handling should be to first hide the Edit Text items with a call to_HideDItem before returning
an error code or a NIL as the cdev’s function result.

Further Reference:

° Inside Macintosh, Volume I, The Dialog Manager
¢ Inside Macintosh, Volume IV, The Dialog Manager
e Inside Macintosh, Volume V, The Control Panel

2 of 2 #251: Safe cdevs

a
Macintosh &

Technical Notes
MS me a ee a ase me eee

Developer Technical Support

#252: Plotting Small Icons

Revised by: James Beninghaus October 1989

Written by: James Beninghaus & Dennis Hescox August 1989

This Technical Note discusses the 'SICN' resource format and how to plot one ina GrafPort.

Changes since August 1989: Corrected errors in the Pascal code and spruced up the rest.

Introduction

Apple first introduced the 'SICN' resource so that the Script Manager could represent which
country specific resources are installed in the system by displaying a small icon in the upper right
corner of the menu bar. You can pass a 'SICN' resource to the Notification Manager or Menu
Manager, and they will draw it for you automatically—you should continue to let them do so.
However, if you want to draw a small icon in your application’s window, then this Note can help.

What does a 'SICN' look like? Following is a 'SICN' representation of a dogcow to help
answer this question:

"SICN' FatBits

There is reason to believe that this representation is actually a baby dogcow. Due to the protective
nature of parent dogcows, young dogcows are rarely seen. This one was spotted during a DTS
meeting after it drew attention to itself by crying “moo! woof!”. (Note that this dogcow said
“moo! woof!” because it was immature; adult dogcows naturally say, “Moof!”.)

eee

#252: Plotting Small Icons 1 of 5

NES _—_CO nn SsSsSsS$9005060606060000

Macintosh Technical Notes Mpomntosh Technical Notes

'SICN' Resource

A "SICN' resource contains any number of small icon bit images. Each small icon in a 'SICN' a list describes a 16 by 16 pixel image and requires 32 bytes of storage. Like an 'ICN#' resource,
there is no count of the number of icons stored ina 'SICN'. The following 'SICN' resource, in
MPW Rez format, contains two small icons:

resource 'SICN' (1984, "clarus") {

{ /* array: 2 elements */

$"00 48 00 B4 00 84 40 52 CO 41 AO 81 OF 8E 8F 18"
$"40 18 40 18 47 88 48 48 48 48 44 44 3c 3c 00 oo",

$"00 48 00 FC 00 FC 40 7E CO 7F EO FF FF FE FF F8"

$"7F F8 7F F8 7F F8 78 78 78 78 7C 7C 3C 3C 00 00"

The Right Tools for the Job

The Macintosh Toolbox interfaces do not describe all the necessary data structures needed to work
with 'SICN' resources. As shown in the following example, defining the 'SICN' type as an
array of 16 short integers and the handles and pointers to this array type make life much easier.

Pascal

TYPE

SICN = ARRAY[O .. 15] of INTEGER;

SICNList = ARRAY[O .. 0] of SICN;

SICNPtr = “SICNList; a)
SICNHand = “SICNPtr;

is

typedef short SICN[16];

typedef SICN *SICNList;

typedef SICNList *SICNHand;

The Missing Count

The 'SICN' resource does not provide a count to indicate the number of small icons contained
within; however, you can easily determine this number by dividing the total size of the resource by
the size of a single small icon.

2 of 5 #252: Plotting Small Icons

Developer Technical Support October 1989

Pascal

CONST

mySICN = 1984;

VAR

theSICN : SICNHand;

theSize : LONGINT;

theCount : LONGINT;

theIndex : LONGINT;

theSICN := SICNHand(GetResource('SICN', mySICN));

IF (theSICN <> NIL) THEN BEGIN

theSize := GetHandleSize(Handle(theSICN));

theCount := theSize DIV sizeof (SICN);

END;

#define mySICN 1984

SICNHand theSICN;

long theSize;

long theCount;

long theIndex;

theSICN = (SICNHand) GetResource('SICN', mySICN);

if (theSICN) {

theSize = GetHandleSize((Handle) theSICN) ;

theCount = theSize / sizeof (SICN);

The Plot 'SICN's

The example procedure Plot SICN draws one small icon of a 'SICN' resource. It takes the
handle from theSICn and the position in the list from the Index within the rectangle theRect
of the current GrafPort.

Following is an example call to Plot SICN which plots all the small icons in a resource into the
same rectangle:

Pascal

SetRect (theRect, 0, 0, 16, 16);

FOR theIndex := 0 TO theCount-1 DO

PlotSICN(theRect, theSICN, theIndex) ;

C

SetRect (&theRect, 0, 0, 16, 16);

for (theIndex = 0; theIndex < theCount ; ++theIndex)

PlotSICN(&theRect, theSICN, thelIndex) ;

Because PlotSICN uses _CopyBits and CopyBits can move memory, you should lock the
handle to the 'SICN' once the resource is loaded. Notice that the Plot SICN procedure
dereferences the 'SICN' handle, adds an offset, and copies the resulting value. If the 'SICN'

list moves in memory at this time, the bitmap’s baseAddr is useless.

#252: Plotting Smail Icons 3 of 5

Macintosh Technical Notes

To play it safe, Plot SICN saves a copy of the master pointer flags associated with the relocatable
block, locks the block with a call to HLock, and restores the flags after calling CopyBits.
You should never examine, set, or clear these flags directly; you should always use the routines
which are provided by the Memory Manager and Resource Manager. Note that it is not necessary
to check the value of the flag after getting it.

Pascal

PROCEDURE PlotSICN(theRect: Rect; theSICN: SICNHand; theIndex : INTEGER);

VAR

state : SignedByte; { we want a chance to restore original state }

srcBits : BitMap; { built up around 'SICN' data so we can CopyBits }

BEGIN

{ check the index for a valid value }

IF (GetHandleSize(Handle(theSICN)) DIV sizeof(SICN)) > theIndex THEN

BEGIN

{ store the resource's current locked/unlocked condition }

state := HGetState(Handle(theSICN));

{ lock the resource so it won't move during the CopyBits call }

HLock (Handle (theSICNn));

{ set up the small icon's bitmap }

{ $PUSH}

{$R-} { turn off range checking }

srcBits.baseAddr := Ptr (@theSICN** [theIndex]) ;

{ $POP }

srcBits.rowBytes := 2;

SetRect (srcBits.bounds, 0, 0, 16, 16);

{ draw the small icon in the current grafport }

CopyBits(srcBits,thePort*.portBits,srcBits.bounds, theRect, srcCopy, NIL);

{ restore the resource's locked/unlocked condition }

HSetState(Handle(theSICN), state);

END;

END;

40f5 #252: Plotting Small Icons

Developer Technical Support October 1989

‘) void PlotSICN(Rect *theRect, SICNHand theSICN, long theIndex) {

auto char state; /* saves original flags of 'SICN' handle */

auto BitMap srcBits; /* built up around 'SICN' data so we can CopyBits */

/* check the index for a valid value */

if ((GetHandleSize(Handle(theSICN)) / sizeof (SICN)) > theIndex) {

/* store the resource's current locked/unlocked condition */

state = HGetState((Handle) theSICN) ;

/* lock the resource so it won't move during the CopyBits call */

HLock ((Handle) theSICN) ;

/* set up the small icon's bitmap */

srcBits.baseAddr = (Ptr) (*theSICN) (theIndex];

srcBits.rowBytes = 2;

SetRect (&srcBits.bounds, 0, 0, 16, 16);

/* draw the small icon in the current grafport */

CopyBits (&srcBits,&(*qd.thePort) .portBits, ésrcBits.bounds,theRect,srcCopy,nil);

/* restore the resource's locked/unlocked condition */

HSetState((Handle) theSICN, state);

That Was Easy

rs Now that you’ve seen it done, it looks pretty easy. With minor modifications, some of the
— techniques in this Note could also be used to plot a bitmap of any dimension.

Further Reference:
¢ Inside Macintosh, Volume I, QuickDraw
¢ Inside Macintosh, Volume I, Toolbox Utilities
* Inside Macintosh, Volume IV, The Memory Manager
¢ Technical Note #41, Drawing Into an Off-Screen BitMap
¢ Technical Note #55, Drawing Icons

rr

#252: Plotting Small Icons 5 of 5

a
Macintosh 4

Technical Notes eS

Developer Technical Support

#253: 'SICN' Tired of Large Icons in Menus?

Revised by: Dennis Hescox October 1989

Written by: | Dennis Hescox August 1989

This Technical Note describes a new facility of the Menu Manager which allows you to add

reduced icons and small icons to your menus.

Changes since August 1989: Corrected references to Set ItemCmd from Set ItmCmd.

Since the release of MultiFinder, you may have noticed the appearance of small icons ("SICN") in

the menus of some System Software. At that time, the Menu Manager was modified to allow the

capability of showing both 'SICN' resources and 'ICON' resources reduced to 'SICN' size.

How to Add Less

To add one of the smaller icons to a menu item with Rez or ResEdit, do the following:

Reduced Icon

¢ Place a value of $1D into the cmdChr field of the menuItem.

¢ Place the resource ID number of the 'ICON' to use, minus 256, into the

itemIcon field of the menuItem.

Small Icon

¢ Place a value of $1E into the cmdChr field of the menuItem.

¢ Place the resource ID number of the 'SICN' to use, minus 256, into the

itemicon field of the menuItem.

In the ResEdit 'MENU' template, the cmdChr field is called “Key equiv” and the itemIcon field

is called “Icon#.”

For setting or changing the menu from within your program, use the following:

SetItemCmd (theMenu, item, $1D) { mark menu item as having a reduced icon }

SetItemIcon (theMenu, item, icon)

or

SetItemCmd (theMenu, item, $1E) { mark menu item as having a SICN }

SetItemIcon (theMenu, item, icon)

ee ———————————————————————————————————————

#253: 'SICN' Tired of Large Icons in Menus? 1 of 2

Macintosh Technical Notes

Note that the resource ID that you indicate to the Menu Manager is 256 less than the icon’s real

resource ID. This means that you can only use icons starting with resource ID of 257 (remember

that a zero indicates no icon). Figure 1 illustrates a menu with 'SICN' resources in the first three

items, anormal 'ICON' in the fourth item, and a reduced version of the normal 'ICON' in the

fifth item.

tj Remember

€& Screen

2 Dumps

Fe} witn xeW

(E) Menus?

Figure 1-Menu Containing a 'SICN', an 'ICON', and a Reduced 'ICON'

You Win Some; You Lose Some

Note that this new facility does not come for free. A menu item that contains a 'SICN’ ora

reduced icon cannot also have a command key equivalent. Because the addition of a smaller icon

must be somehow recorded into the existing menu record, the cmdChr field of your menu item

that used to contain the command key equivalent is now used to indicate both the command key to

use or the use of a smaller icon.

Further Reference:
e Inside Macintosh, Volume I, The Menu Manager

¢ Inside Macintosh Volume V, The Menu Manager

ee

2 of 2 #253: '‘SICN' Tired of Large Icons in Menus?

LY

Macintosh U
Technical Notes | |

Developer Technical Support

#254: Macintosh Portable PDS Development

Revised by: Dennis Hescox February 1990
Written by: | Dennis Hescox October 1989

The Technical Note describes the unique aspects of the Macintosh Portable Processor Direct Slot
(PDS), including the severe limitations in its use.
Changes since October 1989: Corrected PDS pin and signal descriptions in Tables 2 and 3.

The internal operating environment of the Macintosh Portable is unique within the Macintosh
family due to the additional design goals that are not normally applied to other Macintoshes. In
particular, two of these goals which limit the use of the PDS are that the unit shall have a long
(eight hour) battery operation life and that the unit shall meet all FCC regulations, including the
ability to operate on commercial aircraft.

I’ve Got a Bad Feeling About This

Because of these design goals and the subsequent limitations on the use of the PDS, you must
severely limit your card design for the Macintosh Portable.

The first and foremost limitation is that the PDS has no power budget for your card. Seeing
that there are +12V and +5V connections on the PDS connector, we all realize that you could draw
some power directly from the Macintosh Portable. Please don’t do it. Instead, you should add
your own power supply (i.e., battery) to your board, thus controlling your own destiny (or at least
the destiny of your PDS board) and ensuring that the Macintosh Portable has the longest battery
life of any portable on the market. You are the best judge as to whether or not your board needs to
run continuously when the Macintosh Portable is in sleep mode, therefore requiring a long current
life. You might find that the functionality of your board is only optimal when the Macintosh
Portable is in full-operating mode (or powered by an external source), and in this case, you could
conserve its current demands.

For those of you who are convinced that your product is so important that your users will overlook
a 50% reduction in their system operating time, Table 1 shows a worst-case power budget that
could apply.

Power Supply Operating state Sleep State
+5 V, always on 50 mA maximum 1 mA maximum
+5 V, switched . 0 mA maximum
+12 V 25 mA maximum Q mA maximum

* The 50 mA maximum applies to the loads of the switched and
unswitched +5 V supplies.

Table 1-Worst-Case Power Budget

#254: Macintosh Portable PDS Development 1 of 5

Macintosh Technical Notes

The second limitation is that to meet FCC limits on radio frequency emissions, no connector or
cable attached to an expansion card can penetrate the case of the Macintosh Portable.

So Why Have a PDS Connector at All?

The decision to include the PDS connector is a recognition that we can’t know it all. Although it
may seem that next to no power availability and absolutely no custom cables to the outside world
would block all possible products, providing the expansion connector allows for that spark of
genius for which developers are known and the unanticipated product which usually results. So, if
after all these dire warnings you still want to proceed, following are the available details (at least
until Designing Cards and Drivers for the Macintosh can be updated).

Hang On

The PDS in the Macintosh Portable provides the microprocessor address, control, data, clock
power, and Macintosh Portable-specific lines for your expansion card’s use. Table 2 lists these
signals, while Table 3 lists their descriptions.

Pin Number Row A Row B Row C

1 GND GND GND
2 +5V +5V +5V
3 +5V +5V +5V
4 +5V +5V +5V

5 /DELAY.CS /SYS.PWR /VPA
6 /VMA /BR /BGACK
y | /BG /DTACK R/W
8 /LDS /UDS /AS
9 GND +5/0V Al

10 A2 A3 A4
11 AS A6 A7
12 A8 A9 Al0
13 All Al2 Al3
14 Al4 Al5 Al6
15 Al7 Al8& reserved

16 reserved reserved nc
17 nc reserved reserved
18 reserved reserved reserved
19 reserved +12V DO

20 D1 D2 D3
21 D4 DS D6
22 D7 D8 D9
23 D10 D11 D12
24 D13 D14 D15
25 +5/3.7V +5V GND
26 Al19 A20 A21
27 A22 A23 E
28 FCO FC1 FC2
29 /IPLO /AIPL1 /IPL2
30 /BERR /EXT.DTACK /SYS.RST
31 GND 16M GND
32 GND GND GND

Table 2—Macintosh Portable 68000 Direct Slot Expansion Connector Pinouts

2 of 5 #254: Macintosh Portable PDS Development

Developer Technical Support February 1990

Mnemonic Description

nc No connection
GND Logic ground
DO-D15 Unbuffered data bus, bits 0 through 15
Al1-A23 Unbuffered address bus, bits 1 through 23
16M 16 MHz clock
/EXT.DTACK External data transfer acknowledge. This

signal is an input to the processor logic glue.
Assertion delays external generation of the
/DTACK signal.

E E (enable) clock
/BERR Bus error signal generated whenever /AS

remains low for more than about 250 us
/IPLO-/IPL2 Input priority level lines 0 through 2.
I[SYS.RST Initiates a system reset.
/SYS.PWR A signal from the Power Manager indicating

that associated circuits should tri-state their
outputs and go into idle state; /SYS.PWR is
pulled high (deasserted) during sleep state.

/AS Address strobe
/UDS Upper data strobe
/LDS Lower data strobe
R/W Defines bus transfer as read or write signal
/DTACK Data transfer acknowledge
/DELAY.CS Indicates that a wait state is inserted into the

current memory cycle and that you can delay
a CS.

/BG Bus grant
/BGACK Bus grant acknowledge
/BR Bus request
/VMA Valid memory access
/VPA Valid peripheral address
FCO-FC2 Function code lines 0 through 2
+5/0V Provides +5V when the system is running

normally and OV when the system is in sleep
mode.

+5V/3.7V Provides +5V when the system is running
normally and 3.7V when the system is in
sleep mode.

Table 3-Functional Description of the Macintosh Portable PDS Signals

The signals listed in Tables 2 and 3 are presented to your PDS card through a Euro-DIN 96-pin
socket connector on the main logic board.

Currently, you can order these Euro-DIN 96-pin connectors (which meet Apple specifications)
from: AMP Incorporated, Harrisburg, PA 17105.

Disclaimer: This listing for AMP Incorporated neither implies nor constitutes an
endorsement by Apple Computer, Inc. If your company supplies these
connectors and you would like to be listed, contact DTS at the address in
Technical Note #0.

#254: Macintosh Portable PDS Development 3 of 5

Macintosh Technical Notes

5.08 _,
(.200)

2.54 (.100) 52 11.50 ~
(.204) (.452) F

2.9
(.114)

Three-row pin connector Dimensions are

96 contact positions in millimeters

2.54 mm (.100) spacing pins with inches in

Gold plated, 20 microinches, over nickel plate parentheses.

Figure 1-96-Pin Plug Connector

Due to the limited space within the Macintosh Portable’s case, your card is limited to the size
indicated in Figure 2. Apple highly recommends the use of CMOS circuits to reduce the total
power necessary for your card’s operation.

4 of 5 #254: Macintosh Portable PDS Development

Developer Technical Support February 1990

10.00 max component height ——p»>

1.70

6.00 ESD Grounding Strip. No

components this area both sides 71.00
of PCB

57.00

10.00

Dimensions are in Millimeters. 7.00 a
—_ae

5.00 max component height (solder side)

Figure 2-PDS Expansion Card Dimensions

Further Reference:

* Designing Cards and Drivers for the Macintosh
* Guide to the Macintosh Family Hardware

eee

#254: Macintosh Portable PDS Development 5 of 5

Cc

Macintosh 4

Technical Notes =

Developer Technical Support

#255: Macintosh Portable ROM Expansion

Written by: | Dennis Hescox October 1989

This Technical Note explains the practice of and theory behind compatible use of the expansion
ROM in the Macintosh Portable.

Due to the unique nature of the Macintosh Portable, developers now have the ability to add ROM to
the Macintosh. To provide for compatible shared use of this ROM space with Apple and other
developers, this Note describes the feature and suggests methods of shared implementation.

Address Space

The Macintosh Portable contains 256K of processor ROM, which is fundamentally the same as the
ROM in the Macintosh SE. This ROM is located at the low end of a 1 MB ROM space. With an
expansion card, one can either completely replace the 1 MB ROM or simply add an additional 4
MB of ROM. The original 1 MB of address space is reserved for use by Apple, but the
additional 4 MB address space is available for third-party developers.

Apple reserved ROM space is located from $90 0000 through $9F FFFF. You can replace this
ROM space with an expansion board, thus overriding these ROMs; however, if you override these
ROMs your machine will no longer work with most applications. This ability to override the
original ROMs is intended for Apple in the event that a ROM upgrade is ever necessary for the
Macintosh Portable. Developers should use the 4 MB ROM address space from $A0 0000 through
$DF FFFF, which is illustrated in Figure 1, for expansion.

Since Apple could provide a ROM upgrade (on a ROM expansion board), we recommend that
developers use a standard 32-pin DIP socketed ROM part for any expansion board. Following this
recommendation ensures that the user will never have to choose between an Apple ROM upgrade
and a third-party expansion board, since Apple could provide sockets for third-party ROMs if we
were to produce such an upgrade.

#255: Macintosh Portable Rom Expansion 1 of 7

Macintosh Technical Notes

Reserved Hardware

System ROM

$60 0000

$50 0000

$40 0000

$30 0000

$20 0000

$10 0000

$00 0000

Expansion

RAM/ROM Overlay

Figure 1—Macintosh Portable Memory Map

Expansion ROM Board

If Apple were to produce an expansion ROM board for an upgrade, it would have the following
characteristics. Side one would contain four 32-pin ROM sockets compatible with 128K x 8 bit or
512K x 8 bit ROMs, a dip switch for choosing between 128K or 512K socket address sizes, and
appropriate decoupling capacitors. Side two would contain Apple’s expansion ROMs and any
additional circuitry. This design implies that developers would be able to use at most either 512K
or 2 MB of the total 4 MB expansion space.

When designing your own expansion board, remember that it must contain circuitry for decoding,
controlling, and buffering, and it should use CMOS, since the Macintosh Portable restricts ROM
expansion boards to a maximum of 25ma. The number of wait states inserted depends upon the
DTACK generated by your board, which connects to the Macintosh Portable through a single 50-
pin connector (slot). The machine provides all of the appropriate signals (address bus, data bus,
and control) to the expansion slot, where they are decoded into chip selects and routed to address
and data buffers. These signal names and descriptions are illustrated in Figure 2 and described in
Table 1. It is also important to buffer the address and data buffers to reduce capacitive loading.

2 of 7 #255: Macintosh Portable Rom Expansion

Developer Technical Support October 1989

+5V Al

A2 A3

A4 AS

A6 A7

A8& AQ

Al0 All

Al2 Al3

Al4 Al5

Al6 Al7

Al8 Al9

A20 A21

A22 A23

GND GND

/DTACK /AS
/ROM_CS 16Mhz_Clock

/EXT_DTACK /DELAY_CS

DO Di

D2 D3

D4 DS

D6 D7

D8 D9

D10 Dil

D12 D13

D14 D15

+5V +5V

Figure 2-Internal ROM Expansion Connector Signals

Pin Number Signal Name Signal Description

1 +5V Vec
2-24 Al-23 Unbuffered 68HCO000 address

signals A1-23
25-26 GND Logic Ground
27 /DTACK /DTACK input to 68HCO000
28 /AS 68HCO00 address strobe

signal
29 /ROM_CS Permanent ROM chip select

signal. Selects in range $90
0000 through $9F FFFF.

30 16 Mhz_clock 16 Mhz system clock.
31 /EXT_DTACK _ External /DTACK signal that

disables main system
/DTACK

32 /DELAY_CS This signal is generated by the
addressing PAL and is used to
put the ROM board into the
idle mode by _ inserting
multiple wait states.

33-48 DO-15 68HCO000 unbuffered data

signals DO-15
49-50 +5V Vcc

Table 1-Internal ROM Expansion Connector Signal Descriptions
a io ii a a a a

#255: Macintosh Portable Rom Expansion 3 of 7

Macintosh Technical Notes

oo
Sa)

=
N part

~

Be
N
val 60.83 [2.395]

-19.95 [-.785]
(3x) 3.38 [.133]

68.58 [2.700]

Tooling Holes
60.42 [2.379]

58.55 [2.305]

Detail A

\e—<00 [.236]

51.94 [2.045]

(3x) 3.00 [.118]
ESD Grounding Strip

both sides of PCB
6.00 [.236]

No components or traces.

This area for grounding to

rear cover. Both Sides.

a 50-Pin Connector

-27.28 [-1.074] 0 68.18 [2.684]

Dimensions are in Millimeters [Inches]

7.62 [.300]

2.34 [.092]

0
-10.11 [-.398]

5.37 [.211]

Figure 3-Internal ROM Expansion Board Guidelines

Software Standards

For the purposes of expansion ROM, Apple has introduced Electronic Disks (EDisks), which
appear to the user as very fast, silent disk drives. The EDisk driver supports EDisks, which use
RAM or ROM as their storage media.

ROM EDisks, which can be produced by third parties, are connected to the system using the
internal ROM expansion slot. The 4 MB address space allocated for this type of expansion
supports any number of ROM EDisks, as long as they start on a 64K boundary (their size may
exceed 64K). ROM EDisks behave like RAM EDisks, except that they are read-only and cannot be
resized.

4 of 7 #255: Macintosh Portable Rom Expansion

Developer Technical Support October 1989

The EDisk Driver

The EDisk driver provides a system interface to EDisks similar to that provided by the Sony and
SCSI disk drivers. It supports 512 byte block I/O operations and does not support file system
tags. The EDisk driver isa ROM 'DRVR' resource with an ID of 48, Re fNum of -49, and driver
name of “.EDisk’”’. Since it is a disk driver, it also creates a Drive Queue Element for each EDisk.
Information on how these driver calls apply to the Sony driver appear in the Disk Driver chapters
of Inside Macintosh, Volumes II, IV, & V.

EDisk Implementation Details

The remainder of this section describes some of the implementation details, data formats, and
algorithms used by the EDisk driver that may be useful for developers who want to produce ROM
EDisks.

Data Checksumming

To provide better data integrity, the EDisk driver supports checksumming of each data block,
which is computed when a write is performed to a block and checked on every read operation. It
computes a 32-bit checksum for each 512-byte block. This calculation is performed by adding
each longword in the block to a running longword checksum, which is initially zero, and is rotated
left by one bit before each longword is added. The following assembly code demonstrates this
algorithm:

Lea TheBlock,a0 ; AO is pointer to the block to checksum

Moveq.L #0,D0 ; DO is the checksum, initially zero

Moveq.L #(512/4)-1,D1 ; loop counter for 1 block (4 bytes per iteration)

@Loop Rol.L #1,D0 ; rotate the checksum

Add.L (AO) +,D0 ; add the data to the running checksum

Dbra D1, @Loop ; loop through each longword in the block

Internal ROM EDisk Details

When the EDisk driver is opened, it searches the address range from the base of the system ROM
to $00E0 0000 for internal ROM EDisks. An internal ROM EDisk must begin with an EDisk
header block, which must start on a 64K boundary (but may be any size). If a valid header block
is found, it is compared to all other known headers, and if it is identical to another, it is ignored to
eliminate duplicates caused by address wrapping. If the header block is unique, the EDisk driver
supports it and creates a drive queue entry for it. The driver can support any number of internal
ROM EDisks, and it is limited only by the address space allocated for ROM.

EDisk Header Format

There is a 512-byte header block associated with ROM EDisks. This header describes the layout
of the EDisk and uniquely identifies it. The general format of the header block is described below.
The EDisk header marks the beginning of an EDisk, and it should occur at the beginning of the
ROM space that is used for EDisk storage (i.e., starting at the first byte of a 64K ROM block).

EDiskHeader Record 0,increment + layout of the EDisk signature block

HdrScratch DS.B 128 ; scratch space for r/w testing and vendor info

HdrBlockSize DS.W 1 ; size of header block (512 bytes for version 1)

HdrVersion DS.W 1 ; header version number (this is version 1)

HdrSignature DS.B 12 7 45 44 69 73 6B 20 47 61 72 79 20 44

HdrDeviceSize DS.k 1 ; size of device, in bytes

HdrFormatTime DS..L 2 ; time when last formatted (pseudo unique ID)

#255: Macintosh Portable Rom Expansion 5 of 7

Macintosh Technical Notes

HdrFormatTicks DS.L 1 ; ticks when last formatted (pseudo unique ID)

HdrCheckSumOff DS.L 1 ; offset to the Checksum table, if present

HdrDataStartoOff DS.L 1 ; offset to the first byte of data storage

HdrDataEndOoff DS.L z ; offset to the last byte+l of data storage

HdrMedialconOff DS.L nb ; offset to the media Icon and Mask, if present

HdrDrivelconOff DS.L 1 ; offset to the drive Icon and Mask, if present

HdrWhereStroff DS.L 1 ; offset to the Get Info Where: string, if present
HdrDrivelInfo DS.L i ; longword for Return Drive Info call, if present

DS.B 512-* ; rest of block is reserved

EDiskHeaderSize EQU * ; size of EDisk header block
ENDR

HdrScratch is a 128-byte field that is used for read and write testing on RAM
EDisks to determine if the memory is ROM or RAM. On ROM
EDisks, it should be filled in by the vendor with a unique string to
identify this version of the ROM EDisk (e.g., “Copyright 1989,
Apple Computer, Inc. System Tools 6.0.4 9/5/89”).

HdrBlockSize is a 2-byte field that indicates the size of the EDisk header block.
The size is currently 512 bytes.

HdrVersion is a 2-byte field that indicates the version of the EDisk header block.
The version number is currently $0001.

HdrSignature is a 12-byte field that identifies a valid EDisk header block. The
signature must be setto 45 44 69 73 6B 20 47 61 72 79
20 44 in hexadecimal.

HdrDeviceSize is a 4-byte field that indicates the size of the device in bytes, which
may be greater than the actual usable storage space. One might also
think of the device size as the offset (from the beginning of the
header block) of the last byte of the storage device.

HdrFormat Time is a 4-byte field that indicates the time of day when the EDisk was
last formatted. The EDisk driver updates this for RAM EDisks when
the format control call is made. This information may be useful for
uniquely identifying a RAM EDisk.

HdrFormatTicks is a 4-byte field that indicates the value of the system global Ticks
when the EDisk was last formatted, which should be a unique
number. The EDisk driver updates this for RAM EDisks when the
format control call is made. This information may be useful for
uniquely identifying a RAM EDisk.

HdrCheckSumOff is a 4-byte field that is the offset (from the beginning of the header
block) of the checksum table, or zero if checksumming should not
be performed on this EDisk.

HdrDataStartOff is a 4-byte field that is the offset (from the beginning of the header
block) of the first block of EDisk data.

HdrDataEndOff is a 4-byte field that is the offset (from the beginning of the header
block) of the byte after the end of the last block of EDisk data.

6 of 7 #255: Macintosh Portable Rom Expansion

Developer Technical Support October 1989

HdrMedialIconOff is a 4-byte field that is the offset (from the beginning of the header

block) of the 128-byte icon and 128-byte icon mask, which

represents the disk media. An offset of zero indicates that the EDisk

driver should use the default media icon for this EDisk.

HdrDrivelIconOff is a 4-byte field that is the offset (from the beginning of the header

block) of the 128-byte icon and 128-byte icon mask, which

represents the disk drive physical location. An offset of zero
indicates that the EDisk driver should use the default drive icon for
this EDisk.

HdrWhereStrOff is a 4-byte field that is the offset (from the beginning of the header
block) of the Pascal string that describes the disk location for the
Finder Get Info command. An offset of zero indicates that the
EDisk driver should use the default string for this EDisk.

HdrDriveInfo is a 4-byte field that should be returned by the drive information
control call. A value of zero indicates that the EDisk driver should
use the default drive info for this EDisk.

You should not override the default media or drive icons without first giving serious consideration
as to how a different icon will affect the user interface. What often appears to be a clever idea for a
cute icon usually turns out to be a source of frustration for the user when deciding what the item is
and where it is physically located.

Some Final Thoughts

Do Not Use More Space Than You Need

As wonderful and indispensable as your ROM product may be, users may wish to also use ROMs
from another developer. Although ROM address space is quite large (in today’s terms), board
space and number of ROM chip sockets is limited. If you use only the space you really need and
leave room (address space and empty chip sockets) in your ROM product to add other ROMs,
users will never have to make a choice between your product and another, unanticipated stroke of
genius.

Keep It Relocatable

Just because your code is in ROM does not mean that it will always reside at a specific address.
When moving your ROM to another board (an Apple upgrade or another third-party board), users
should neither have to worry about address range conflicts nor socket location. In addition, Apple
may implement ROM expansion in a future product with expanded or different address space;
keeping your ROM code relocatable could mean the difference between additional sales or
incompatibility and upgrades.

Further Reference:
¢ Inside Macintosh, Volume II, IV, & V, The Disk Driver

eee

#255: Macintosh Portable Rom Expansion 7 of7

as)

Macintosh 4

Technical Notes @.

Developer Technical Support

#256: Stand-Alone Code, ad nauseam

Written by: Craig Prouse August 1990
Inspired by: Keith Rollin & Keithen Hayenga October 1989

This Technical Note discusses many of the issues related to stand-alone code modules. This Note
is by no means a completely original work, as the author borrows freely from the work of Keith
Rollin, Mark Baumwell, and Jim Friedlander.
Changes since October 1989: Completely rewritten to broaden the discussion of stand-alone
code modules and include a greater scope of examples. Incorporates Technical Notes #110, MPW:
Writing Stand-Alone Code and #145, Debugger FKEY.

How to Recognize a Stand-Alone Code When You See One

What Stand-Alone Code Looks Like to the Naked Eye

Stand-alone code is program code which does not enjoy the full status of an application. A stand-
alone code module exists as a single Macintosh resource and consists almost entirely of
microprocessor-executable object code, and perhaps also some header data and other constants
used by the executable portion of the module. Code-type resources are most easily identifiable in
the ResEdit 2.0 resource picker. Most of these closely-related resources are indicated by an icon
containing a stylized segment of assembly-language source code.

Code Resources

CODE DRYR

Figure 1-ResEdit 2.0 Icons Signifying Code-Type Resources

Although 'CODE" resources are not stand-alone code modules (they are segments of a larger
application), they are similar because they contain executable code and so they have the same code-
type icon. Driver resources are a special case of stand-alone code resources, and they have a
different icon in the ResEdit picker, reminiscent of the Finder icon for a desk accessory suitcase,
because the code of a desk accessory is stored as a 'DRVR' resource. The icon for an 'FKEY' is
also a bit different, resembling a function key, naturally.

#256: Stand-Alone Code, ad nauseam 1 of 32

Macintosh Technical Notes

Table 1 is a fairly extensive list of the currently-defined code-type resources. Many are of interest
primarily at a system software level; those stand-alone code resources most commonly created by
application-level programmers are noted in boldface. Of course, developers are always free to
define new resource types for custom stand-alone modules. 'CUST' is commonly used, as in
some of the examples at the end of the discussion.

ADBS adev CACH CDEF cdev CODE dcmd

DRVR FKEY FMTR INIT LEL2Z it14 LDEF

MBDF MDEF mntr PACK PDEF PTCH ptch

rdev ROvr RSSC snth WDEF XCMD XFCN

Table 1-Assorted Code Resource Types

The most common use of stand-alone code is to supplement the standard features provided by the
Macintosh Toolbox and operating system. Most of the resource types listed in Table 1 define
custom windows, controls, menus, lists, and responses to user input. In this respect, they are
slaves to particular Toolbox managers or packages and very often contained within the resource
fork of an owner application. Other examples of stand-alone code are more useful as application

extensions like HyperCard 'XCMD' and 'XFCN' extensions.

'DRVR', 'INIT', and 'cdev' resources are more autonomous examples of stand-alone code.
These allow programmers to write code which may be executed automatically when the system
starts up and code which adds special features to the operating system or provides control of
special-purpose peripherals and system functions. The temptation here is to perform functions
generally reserved for full-blown applications, such as use of QuickDraw. For a number of
reasons, this is a non-trivial endeavor, and is the subject of much of this discussion.

How Applications Are Special

Macintosh applications can be almost any size, limited mainly by disk space and RAM size. The
actual program code is generally divided up into a number of segments, each less than 32K in size
so the amount of memory required to execute a program may be less than the size of the program
itself. The Segment Loader, documented in Inside Macintosh, Volume II, controls the loading and
unloading of segments. It ensures that the necessary segments of an application are read into the
application heap when needed and allows temporarily unneeded sections to be purged, making
room for others.

All of this activity occurs in and depends upon a somewhat mysterious construction called an A5
world. It is so called because the A5 register of the microprocessor points indirectly to several key
data structures used by the Segment Loader and the application itself. Most Macintosh
programmers are at least vaguely aware of the significance of A5 in the Macintosh environment.
Many even know that it is a handy pointer to the application and QuickDraw global variables, or at
least points in the right general direction. Less widely known is how an A5 world is constructed,
and more to the point, how to build one from scratch if necessary.

This may become necessary because higher-level language compilers like MPW Pascal and C
automatically generate A5-relative addressing modes to refer to global variables, including
QuickDraw globals. The linker then resolves the actual offsets. For example, the ubiquitous

InitGraf (@thePort) ; {initialize QuickDraw}

compiles into something equivalent to the following:

PEA thePort (A5),-(SP) ; push a pointer to QuickDraw's thePort variable

_InitGraf ; invoke InitGraf trap to initialize QuickDraw

2 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Su
August 1990

Before this is executable, the linker must determine exactly what offset represents thePort.

With this value, it patches the object code and creates the code found in the final application. The

reader may infer that an application depends on someone else to set up AS with a meaningful value

before program execution begins. This is true, and understanding how this process normally

occurs for an application is of paramount importance when writing stand-alone code which needs

application-like functionality. Briefly, the Segment Loader allocates space for an A5 world for

each application as part of its launch process. Library code is automatically linked to the front of

every application, and this sets up A5 to point to the global variable space. The application code

begins executing only after all of this preliminary setup is complete.

Jump Table

“Application Parameters”

pointer to QuickDraw globals

appGlobalVarl

appGlobalVar2
ee

a> Globals

Stack
grows down

e (see note)

appGlobalVarN

ee ee ae ee

QD
Patterns

h arrow

screenBits

randSeed

App1Linit >

Heap

grows up

ApplZone >

Note: Application globals may appear above or below the QuickDraw globals.
This is linker-dependent. What's important is that separately-linked external
modules can use AS to locate an application's QuickDraw globals.

Figure 2-A Hitchhiker’s Guide to the A5 World

How Stand-Alone Code Is Different

Stand-alone code, unlike an application, is never launched. It is simply loaded then executed and
possesses no A5 world of its own. Stand-alone code therefore cannot easily define global
variables. No space is allocated for globals and A5 either belongs to a real application or is
completely meaningless. References to global variables defined by the module usually succeed
without even a warning from the linker, but also generally overwrite globals defined by the current
application. References to global variables defined i ibraries. li :
generate fatal ikerurs. & ined in the MPW libraries, like QuickDraw globals,

LL SS

#256: Stand-Alone Code, ad nauseam 3 of 32

Macintosh Technical Notes

Link -t INIT -c '22??' -rt

SampleINIT.p.o @
-o SampleINIT

Link: Error: Undefined entry, name: (Error 28) "thePort"
Referenced from: PLAYZOO in file: SampleINIT.p.o

Link: Errors prevented normal completion.
MPW Shell - Execution of SampleINIT.makeout terminated.
MPW Shell - Execution of BuildProgram terminated.

INIT=128 -ra =resLocked -m PLAYZOO 9

That’s not very helpful and not very much fun. So what if a stand-alone code resource needs to
use QuickDraw or its associated globals like screenBits? What if a stand-alone module needs
to call some “innocuous” routine in the Macintosh Toolbox which implicitly assumes the existence
of a valid A5 world? _Unique1ID, which calls the QuickDraw _Randonm trap, falls into this
category, for instance. An 'XCMD' might be able to “borrow” HyperCard’s globals, but an
'INIT' has no such alternative; it may need to have its own A5 world.

There are a couple more considerations. Stand-alone code resources are not applications and are
not managed by the Segment Loader, so they cannot be segmented into multiple resources like
applications. Stand-alone code resources are self-contained modules and are usually less than 32K
in size. As popular belief would have it, code resources cannot be more than 32K in size. This is
not necessarily true, and although some linkers, especially older ones, enforce the limit all the
same, the absolute limitation is that the original Motorola MC68000 microprocessor is not capable
of expressing relative offsets which span more than 32K.

A code segment for a 68000-based Macintosh may be any reasonable length, so long as no relative
offsets exceed 32K. There are ways to get around this limit even on 68000-based machines, while
the MC68020 and later members of the 680x0 family have the ability to specify 32-bit offsets,
dissolving the 32K barrier completely as long as the compiler is agreeable. To remain compatible
with 68000-based machines, however, and to maintain manageable-sized code segments the 32K
“limit” is a good rule of thumb. If a stand-alone code module gets much larger than this, it is often
because it’s trying to do too much. Remember that stand-alone code should only perform simple
and specific tasks.

Writing Your First Stand-Alone Module

Each type of stand-alone code has its own idiosyncrasies. It is difficult to say which type is the

easiest to construct. It is best to address each major type individually, but a simple 'INIT' may

be the best place to start. Most programmers are pretty familiar with the concept of what an

‘INIT! is and how it is used, and its autonomy is a big plus—it is not necessary to write and

debug a separate piece of code or a HyperCard stack in which to test the stand-alone module.

(This would be necessary for a 'CDEF' or an 'XCMD', for example.) Stand-alone code is often

written in assembly language, but high-level languages usually serve just as well. This first

example is written in MPW Pascal, in keeping with the precedent set by Inside Macintosh.

SampleINIT is a very simple 'INIT' which plays each of the sounds (resources of type

'snd_ ') in the System file while the Macintosh boots. It’s kind of fun, not too obnoxious, and

also not particularly robust. All 'snd ' resources should be unlocked, purgeable, Format 1

sounds like the four default system sounds. Also be sure to name this file SampleINIT.p to work

with the SampleINIT.make file which follows. The main subroutine is PlayZoo, in honor of the

monkey and dogcow sounds in the author’s System file.

4 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support August 1990

UNIT SampleINIT; {Pascal stand-alone code is written as a UNIT}

INTERFACE

USES

Types, Resources, Sound;

{VAR

cannot define any globals...well, not yet anyway}

PROCEDURE PlayZoo;

IMPLEMENTATION

PROCEDURE PlayZoo;

VAR

numSnds, i : INTEGER;

theSnd : Handle;

playStatus ;: OSErr;

BEGIN

numSnds := CountResources('snd ');

FOR i := 1 TO numSnds DO BEGIN

theSnd := GetIndResource('snd ',i);

IF theSnd <> NIL THEN

playStatus := SndPlay(NIL,theSnd, FALSE) ;

END;

END;

END.

Following is the file SampleINIT.make to control the build process:

File: SampleINIT.make

Target: SampleINIT

Sources: SampleINIT.p

SampleINIT ff SampleINIT.make SampleINIT.p.o

Link -t INIT -c '??2??' -rt INIT=128 -ra =resLocked -m PLAYZOO @

SampleINIT.p.o 0
-o SampleINIT

SampleINIT.p.o f SampleINIT.make SampleINIT.p

Pascal SampleINIT.p

That’s all there is to it, but even in such a simple example as this, there are a number of extremely
important points to highlight. By understanding every nuance of this example, one moves a long
way toward understanding everything there is to know about stand-alone code.

Consider first the form of the 'INIT' code itself. It is defined as a UNIT rather than a
PROGRAM. This is important, because Pascal programs are applications and require the Segment
Loader, preinitialization of A5, and all the things which make an application special. A Pascal unit,
like a stand-alone code resource, is simply a collection of subroutines. A similar assembly-
language 'INIT' would define and export a PROC. In C, this particular 'INIT' would be a
single function in a source file with no main () function.

Pascal programmers may recognize that a unit allows the definition of global variables (as between
the USES and PROCEDURE clauses in the INTERFACE section previously documented).
Typically, when a unit’s object code is linked with a host application, the linker allocates storage
for these globals along with the application globals and resolves all necessary A5 references.
Stand-alone code modules are never linked with an application, however, and the linker has no
way to resolve these references. This makes the linker very unhappy. The easiest way to make the

#256: Stand-Alone Code, ad nauseam 5 of 32

Macintosh Technical Notes

linker happy is to follow the example and define no globals. If globals are really necessary, and
they may well be, read on.

Next examine how SampleINIT is linked. To be recognized as a startup document, a “system
extension” (as an 'INIT' is called in System 7.0 parlance) must have the file type “INIT”. The
options -rt and -ra_ respectively specify that the code resource is of type 'INIT' (ID=128),
and that the resource itself is locked. This is a very important idiosyncrasy of the 'INIT' because
it is not automatically locked when loaded by the system and might otherwise attempt to move
during execution. Hint: this would be very bad.

Finally, PlayZoo is specified as the main entry point by the -m option. When written in Pascal,
the entry point of a module is the first compiled instruction. C is a little pickier and demands the
main entry point option to override the default entry point (which performs run-time initialization
for applications). It is important to remember that the linker does not move the entry point
specified by -m to the front of the object file—that is the programmer’s responsibility.
Specification of this option primarily helps the linker remove dead, unused code from the final
object module. In short, don’t leave home without it. Note that the linker is case sensitive with
respect to identifiers, while the Pascal compiler converts them to all uppercase. It is necessary
therefore (in this example) to specify the name of the entry point to the linker in all uppercase
characters. If PlayZoo were written in C, which is also case-sensitive, the identifier would be
passed to the linker exactly as it appeared in the source code.

For additional examples of stand-alone code, refer to the end of this Note. There are currently a
few examples of types of stand-alone code, some of which illustrate the advanced topics discussed
in the following sections.

The next area to investigate is how to get around the restrictions on globals in stand-alone code.
The first and simplest solution easily conforms to all compatibility guidelines, and that is to avoid
using globals altogether. There often comes a time, however, when the use of a global seems
unavoidable. The global variable requirements of stand-alone code segments vary, naturally, and
there are a number of possible scenarios. Some involve creating an A5 world and others do not.
It’s best to start with the simplest cases, which do not.

Oh, I Have Slipped the Surly Bonds of the Linker...

... And Have Hung Like a Leach on My Host Application

Often a stand-alone code segment needs the QuickDraw globals of the current application, for
whom it is performing a service. A control definition function ('CDEF') is an example. Its
drawing operations assume a properly-initialized QuickDraw world, which is graciously provided
by the application. Most QuickDraw calls are supported and no special effort is required. One
limitation, however, is that explicit references to QuickDraw globals like thePort and
screenBits are not allowed. The linker cannot resolve the offsets to these variables because it
does not process a 'CDEF' (or any other stand-alone module) along with a particular application.
Fortunately the solution is simple, if not entirely straightforward.

Since the structure of the QuickDraw global data is known, as is its location relative to A5, stand-
alone code executing as a servant to an application can reference any desired QuickDraw global
indirectly. The following code is an example of how a stand-alone unit can make local copies of all
the application QuickDraw globals. It uses A5 to locate the variables indirectly, rather than making
explicit symbolic references which the linker is not capable of resolving. Figure 2, presented
earlier, may be helpful in understanding how this code works.

6 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support August 1990

UNIT GetQDGlobs;

INTERFACE

USES

Types, QuickDraw, OSUtils;

TYPE

QDVarRecPtr = “*QDVarRec;

QDVarRec = RECORD

randSeed : Longint;

screenBits : BitMap;

arrow 3; Cursor;

dkGray : Pattern;

1tGray : Pattern;

gray : Pattern;

black : Pattern;

white : Pattern;

thePort : GrafPtr;

END;

PROCEDURE GetMyQDVars (VAR qdVars: QDVarRec) ;

IMPLEMENTATION

PROCEDURE GetMyQDVars (VAR qdVars: QDVarRec) ;

TYPE

LongPtr = “Longint;

BEGIN

{ Algorithm:

1. Get current value of AS with SetCurrentAS.

2. Dereference to get address of thePort.

3. Perform arithmetic to determine address of randSeed.

4. By assignment, copy the QD globals into a local data structure. }

qdVars := QDVarRecPtr(LongPtr(SetCurrentA5)* - (SizeOf (QDVarRec) -SizeOf (thePort)))%*;

END;

END.

Extensible Applications

Some applications are intended to be extensible and provide special support for stand-alone code
segments. ResEdit for instance, uses 'RSSC' code resources to provide support for custom
resource pickers and editors. If a graphical editor is needed to edit a custom resource type, such as
an 8 x 64-pixel icon, separately compiled and linked extension code can be pasted directly into the
application’s resource fork. ResEdit defines interfaces through which it communicates with these
resources. In many cases, this degree of support and message passing can preempt the need to
declare global variables at all. The ResEdit interfaces are part of the official ResEdit package
available from APDA. The MacsBug 'dcmd' is another instance of extension code with support
for globals built in. A 'dcmd' specifies in its header how much space it needs for global
variables and MacsBug makes room for them.

HyperCard provides high-level support for its 'XCMD' and 'XFCN" extension resources.
Callback routines like Set Global and GetGloba1l provide extension code with a convenient
mechanism for defining variables which are global in scope, yet without requiring the deadly A5-
relative references normally associated with global variables. The HyperCard interfaces are
included with MPW and are called HyperXCmd.p in the Pascal world, or HyperXCmd.h for C
programmers.

In cases where an application provides special support for extensions, the extension writer should
take advantage of this support as much as possible. Things can get complicated quickly when no

#256: Stand-Alone Code, ad nauseam 7 of 32

Macintosh Technical Notes

support for globals is provided or when built-in support is not used, and there’s really no reason to
be a masochist. The A5-world techniques described later in this Note usually are not necessary
and should be considered extraordinary. Also, when writing an application, it is probably worth
considering whether extensibility is useful or desirable. With the move toward object-oriented
programming and reusable code, demand for extension module support is growing. Support for
extension modules can rarely be tacked on as an afterthought, and it is worth looking at how
ResEdit, HyperCard, and Apple File Exchange support modular code when considering similar
features. Foresight and planning are indispensable.

Calling Stand-Alone Code from Pascal

Before moving on it may be helpful to look at how one extensible application calls stand-alone
code, using HyperCard as an example. The first thing to do is establish some standard means of
communication. HyperCard uses a clearly-defined parameter block, as defined in HyperX Cmd.p.

XCmdPtr = *XCmdBlock; .
XCmdBlock = RECORD

PparamCount: INTEGER;

params: ARRAY [1..16] OF Handle;

returnValue: Handle;

passFlag: BOOLEAN;

entryPoint: ProcPtr; {to call back to HyperCard}

request: INTEGER;

result: INTEGER;

inArgs: ARRAY {1..8] OF LONGINT;

outArgs: ARRAY [1..4] OF LONGINT;

END;

An 'XCMD' procedure, like an 'INIT', is written, compiled, and linked as a separate unit. Its
prototype may be imagined something like this:

PROCEDURE MyXCMD (pb: XCMDPtr);

EXTERNAL;

Since MyXCMD is not linked with HyperCard, however, the example declaration does not appear in
the HyperCard source code. The prototype only defines how the external module expects to
receive its parameters. The host application, HyperCard, is responsible for loading the module and
implementing the proper calling conventions.

When calling an 'XCMD', HyperCard first loads the resource into memory and locks it down. It
then fills in the parameter block and invokes the 'XCMD'. Notice that the extension module is
loaded by its resource name. This is common for extensible applications, since it avoids resource
numbering conflicts. Since HyperCard is written in Pascal, the sequence might look something
like this.

theHandle := GetlNamedResource('XCMD', 'MyXCMD');

HLock (theHandle) ;

WITH paramBlock DO

BEGIN

{ fill it in }

END;

CallXCMD (@paramBlock, theHandle);

HUnlock (theHandle) ;

This also looks a little unwieldy. To fully understand a high-level calling sequence for stand-alone
code, a working knowledge of parameter passing conventions and the ability to read code at the
assembly-language level is very helpful. Some amount of glue code is almost always required, as
illustrated by Call XCMD. After Pascal places a pointer to the parameter block and a handle to the

8 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support August 1990

'XCMD' on the stack, it executes some assembly-language glue represented by three inline

opcodes. The glue code finds the 'XCMD' in memory and jumps to it using the handle on the

stack. To accomplish this, it pulls the handle off of the stack, dereferences it to obtain a pointer to

the 'XCMD' and performs a JSR to the indicated address. The pointer to the parameter block is

left on the stack for the 'XCMD'.

PROCEDURE CallXCMD (pb: XCMDPtr; xcmd: Handle);

INLINE $205F, { MOVEA.L (A7)+,A0 pop handle off stack }

$2050, { MOVEA.L (A0),A0 dereference to get address of XCMD }

$4E90; { JSR (AO) call XCMD, leaving pb on stack }

Figure 3 illustrates the state of the A5 world at four critical phases of the 'XCMD' calling
sequence. Boldface indicates approximately where the program counter is pointing, or what code
is executing at that moment. The easiest way to read the diagram is to look for features which
change from one state to the next. Note in the last state the 'XCMD' knows how to find its
parameter block because the stack pointer (A7) initially points to the return address and a pointer to
the parameter block is located four bytes above that. If the 'XCMD"' is written in a high-level
language according to the procedure prototype MyXCMD, as shown above, this procedure is
handled automatically by the compiler.

The process is essentially the same when calling stand-alone code from assembly language, but it
1s not so unnatural. The assembly-language programmer never has to leave his element and
generally has a better low-level view of where certain data structures reside and how to access them
efficiently. Since the entry point of the stand-alone module can be determined directly, there is no
exact parallel to the Cal 1 XCMD procedure, and it is not necessary to push a copy of the resource
handle on the stack as an intermediate step.

paramBlock paramBlock

=r
Application Application

CODE CODE

master ptr

AS ae Seema
Initial State with GetiNamedResource loads CallXCMDpushessome Glue code removes handle

paramBlock and h as ‘XCMD' resource into stuff on the stack forthe from stack and does JSR to
global variables application heap glue code address in master pointer

Figure 3-Calling an 'XCMD' from Pascal

#256: Stand-Alone Code, ad nauseam 9 of 32

Macintosh Technical Notes

Interestingly enough, the Cal1XCMD procedure can be easily modified to call almost any stand-
alone module whose entry point is at the beginning of the code resource. To determine the proper
calling interface for a particular code module, simply duplicate the function prototype of the module
and add a handle at the end of the argument list. The inline glue does not have to change at all.
This works equally well for Pascal procedures or functions, and for any number of arguments
including VAR parameters.

Doing the A5 Road Trip

There comes a time and place where construction of an A5 world is a “necessary” evil. Usually
it’s not necessary at all, but sometimes the world really needs just one more Orwellian security
'INIT' to present a dialog at startup. DTS discourages such things, but they happen. Although
there is nothing fundamentally or philosophically wrong with constructing a custom A5 world,
doing so can create significant technical hassles, and unfortunately, globals make possible a
number of user interface atrocities. Generally a different solution, if available, results in simpler
and more maintainable code, and reduces the likelihood that your code will go the way of the
dinosaur and the passenger pigeon. Furthermore, to make the process of constructing an A5 world
as straightforward as possible, yet consistent with normal applications, extensive use is made of
two undocumented routines in the MPW run-time libraries. The dangers here are obvious. There
are accepted uses, nonetheless. External modules may need to create some global storage or hold
data which persists across multiple calls to a routine in the module. All uses shall henceforth be
considered fair game, for as it is written in Clarus’ memoirs:

Yea, and if It will be done, even in spite,
Then lend Thine hand to the masses,

Lest It be done incorrectly or woefully worse
By those not versed the the ways of the Dogcow.

Who’s Got the Map?

The ensuing discussion on how to construct an A5 world is geared primarily to programmers using
MPW. There are a couple of reasons for this. First, looking back, the stated problem originated
with an error generated by the MPW linker. Other development systems may handle this situation
differently and often offer different solutions. Symantec products, for instance, offer A4-relative
globals and avoid the globals conflict from the outset. Secondly, this document would resemble a
Russian novel if it addressed all the permutations of potential solutions for each development
system. MPW Pascal is the de facto standard Macintosh programming environment for illustrative
and educational purposes. It may not be fair, but at least it’s consistent.

As already described, there are basically three reasons why stand-alone code might need to reserve
space for its own global variables. Consider the following three scenarios as a basis, but
understand that various arbitrary combinations are also possible:

¢ A stand-alone module consists of two functions. There is one main entry point and
one function calls another function in the process of calculating its final result.
Instead of passing a formal parameter to the subordinate function, the programmer
chooses to pass a global.

¢ A stand-alone module consists of one function. The module is loaded into memory
once and invoked multiple times by the host application. The module requires its
own private storage to persist across multiple invocations.

10 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support August 1990

* Acomplex 'INIT' uses QuickDraw, or a 'cdev' is complex enough to require
an application-like set of globals to accomplish its self-contained task. A module
may need to access data in a Toolbox callback (like a dialog hook) where the
interface is fixed, for instance.

Each of the demonstration units is a working example. There is source code at the end of the
discussion for simple applications which can play host to these modules and demonstrate how a
complete product fits together.

The first instance is relatively easy to implement. When the module is executed, it creates an A5
world, does its job, and then tears down the A5 world, making sure to restore the host
application’s world. Such a module may look something like the following example. Pay special
attention to the items in boldface. These are specific to the use of globals in stand-alone code.

LazyPass.p

UNIT LazyPass;

{ This is a stand-alone module which implements the function }

{ of determining a circle's area from its circumference. }

INTERFACE

USES

Types, SAGlobals;

FUNCTION CircleArea (circumference: Real) : Real;

IMPLEMENTATION

{ Define a variable global to all }

{ of the routines in this unit. }

VAR radius : Real;

FUNCTION RadiusSquared : Real;

FORWARD;

{ CircleArea is defined first so that the entry point is }

{ conveniently located at the beginning of the module. }

FUNCTION CircleArea (circumference: Real) : Real;

VAR

AS5Ref: A5RefType;

o1dA5: Longint;
BEGIN

oldA5 := OpenA5World(A5Ref) ;

radius := circumference / (2.0 * Pi);

CircleArea := Pi * RadiusSquared;

CloseA5World(oldA5, AS5Ref);

END;

FUNCTION RadiusSquared : Real;

BEGIN

RadiusSquared := radius * radius;

END;

END.

#256: Stand-Alone Code, ad nauseam 11 of 32

Macintosh Technical Notes

LazyPass.make

This is the makefile for the LazyPass module.

File: LazyPass.make

Target: LazyPass

Sources: LazyPass.p

OBJECTS = LazyPass.p.o

| LazyPass ff LazyPass.make {OBJECTS}

| Link -w -t '?2?2??' -c '????' -rt CUST=128 -m CIRCLEAREA -sg LazyPass 0

| {OBJECTS) 2
"{Libraries}"Runtime.o @

"{Libraries}"Interface.o @
"({PLibraries}"SANELib.o @
"({PLibraries}"PasLib.o @
"{MyLibraries}"SAGlobals.o @
-o LazyPass

LazyPass.p.o f LazyPass.make LazyPass.p

Pascal -i "{MyInterfaces}" LazyPass.p

The second instance is a little trickier and requires the cooperation of the host application. The
module needs the ability to pass a reference to its global variable storage (A5 world) back to the
application so that it can be easily restored the next time the module is invoked. In addition, there
must be some way to notify the module the first time and the last time it is to be called. This kind
of module is exemplified by the following:

Persist.p

UNIT Persist;

{ This is a stand-alone module which maintains a running total

{ of the squares of the parameters it receives. This requires

{ the cooperation of a host application. The host must use

{ messages to tell the module when to initialize and when to

{ tear down. The host also must maintain a handle to the

{ module's A5 world between invocations. et et ed ee ete

INTERFACE

USES

Types, SAGlobals;

CONST

kAccumulate = 0; {These are the control messages. }

kFirstTime = 1;

kLastTime = 2;

FUNCTION AccSquares (parm: Longint; message: Integer;

VAR A5Ref: ASRefType) : Longint;

IMPLEMENTATION

{ Define global storage to retain a running }

{ total over multiple calls to the module. }

VAR accumulation ;: Longint;

en SS SS SSS SSS SS A

12 of 32 #56: Stand-Alone Code, ad nauseam

Developer Technical Support August 1990

FUNCTION AccSquares (parm: Longint; message: Integer;

VAR AS5Ref: ASRefType) : Longint;

VAR

o1dA5: Longint;

BEGIN

IF message = kFirstTime THEN MakeA5World(A5Ref) ;

oldA5 := SetA5World(A5Ref) ;

IF message = kFirstTime THEN accumulation := 0;

accumulation := accumulation + (parm * parm);

AccSquares := accumulation;

RestoreA5World(oldA5, A5Ref);

IF message = kLastTime THEN DisposeA5World(A5Ref) ;
END;

END.

Persist.make

This is the makefile for the Persist module.

File: Persist.make

Target: Persist

Sources: Persist.p

OBJECTS = Persist.p.o

Persist ff Persist.make {OBJECTS}

Link -w -t '22???' -c '????' -rt CUST=129 -m ACCSQUARES -sg Persist @
{OBJECTS} 0
"(Libraries})"Runtime.o @
"{Libraries}"Interface.o @

"(PLibraries}"SANELib.o 0
"(PLibraries}"PasLib.o @
"{MyLibraries}"SAGlobals.o @
-o Persist

Persist.p.o f Persist.make Persist.p

Pascal -i "{MyInterfaces}" Persist.p

BigBro; FORWARD;

The third case is illustrated by an 'INIT' using arbitrary Toolbox managers to present a user
interface. A working example is too long to present here, but an example is included at the end of
the discussion. The process, however, is no more difficult than the examples previously given;
there is simply more intervening code to accomplish an interesting task. An 'INIT' may simply
call OpenA5SWorld upon entry and CloseA5Wor1d before exiting. Everything between can
then be just like an application: _InitGraf, InitWindows, and soon. An 'INIT' should
be careful, though, to restore the GrafPort to its initial value before exiting.

Dashing Aside the Curtain, or Revealing the Wizard

Building an A5 world would seem to be fairly complicated, but most of the necessary code is
already written. Much of it is in the MPW library called Runtime.o. Actually, this makes sense,
since applications have A5 worlds and the programmer doesn’t have to do anything special to set
them up. Only in the case of stand-alone modules does this become the responsibility of the
programmer. What’s not in the MPW library is the initial allocation of space for an A5 world. For
an application, this is done by the Segment Loader. A stand-alone module can emulate the entire
process by using bit of glue code around calls to the appropriate routines in Runtime.o. This is the
entire point of the SAGlobals unit. SAGlobals makes it very easy to use globals in stand-
alone code because it automates the process of allocating space for globals and initializes them the
Same way an application would. The Pascal source code for SAGloba1s is published here. DTS

#256: Stand-Alone Code, ad nauseam 13 of 32

Macintosh Technical Notes

can also provide the source code in C, as well as simplified Pascal and C headers and the compiled
object library.

{ Stand-alone code modules which need to use global variables

may include the interfaces in this unit. Such code modules

must also be linked with Runtime.o and SAGlobals.o. }

UNIT SAGlobals;

INTERFACE

USES

Types, Memory, OSUtils;

TYPE

ASRefType = Handle;

| { MakeASWorld allocates space for an A5 world based on the

size of the global variables defined by the module and its

units. If sufficient space is not available, MakeA5World

returns NIL for A5Ref and further initialization is aborted. }

PROCEDURE MakeASWorld (VAR ASRef: ASRefType) ;

{ SetA5World locks down a previously-allocated handle containing

an A5 world and sets the AS register appropriately. The return

value is the old value of AS and the client should save it for

use by RestoreA5World. }

FUNCTION SetAS5World (A5Ref: ASRefType) : Longint;

{ RestoreA5World restores A5 to its original value (which the

client should have saved) and unlocks the A5 world to avoid

heap fragmentation in cases where the world is used again. }

PROCEDURE RestoreA5World (oldA5: Longint; AS5Ref: ASRefType) ;

{ DisposeA5World simply disposes of the A5 world handle. }

PROCEDURE DisposeASWorld (A5Ref: ASRefType) ;

{ OpenA5World combines MakeAS5World and SetA5World for the majority

of cases in which these two routines are called consecutively. An

exception is when a single A5 world is invoked many times. In this

case, the world is only created once with MakeA5World and it is

invoked each time by SetA5World. Most developers will find it easier

just to call OpenA5World and CloseAS5World at the end. If the memory

allocation request fails, OpenA5World returns NIL for A5Ref and zero

in the function result. }

FUNCTION OpenA5World (VAR AS5Ref: A5RefType) : Longint;

{ CloseASWorld is the dual of OpenA5World. It combines RestoreA5World

and DisposeA5World. Again, in certain cases it may be necessary to

call those two routines explicitly, but most of the time CloseA5World

is all that is required. }

PROCEDURE CloseA5World (oldA5: Longint; AS5Ref: ASRefType) ;

IMPLEMENTATION

CONST

kAppParmsSize = 32;

FUNCTION A5Size : Longint;

C; EXTERNAL; { in MPW's Runtime.o }

PROCEDURE ASInit (myA5: Ptr);

C; EXTERNAL; { in MPW's Runtime.o }

SS

14 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support August 1990

PROCEDURE MakeASWorld (VAR A5Ref: ASRefType) ;

BEGIN

AS5Ref := NewHandle(A5Size) ;

{ The calling routine must check A5Ref for NIL! }

IF A5Ref <> NIL THEN

BEGIN

HLock (A5Ref) ;

ASInit (Ptr (Longint (A5Ref*) + ASSize - kAppParmsSize));

HUnlock (AS5Ref) ;

END;

END;

FUNCTION SetA5World (ASRef: A5RefType) : Longint;

BEGIN

HLock (A5Ref) ;

SetAS5World := SetA5(Longint (A5Ref*) + ASSize - kAppParmsSize);

END;

PROCEDURE RestoreASWorld (oldA5: Longint; ASRef: ASRefType);

BEGIN

IF Boolean (SetA5(o1dA5)) THEN; { side effect only }

HUnlock (A5Ref) ;

END;

PROCEDURE DisposeASWorld (A5Ref: ASRefType) ;

BEGIN :

DisposHandle(A5Ref) ;

END;

FUNCTION OpenASWorld (VAR ASRef: A5RefType) : Longint;
BEGIN

MakeA5World(A5Ref) ;

IF ASRef <> NIL THEN

OpenASWorld := SetASWorld(A5Ref)

ELSE

OpenA5World := 0;

END;

PROCEDURE CloseASWorld (ol1dA5: Longint; ASRef: ASRefType) ;
BEGIN

RestoreA5World(oldA5, ASRef);

DisposeA5World(A5Ref) ;

END;

END.

It is tempting to reduce the entire globals issue to this cookbook recipe. The preceding examples
may tend to reinforce this view, but a solid theoretical understanding may be indispensable
depending on what sort of code goes between MakeA5World and DisposeA5World. In the
Sorter example at the end of this discussion, for instance, an 'XCMD' makes callbacks to
HyperCard. There is a similar mechanism between Apple File Exchange and custom translators.
When making these callbacks, it is necessary to temporarily restore the host’s A5 world.
Otherwise, the host application bombs when it finds a different set of variables referenced by A5.
Calling SetA5 before and after a callback solves the problem, but neither the problem nor the
solution is exactly part of the SAGlobals recipe. Hence, if a programmer chooses to use the
SAGlobals unit without understanding how and why it works, he most likely gets in a lot of
trouble and ends up writing to Apple to ask why it doesn’t work right. As the best mathematics
and physics students generally attest: don’t just memorize formulas—know the concepts behind
them.

#256: Stand-Alone Code, ad nauseam 15 of 32

Macintosh Technical Notes

A5Size and A5Init are the MPW library routines necessary to set up and initialize an A5 world.
A5Size determines how much memory is required for the A5 world. This memory consists of
two parts: memory for globals and memory for application parameters. A5Init takes a pointer to
the A5 globals and initializes them to the appropriate values. How this works needs a little
explaining.

When MPW links an application together, it has to describe what the globals area should look like.
At the very least, it needs to keep track of how large the globals section should be. In addition, it
may need to specify what values to put into the globals area. Normally, this means setting
everything to zero, but some languages like C allow specification of preinitialized globals. The
linker normally creates a packed data block that describes all of this and places it into a segment
called A5Init. Also included in this segment are the routines called by the MPW run-time
initialization package to act upon this data. A5Size and A5Init are two such routines. A5Size
looks at the field that holds the unpacked size of the data and returns it to the caller. ASInit is
responsible for unpacking the data into the globals section. In the case of a stand-alone module, all
code and data needs to be packed into a single segment or resource, so 3A5Init is not used. The
linker option -sg is used to make sure that everything is in the same resource. The MPW
Commando interface to CreateMake is very good about specifying this automatically, but the
programmer must remember to specify this if he creates his own makefiles.

The rest of the SAGlobals unit is mostly self-explanatory. The Memory Manager calls
straightforwardly allocate the amount of space indicated by A5Size, and lock the handle down
when in use by the module. If the math performed by MakeA5World and SetA5World seems
just a little too cosmic in nature, don’t be alarmed. It’s really quite simple. Referring back to
Figure 2, A5 needs to point to the boundary between the global variables and the application
parameters. Since the application parameters, including the pointer to QuickDraw globals, are 32
bytes long, the formula should become clear. It’s just starting address + block
length - 32.

As demonstrated in the examples, a module can simply call MakeA5Wor1d to begin building its
own A5 world, and it can call SetA5Worl1d to invoke it and make it active. What is not
demonstrated particularly well in the examples is that the module should check A5Ref to see if it is
NIL. If so, there is not space to allocate the A5 world, and the module needs to abort gracefully or
find another way of getting its job done. Also, the programmer should be aware that A5Ref is
not an actual A5 value. It is a reference to an A5 world as its name implies. The actual value of
AS is calculated whenever that world is invoked, as described in the preceding paragraph.

Are We There Yet?

As the preceding sections indicate, stand-alone code is one of the more esoteric areas of Macintosh
programming. Many more pages could be devoted to the subject, and they probably will be
eventually, but there should be enough information here to get most developers past the initial
hurdles of creating stand-alone modules and interfacing with an environment biased toward full-
blown applications. As always, suggestions for additional topics are welcome and will be incor-
porated as demand requires and resources permit.

Party on, Dudes.

16 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support August 1990

LazyTest

LazyTest.p

This is a very simple program to demonstrate use of the LazyPass module documented earlier.

Things to watch out for are standard I/O (ReadLn and WriteLn) and error checking (or lack

thereof). This is a bare-bones example of how to load and call a stand-alone module. Don’t expect

anything more.

PROGRAM LazyTest;

USES

Types, Resources, Memory, OSUtils;

VAR

a, c: Real;

hl: Handle;

FUNCTION CallModule (parm: Real; modHandle: Handle) : Real;

INLINE $205F, { MOVEA.L (A7)+,A0 pop handle off stack }

$2050, { MOVEA.L (A0),A0 dereference to get address of XCMD }

$4E90; { JSR (AO) call XCMD, leaving pb on stack }

BEGIN

Write('Circumference:') ;

ReadLn (c);

hl := GetResource('CUST',128);

HLock (h1);

a := CallModule(c,hl);

HUnlock (h1) ;

WriteLn('Area: ',a);

END.

LazyTest.make

The accompanying makefile is pretty basic, the kind of thing one expects from CreateMake. The
only notable addition is a directive to include the LazyPass module in the final application. This
avoids the need to paste LazyPass into the application manually with ResEdit. It is also an
example of a very powerful feature of the MPW scripting language, which allows the output of one
command to be “piped” into the input of another.

File: LazyTest .make

Target: LazyTest

Sources: LazyTest.p

OBJECTS = LazyTest.p.o

LazyTest ff LazyTest.make LazyPass

Echo ‘Include "LazyPass";' | Rez -o LazyTest

LazyTest ff LazyTest.make {OBJECTS}

Link -w -t APPL -c '?2??2?' 9
{OBJECTS} @
"{Libraries}"Runtime.o @
"{Libraries}"Interface.o @

"{PLibraries}"SANELib.o @
"(PLibraries}"PasLib.o @
-o LazyTest

LazyTest.p.o f LazyTest.make LazyTest.p

Pascal LazyTest.p

a

#256: Stand-Alone Code, ad nauseam 17 of 32

Macintosh Technical Notes

PersistTest

PersistTest.p

PersistTest is an equally minimal application to demonstrate the Persist module, also
documented earlier.

PROGRAM PersistTest;

USES

Types, Resources, Memory, OSUtils;

CONST

N = 5;

kAccumulate = 0; {These are the control messages. }

kFirstTime = 1

kLastTime = 2;

VAR

i: Integer;

acc : Longint;

hl, otherA5: Handle;

FUNCTION CallModule (parm: Longint; message: Integer; VAR otherA5: Handle;

modHandle: Handle) : Longint;

INLINE $205F, { MOVEA.L (A7)+,A0 pop handle off stack }

$2050, { MOVEA.L (A0),A0 dereference to get address of XCMD }

$4E90; { JSR (AO) call XCMD, leaving pb on stack }

BEGIN

hl := GetResource('CUST',129);

MoveHHi (hl);

HLock (h1);

FOR i := 1 TO N DO

BEGIN

CASE i OF

1: acc := CallModule(i,kFirstTime, otherA5,hl);

N: acc := CallModule(i,kLastTime, otherA5S,hl1);

OTHERWISE

acc := CallModule(i,kAccumulate, otherA5,hl);

END;

WriteLn('SumSquares after ',i,' = ',acc);

END;

HUnlock (h1);

END.

nanan een eenenneennnnemen naman

18 of 32 #256: Stand-Alone Code, ad nauseam

UO

Developer Technical Support August 1990

PersistTest.make

a This makefile presents nothing new and is provided for the sake of completeness.

= File: PersistTest.make

Target: PersistTest

Sources: PersistTest.p

OBJECTS = PersistTest.p.o

PersistTest ff PersistTest.make Persist

Echo 'Include "Persist";' | Rez -o PersistTest

! PersistTest ff PersistTest.make {OBJECTS}

| Link -w -t APPL -c '2??22?' @
| {OBJECTS} @

"{Libraries}"Runtime.o @
"{Libraries}"Interface.o @

"{PLibraries}"SANELib.o @
"(PLibraries}"PasLib.o @
-o PersistTest

PersistTest.p.o f PersistTest.make PersistTest.p

Pascal PersistTest.p

Sorter

Sorter.p

Sorter is anexample 'XCMD' which demonstrates the concept of persistent globals across
a multiple invocations. It also illustrates how stand-alone modules must handle callbacks to a host
(application. This is evidenced by the Set A5 instructions bracketing HyperCard callback routines,

such as ZeroToPas, SetGlobal, or user routines incorporating such calls.

{$Z+} { This allows the Linker to find "ENTRYPOINT" without our having to put it

in the INTERFACE section }

UNIT Fred;

INTERFACE

USES

Types, Memory, OSUtils, HyperXCmd, SAGlobals;

IMPLEMENTATION

TYPE

LongArray = ARRAY [0..0] OF Longint; { These define our list of entries }

LongPointer = “LongArray;

LongHandle = “LongPointer;

CONST

kFirstTime = 1; { being called for the first time. Initialize. }

kLastTime = 2; { being called for the last time. Clean up. }
kAddEntry = 3; { being called to add an entry to our list to sort. }

{ kSortEntries = 4; being called to sort and display our list. }

#256: Stand-Alone Code, ad nauseam 19 of 32

Macintosh Technical Notes

1; { Parameter 1 holds our command number. } kCommandIndex =

kAS5RefIndex = 2; { Parameter 2 holds our A5 world reference. }

kEntryIndex = 3; { Parameter 3 holds a number to add to our list. }

VAR

gHostA5: Longint; { The saved value of our host's (HyperCard's) A5. }

gNumOfEntries: Longint; { The number of entries in our list. }

gEntries: LongHandle; { Our list of entries. Gets expanded as needed. }

{ Forward reference to the main procedure. This is so we can jump to

it from ENTRYPOINT, which represents the beginning of the XCMD, and is

what HyperCard calls when it calls us. }

PROCEDURE Sorter(paramPtr: XCmdPtr);

FORWARD;

PROCEDURE ENTRYPOINT(paramPtr: XCmdPtr) ;

BEGIN

Sorter (paramPtr) ;

END;

{ Utility routines for using the HyperCard callbacks. There are some

functions that we need to perform many times, or would like to

encapsulate into little routines for clarity:

ValueOfExpression - given an index from 1 to 16, this evaluates the

expression of that parameter. This is used to scoop out the value

of the command selector, our A5 pointer, and the value of the

number we are to stick into our list of numbers to sort.

LongToZero - Convert a LONGINT into a C (zero delimited) string.

Returns a handle that contains that string.

SetGlobalAt - given the index to one of the 16 parameters and a

LONGINT, this routines sets the global found in that parameter to

the LONGINT.

}

FUNCTION ValueOfExpression(paramPtr: XCmdPtr;

index: integer): Longint;

VAR

tempStr: Str255;

tempHandle: Handle;

BEGIN

ZeroToPas(paramPtr, paramPtr*.params[index]%*, tempStr);

tempHandle := EvalExpr(paramPtr, tempStr);

ZeroToPas(paramPtr, tempHandle®, tempStr) ;

DisposHandle (tempHandle) ;

ValueOfExpression := StrToLong(paramPtr, tempStr) ;

END;

FUNCTION LongToZero(paramPtr: XCmdPtr;

long: Longint): Handle;

VAR

tempStr: Str255;

BEGIN

LongToStr(paramPtr, long, tempStr);

LongToZero := PasToZero(paramPtr, tempStr);

END;

20 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support
August 1990

PROCEDURE SetGlobalAt (paramPtr: XCmdPtr;

index: integer;

long: Longint);

VAR

globalName: Str255;

hLong: Handle;

BEGIN

ZeroToPas(paramPtr, paramPtr*.params[index]%, globalName) ;

hLong := LongToZero(paramPtr, long);

SetGlobal(paramPtr, globalName, hLong) ;

DisposHandle (hLong) ;

END;

{ These 4 routines are called according to the command passed to the XCMD:

Initialize - used to initialize our globals area. A5Init will clear

our globals to zero, and set up any pre-initialized variables if we

wrote our program in C or Assembly, but it can't do everything. For

instance, in this XCMD, we need to create a handle to hold our list

of entries.

AddAnEntry - Takes the value represented by the 3 parameters passed to

us by HyperCard and adds it to our list.

SortEntries - Sorts the entries we have so far. Converts them into a

string and tells HyperCard to display them in the message box.

FreeData - We just receive the message saying that we are never going

to be called again. Therefore, we must get rid of any memory we

have allocated for our own use.

}

PROCEDURE Initialize;

BEGIN

gEntries := LongHandle (NewHandle(0));

gNumOfEntries := 0;

END;

PROCEDURE AddAnEntry(paramPtr: XCmdPtr) ;

VAR

ourA5: Longint;

tempStr: Str255;

temp: Longint;

BEGIN

ourA5 := SetA5(gHostAS5) ;

ValueOfExpression(paramPtr, kEntryIndex) ;
ourAS := SetA5(ourA5);

ct o 3 'O Iles

SetHandleSize (Handle (gEntries), (gNumOfEntries + 1) * 4);
{$PUSH} {$R-}
gEntries**[gNumOfEntries] := temp;

{$POP}
gNumOfEntries := gNumOfEntries + 1;

END;

PROCEDURE SortEntries(paramPtr: XCmdPtr) ;

VAR

ourA5: Longint;

i, j: integer;

fullStr: Str255;

tempStr: Str255;

temp: Longint;

eee

#256: Stand-Alone Code, ad nauseam 21 of 32

EE LLnL SSS

Macintosh Technical Notes

BEGIN

IF gNumOfEntries > 1 THEN
BEGIN

{$PUSH} {$R-} .
FOR i := 0 TO gNumOfEntries - 2 DO UO

BEGIN

FOR j := i + 1 TO gNumOfEntries - 1 DO
BEGIN

IF gEntries**[(i] > gEntries**[j] THEN
BEGIN

temp := gEntries**[i];

gEntries**[i] := gEntries**[j];
gEntries**[j] := temp;
END;

|
END;

END;

{$POP}
END;

IF gNumOfEntries > 0 THEN

BEGIN

fullStr := '';

FOR i := 0 TO gNumOfEntries - 1 DO

BEGIN

{$PUSH} {$R-}

temp := gEntries**[i];

{$POP}

ourAS := SetA5(gHostAS5) ;

NumToStr(paramPtr, temp, tempStr);

ourA5 := SetA5(ourAS);

fullStr := concat(fullStr, ', ', tempStr);

END;

delete(fullStr, 1, 2); { remove the first ", " }

ourAS := SetA5(gHostA5) ;

SendHCMessage(paramPtr, concat('put "', fullStr, '"')); a,

ourA5 := SetA5(ourAS) ;

END;

END;

PROCEDURE FreeData;

BEGIN

DisposHandle (Handle(gEntries));

END; |

{ Main routine. Big Cheese. Head Honcho. The Boss. The Man with all the

moves. You get the idea. This is the controlling routine. It first

checks to see if we have the correct number of parameters (sort of).

If that's OK, then it either creates a new AS world and initializes it,

or it sets up one that we've previously created. It then dispatches to

the appropriate routine, depending on what command was passed to us.

Finally, it restores the host application's A5 world, and disposes of

ours if this is the last time we are being called. }

PROCEDURE Sorter(paramPtr: XCmdPtr);

VAR

command: integer;

A5Ref: AS5RefType;

errStr: Str255;

A5Name: Str255;

U
i ———e

22 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support
August 1990

BEGIN {Main}

= WITH paramPtr* DO
IF (paramCount < 2) OR (paramCount > 3) THEN

BEGIN

errStr := 'Correct usage is: "Sorter <function> <A5> [<entry>]"';

paramPtr*.returnValue := PasToZero(paramPtr, errStr);

EXIT(Sorter); {leave the XCMD}

END;

command := ValueOfExpression(paramPtr, kCommandIndex) ;

IF command = kFirstTime THEN

BEGIN

MakeA5World(A5Ref) ;

SetGlobalAt (paramPtr, kASRefIndex, Longint (A5Ref));

END

ELSE

BEGIN

A5Ref := A5RefType(ValueOfExpression(paramPtr, kASRefIndex));

END;

IF (A5Ref = NIL) THEN

BEGIN

errStr := 'Could not get an A5 World!!!';

paramPtr®.returnValue := PasToZero(paramPtr, errStr);

EXIT(Sorter); {leave the XCMD}

END;

gHostA5 := SetA5World(A5Ref) ;

CASE command OF

kFirstTime: Initialize;

kAddEntry: AddAnEntry(paramPtr);

fay kSortEntries: SortEntries(paramPtr) ;

kLastTime: FreeData;

END;

RestoreA5World(gHostA5, ASRef);

IF command = kLastTime THEN DisposeA5World(A5Ref)

END; {main}

END.

Sorter.make

The makefile for Sorter is fairly straightforward, but CreateMake cannot generate all of it
automatically. Be sure to link with both HyperXLib.o and SAGlobals.o, and account for any
custom directories to search for interfaces. In most of the examples, there are two MPW Shell
variables, MyInterfaces and MyLibraries which represent the directories containing the
SAGlobals headers and library, respectively. Someone following along with these examples
would need to define these Shell variables, possibly in his UserStartup file, or replace the
occurrences with the name of whatever directory actually contains the necessary SAGlobals
files.

| # File: Sorter.make

Target: Sorter

Sources: Sorter.p

#256: Stand-Alone Code, ad nauseam 23 of 32

Macintosh Technical Notes

OBJECTS = Sorter.p.o

Sorter ff Sorter.make {OBJECTS}

Link -w -t '????' -c '222?2?" -rt XCMD=256 -m ENTRYPOINT -sg Sorter @
{OBJECTS} @

"({Libraries}"Runtime.o @
"{Libraries}"Interface.o @
"{PLibraries}"SANELib.o @

"{PLibraries}"PasLib.o @

"(Libraries}"HyperXLib.o @
"{MyLibraries}"SAGlobals.o @
-o Sorter

Sorter.p.o f Sorter.make Sorter.p

Pascal -i "{MyInterfaces}" Sorter.p

A Sample HyperCard Script Using Sorter

To test Sorter, it is necessary to create a simple HyperCard stack. After creating a new stack
under HyperCard’s File menu, use the button tool to create a new button and associate it with the
following script. Now use ResEdit to paste the 'XCMD' resource “Sorter” into the stack and it’s
ready for experimentation.

on mouseUp

global A5

Sorter 1, "A5" -- Initialize that puppy

if the result is empty then

Sorter 3, A5, 6 -- Add some numbers to the list

Sorter 3, AS, 2

Sorter 3, AS, 9

Sorter 3, AS, 12

Sorter 3, A5, 7

Sorter 4, AS -- sort them and print them

Sorter 2, AS -- Dispose of our data

else

put the result

end if

end mouseUp

BigBro

BigBro.p

BigBro may look a bit familiar because it performs the same function as the sample INIT offered
early in the preceding discussion. However, it has the added feature of providing a user interface,
or a dialog at least, during the startup sequence. This tends to make it very obnoxious, and DTS
discourages this sort of thing on human interface grounds. Nonetheless, it is an interesting case
study. It is also the first example in which a stand-alone code resource uses other resources.

UNIT BigBro;

INTERFACE

USES

Types, SAGlobals, OSUtils,

QuickDraw, Fonts, Windows, Menus, TextEdit, Dialogs,

Resources, Sound, ToolUtils;

24 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support August 1990

PROCEDURE BeAPest;

kar IMPLEMENTATION

PROCEDURE BeAPest;

CONST

kBigBroDLOG = 128;

VAR

A5Ref: A5RefType;

oldA5: Longint;

numSnds, i, itemHit: Integer;

theSnd: Handle;

playStatus: OSErr;

orwell: DialogPtr;

BEGIN

IF NOT Button THEN BEGIN

O1ldAS5 := OpenASWorld(AS5Ref) ;

IF A5Ref <> NIL THEN BEGIN

InitGraf (@thePort) ;

InitFonts;

InitWindows;

InitMenus;

TEInit;

InitDialogs (NIL);

InitCursor;

orwell := GetNewDialog(kBigBroDLOG, NIL, WindowPtr(-1));

numSnds := CountResources('snd ');

FOR i := 1 TO numSnds DO BEGIN

theSnd := GetIndResource('snd ',i);

IF theSnd <> NIL THEN

playStatus := SndPlay(NIL,theSnd, FALSE) ;

END;

far REPEAT

ModalDialog(NIL, itemHit);

UNTIL itemHit = 1;

DisposDialog (orwell);

CloseASWorld(oldA5, A5Ref) ;

END;

END;

END;

END.

BigBro.r

This is the Rez input file necessary to create the 'DLOG' and 'DITL' resources used by BigBro.

resource 'DLOG' (128) {

{84, 124, 192, 388},

dBoxProc,

visible,

noGoAway,

0x0,

128,

eee

#256: Stand-Alone Code, ad nauseam 25 of 32

Macintosh Technical Notes

resource 'DITL' (128) {

{ /* array DITLarray: 2 elements */

Fe LY eZ
(72, 55, 93, 207},

Button {

enabled,

"Continue Booting"

},
/* (2) */
{13 30, 63, 237},

StaticText {

disabled,

"This is an exaggerated case of the type "

"of INIT which bothers me more than anyth"

"ing else."

}
e

BigBro.make

The makefile for BigBro is a little simpler than that of Sorter, but includes an extra directive to
include the dialog resources using Rez. Refer to the Sorter example for notes on the
MyInterfaces and MyLibraries Shell variables.

File: BigBro.make

Target: BigBro

Sources: BigBro.p

OBJECTS = BigBro.p.o

BigBro ff BigBro.make BigBro.r

Rez -o BigBro "{RIncludes}"Types.r BigBro.r

BigBro ff BigBro.make {OBJECTS}

Link -w -t INIT -c '2?2??' -rt INIT=128 -ra =resLocked -m BEAPEST -sg BigBro @

{OBJECTS} 0
"(Libraries}"Runtime.o @
"(Libraries}"Interface.o @

"(PLibraries}"SANELib.o @
"(PLibraries}"PasLib.o @
"(MyLibraries}"SAGlobals.o @
-o BigBro

BigBro.p.o f BigBro.make BigBro.p

Pascal -i "{MyInterfaces}" BigBro.p

26 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support August 1990

My WindowDef

My WindowDef.a

Writing a 'WDEF' is like writing an 'INIT', except that 'WDEF' resources have standard
headers that are incorporated into the code. In this example, the 'WDEF' is the Pascal
MyWindowDef. To create the header, use an assembly language stub:

StdWDEF MAIN EXPORT

IMPORT MyWindowDef

this will be the entry point

name of Pascal FUNCTION that is the WDEF

we IMPORT externally referenced routines

from Pascal (in this case, just this one)

Me Se Se Se Se Se Me Se Se Ne

BRA.S @0 branch around the header to the actual code

DC .W 0 flags word

DC.B 'WDEF' type
DC .W 3 ID number

DC.W fe) version

ic) JMP MyWindowDef this calls the Pascal WDEF

END

MyWindowDef.p

Now for the Pascal source for the 'WDEF'. Only the shell of what needs to be done is listed, the
actual code is left as an exercise for the reader (for further information about writing a 'WDEF',
see Inside Macintosh, Volume I, The Window Manager (pp. 297-302) and Volume V, The
Window Manager (pp. 205-206).

UNIT WDef;

INTERFACE

USES MemTypes, QuickDraw, OSIntf, ToollIntf;

{this is the only external routine}

FUNCTION MyWindowDef (varCode: Integer; theWindow: WindowPtr; message: Integer;

param: LongInt): LongInt; {As defined in IM p. I-299}

IMPLEMENTATION

FUNCTION MyWindowDef (varCode: Integer; theWindow: WindowPtr; message: Integer;

param: LongInt): LongInt;

TYPE

RectPtr = “Rect;

VAR

aRectPtr : RectPtr;

{here are the routines that are dispatched to by MyWindowDef}

PROCEDURE DoDraw(theWind: WindowPtr; DrawParam: LongInt) ;

BEGIN {DoDraw}

{Fill in the code! }

END; {DoDraw}

FUNCTION DoHit (theWind: WindowPtr; theParam: LongInt): LongInt;

BEGIN {DoHit}

{Code for this FUNCTION goes here}

END; {DoHit }

SS

#256: Stand-Alone Code, ad nauseam 27 of 32

Macintosh Technical Notes

PROCEDURE DoCalcRgns(theWind: WindowPtr);

BEGIN {DoCalcRgns}

{Code for this PROCEDURE goes here}

END; {DoCalcRgns}

PROCEDURE DoGrow(theWind: WindowPtr; theGrowRect: Rect);

BEGIN {DoGrow}

{Code for this PROCEDURE goes here}

END; {DoGrow}

PROCEDURE DoDrawSize(theWind: WindowPtr) ;

BEGIN {DoDrawSize}

{Code for this PROCEDURE goes here}

END; {DoDrawSize}

{now for the main body to MyWindowDef }

BEGIN { MyWindowDef }

{case out on the message and jump to the appropriate routine}

MyWindowDef := 0; {initialize the function result}

CASE message OF

wDraw: { draw window frame}

DoDraw(theWindow, param) ;

wHit: { tell what region the mouse was pressed in}

MyWindowDef := DoHit (theWindow, param) ;

wCalcRgns: { calculate structRgn and contRgn}

DoCalcRgns (theWindow) ;

wNew: { do any additional initialization}

{ we don’t need to do any}
.
,

wDispose:{ do any additional disposal actions}

{ we don’t need to do any}
.
,

wGrow: { draw window’s grow image}

BEGIN

aRectPtr := RectPtr (param);

DoGrow (theWindow, aRect Ptr”) ;

END; {CASE wGrow}

wDrawGIcon:{ draw Size box in content region}

DoDrawSize (theWindow) ;

END; {CASE}

END; {MyWindowDef}

END. {of UNIT}

28 of 32 #256: Stand-Alone Code, ad nauseam

CY)

pe pport
gu 0

Developer Technical Su
August 199

MyWindowDef.make (Pascal Version)

File: MyWindowDef.make

5 a Target: MyWindowDef

Sources: MyWindowDef.a MyWindowDef.p

OBJECTS = MyWindowDef.a.o MyWindowDef.p.o

MyWindowDef ff MyWindowDef.make {OBJECTS}

Link -w -t '2222?' -c '222?2' -rt WDEF=3 -m STDWDEF -sg MyWindowDef @

{OBJECTS} @
-o MyWindowDef

MyWindowDef.a.o f MyWindowDef.make MyWindowDef.a

Asm MyWindowDef.a

MyWindowDef.p.o f MyWindowDef.make MyWindowDef.p

Pascal MyWindowDef.p

That’s all there is to it.

MyWindowDef.c

Writing a 'WDEF' in MPW C is very similar to writing one in Pascal. You can use the same
assembly language header, and all you need to make sure of is that the main dispatch routine (in
this case: MyWindowDef) is first in your source file. Here’s the same 'WDEF' shell in MPW C:

/* first, the mandatory includes */

#include <types.h>

#include <quickdraw.h>

#include <resources.h>

#include <fonts.h>

#include <windows.h>

#include <menus.h>

#include <textedit.h>

#include <events.h>

/* declarations */

void DoDrawSize();

void DoGrow();

void DoCalcRgns();

long int DoHit();

void DoDraw();

| * ---------------------- Main Proc within WDEF ---------------------- */
pascal long int MyWindowDef (varCode, theWindow, message, param)
short int varCode;

WindowPtr theWindow;

short int message;

long int param;

{ /* MyWindowDef */

Rect *aRectPtr;

long int theResult=0; /*this is what the function returns, init to 0 */

#256: Stand-Alone Code, ad nauseam 29 of 32

Macintosh Technical Notes

switch (message)

{
case wDraw: /* draw window frame*/

DoDraw (theWindow, param) ;

break;

case wHit: /* tell what region the mouse was pressed in*/
theResult = DoHit (theWindow, param) ;
break;

case wCalcRgns: /* calculate structRgn and contRgn*/
DoCalcRgns (theWindow) ;

break;

case wNew: /* do any additional initialization*/
break; /* nothing here */

case wDispose: /* do any additional disposal actions*/
break; /* we don't need to do any*/

case wGrow: /* draw window's grow image*/

aRectPtr = (Rect *) param;

DoGrow (theWindow, *aRectPtr) ;

break;

case wDrawGIcon: /* draw Size box in content region*/

DoDrawSize (theWindow) ;

break;

} /* switch */

return theResult;

} /* MyWindowDef */

/* here are the routines that are dispatched to by MyWindowDef

[Rea aa Sas HSS Sa a SSS S= 55> DoDraw function ----------------------------- “/
void DoDraw(WindToDraw, DrawParam)

WindowPtr WindToDraw;

long int DrawParam;

{ /* DoDraw */

/* code for DoDraw goes here */
} /* DoDraw */

RSS See SSSaSsSaS—sqSSsSSSs=== DoHit. function ===+s—---S+-==sssssSsS=+sSs=== *7
long int DoHit (WindToTest,theParam)

WindowPtr WindToTest;

long int theParam;

{ /* DoHit */

/* code for DoHit goes here */
} /* DoHit */

[SrsasaeSr se Ssa=sSSeesSe5> DoCalcRgns procedure ~------------------ 7-9 ey;
void DoCalcRgns (WindToCalc)

WindowPtr WindToCalc;

{ /* DoCalcRgns */

/* code for DoCalcRgns goes here */

} /* DoCalcRgns */

[SesssSsesesssssasseSese==s= DoGrow procedure ---------------------------- a)

void DoGrow(WindToGrow, theGrowRect)

WindowPtr WindToGrow;

Rect theGrowRect;

{ /* DoGrow */

/* code for DoGrow goes here */
} /* DoGrow */

30 of 32 #256: Stand-Alone Code, ad nauseam

Developer Technical Support August 1990

[aaa Ese essa SSeS sess== DoDrawSize procedure ------~--~---------------=- x7
void DoDrawSize (WindToDraw)

WindowPtr WindToDraw;

{ /* DoDrawSize */
/* code for DoDrawSize goes here */

} /* DoDrawSize */

MyWindowDef.make (C Version)

File: MyWindowDef .make

Target: MyWindowDef

Sources: MyWindowDef.a MyWindowDef.c

OBJECTS = MyWindowDef.a.o MyWindowDef.c.o

MyWindowDef ff MyWindowDef.make {OBJECTS}

Link -w -t '????' -c '????' -rt WDEF=3 -m STDWDEF -sg MyWindowDef Q

{OBJECTS} @
-o MyWindowDef

MyWindowDef.a.o f MyWindowDef.make MyWindowDef.a

Asm MyWindowDef.a

MyWindowDef.c.o f MyWindowDef.make MyWindowDef.c

C -w MyWindowDef.c

#256: Stand-Alone Code, ad nauseam 31 of 32

Macintosh Technical Notes

Debugger 'FKEY'

DebugKey.a

DebugKey a very simple assembly-language example of how to write an 'FKEY' code resource,
which traps to the debugger. With this 'FKEY', you can enter the debugger using the keyboard
rather than pressing the interrupt switch on your Macintosh.

The build process is a little different for this example, as it links the 'FKEY' directly into the

System file. Another script can remove the 'FKEY' resource. If the prospect of turning MPW
tools loose on the System file is just too much to bear, the 'FKEY' can be linked into a separate
file and pasted into the System file with a more mainstream tool like ResEdit.

Sa Se We Ne

0

File: DebugKey.a

An FKEY to invoke the debugger via command-shift-8

ebugKey MAIN

BRA.S CallDB ; Invoke the debugger

;standard header

DC.W $0000 ;flags

DC.L "FKEY' ;'FKEY' is 464B4559 hex

DC.W $0008 7FKEY Number

DC.W $0000 7;Version number

CallDB DC.W SAQFF ;Debugger trap

RTS

END

InstalIDBFKEY (An MPW Installation Script)

DebugKey Installer Script

Place this file in the current directory and type

“"InstallDBFKEY <Enter>" to install the debugger FKEY

in your System file.

Asm DebugKey.a

Link DebugKey.a.o -o "{SystemFolder}"System -rt FKEY=8

Further Reference:

eoeee@

Inside Macintosh, Volumes I & V, The Window Manager
Inside Macintosh, Volume II, The Memory Manager & The Segment Loader
Inside Macintosh, Volume V, The Start Manager
MPW Reference Manual
Technical Note #208, Setting and Restoring A5
Technical Note #240, Using MPW for Non-Macintosh 68000 Systems

32 of 32 #256: Stand-Alone Code, ad nauseam

fad

Macintosh 4

Technical Notes =.

Developer Technical Support

#257: Slot Interrupt Prio-Technics

Written by: © Mark Baumwell October 1989

This Technical Note describes the way interrupt priorities are scheduled, which corrects the

description of slot interrupt queue priorities in the Device Manager chapter of Inside Macintosh,

Volume V-426.

According to Inside Macintosh, Volume V-426, The Device Manager, the SQPrio field of a slot
interrupt queue element is an unsigned byte that determines the order in which slots are polled and
interrupt service routines are called. This is incorrect on all Macintosh models prior to the IIci
that are running a system version earlier than System Software 7.0.

In reality, slot interrupts of lower priority values have always been called first. However, all new
Macintosh computers, starting with the Macintosh Ici, as well as all machines running System
Software 7.0 or later, will have an SIntInstall routine that has been changed to reflect the
description in Inside Macintosh.

In addition, the SQP rio field is, and has always been, two bytes long, but the high byte is
reserved and must be set to zero.

Apple still reserves priority values 200-255 as documented in /nside Macintosh.

Note that in any case of slot interrupts with equal priority, the most recently installed interrupt is
run first, regardless of system version.

Further Reference:
¢ Inside Macintosh, Volume V-426, The Device Manager

#257: Slot Interrupt Prio-Technics 1 of 1

(and

Macintosh e
Technical Notes

Developer Technical Support

#258: Our Checksum Bounced

Written by: Jim Reekes October 1989

This Technical Note discusses a fix to a SCSI Manager bug which concerns all developers
working with SCSI and NuBus™ device drivers.

A Bit of History

The boot code contained in the ROM has a feature used by the Start Manager to perform a
checksum on the SCSI driver being loaded. Inside Macintosh, Volume V-573, The SCSI
Manager, documents this being performed on the Macintosh SE and later models for volumes
using the new partitioning method. The truth, however, is that that checksum verification was
never performed due to a bug in the ROM, and because of this, all drivers loaded regardless of
validity.

That was the case until recently. On new Macintosh computers, the checksum verification works.
That’s the good news: we’ve fixed the bug. Now the bad news: this fix causes a number of
third-party SCSI drivers to fail to load.

Some SCSI drivers improperly implement the new partitioning scheme. If the partition map entry
name begins with the four letters “Maci” (case sensitive) and is of type “Apple_Driver”, the driver
now has its checksum verified with the entries in the partition map. If this checksum fails, the
driver is not loaded. This checksum algorithm is documented in Inside Macintosh, Volume V-573,
The SCSI Manager.

Drivers That Check In, But Don’t Check Out

The checksum routine tests the number of bytes specified in pmBoot Size, beginning at the start
of the driver boot code. Only drivers contained within the new partition map have this test
performed. If you are using the old partition map scheme documented in Inside Macintosh,
Volume IV-283, The SCSI Manager, the driver does not have its checksum validated. The
following is the startup logic in the new Macintosh ROMs:

eee

#258: Our Checksum Bounced 1 of 2

Macintosh Technical Notes

IF

pmSig = $504D
AND

pmPartName = Maci
AND

pmPartType = Apple Driver
AND ~

pmBootChecksum = ChecksumOf (bootCode, pmBootSize)
THEN

Load the driver
ELSE

Do not load the driver

Just When You Thought It Was Safe To Call _SysEnvirons

The call_SysEnvirons was created for compatibility reasons. It allows an application to make

a single call to the system to determine its characteristics. It keeps the application from reading

ROM addresses and low memory. This trap is now in the ROM of new machines. But, before

you get excited about this addition to ROM, there is something that Jnside Macintosh, Volume V-5,

Compatibility Guidelines, states that must be understood by those writing SCSI drivers:

“All of the Toolbox Managers must be initialized before calling

SysEnvirons.” ...“SysEnvirons is not intended for use by device

drivers, but can be called from desk accessories.”

This statement means that neither SCSI nor NuBus device drivers can use _SysEnvirons. The

earliest possible moment to call _SysEnvirons is at INIT time. Some SCSI drivers call

_SysEnvirons, and this causes the Macintosh to crash at boot time.

To Sum Up

Check if your partition map is of the version described in the SCSI Manager chapter of Inside

Macintosh, Volume V, and contains the pmPartName and pmPart Type as mentioned earlier in

this Note. If it does, then verify that the pmBoot Checksum is correct. If the checksum is not

correct, the new Macintosh computers will not load your driver.

The solution to this problem is to have a valid partition map entry in all cases and to expect the Start

Manager to perform the checksum verification regardless of the machineType.

_SysEnvirons is not available until the system has been initialized.

Further Reference:
¢ Inside Macintosh, Volume IV-283, The SCSI Manager
¢ Inside Macintosh, Volume V-5, Compatibility Guidelines
e Inside Macintosh, Volume V-573, The SCSI Manager
* Technical Note #129, SysEnvirons: System 6.0 and Beyond

NuBus is a trademark of Texas Instruments

ae

2 of 2 #258: Our Checksum Bounced

a

4 Macintosh “4

Technical Notes °

Developer Technical Support

#259: Old Style Colors

Revised by: _ Rich “I See Colors” Collyer August 1990
Written by: —_ Rich “I See Colors” Collyer & Byron Han October 1989

This Technical Note covers limitations of the original Macintosh color model (eight-color) which
Inside Macintosh, Volume I-173, QuickDraw does not document.
Changes since October 1989: Added definitions of the old-style constants. |

QuickDraw has always been able to deal with color, just on a very limited basis. Most applications
have not made use of this feature, since Color QuickDraw-based Macintoshes come with a better
color model. There are, however, a few nice features which come with the old style color model.
With the old style colors, it is easy to print color on an ImageWriter with a color ribbon. Another
advantage is that developers do not have to write special-case code depending upon whether or not
a machine has Color QuickDraw.

Now that you are ready to convert to the old style colors, there are a few things you should know
about which do not work with old style colors. This Note covers the limitations of using old style
colors, as well as the best ways to work around these limitations.

Limitations

The most obvious limitation is that of only eight colors: black, white, red, green, blue, cyan,
yellow, and magenta. This limitation is only a problem if you want to produce a color-intensive
application; if this describes your application, then you need not read any further in this Note.

The next limitation is that off-screen buffers are not very useful. You can draw into off-screen
buffers, but there is no way to get the colors back from the buffer. This leads into the next
limitation, which is that_CopyBits cannot copy more than one color at a time.

When you call CopyBits from an off-screen buffer to your window, you need to set the
forecolor to the color you want to copy before calling CopyBits (i.e., to copy a red object, call
_ForeColor (redColor)). Now when you copy the object, you can only copy one color. If
you copy different colored objects at one time, then you have a problem. The result of a
multicolored copy is that all objects copy in the same color, that of the foreground.

It is possible to work with an off-screen buffer and the old style colors, but it requires a lot of extra
work. Unless the objects are really complex, then it is probably easier to just draw the objects
directly into your window.

——— eee

#259: Old Style Colors 1 of 3

Macintosh Technical Notes

One other limitation does exist. Consider the following code sample. One would assume that this
sample would work at all times.

SetPort (myPort);

savedFG := myPort*.fgColor;

ForeColor (redColor) ; {or any other color}

{...drawing takes place here...}

ForeColor (savedFG) ;

Surprise. It does not always work. The saved value for the fgColor field of the GrafPort is
not a classic QuickDraw color if the GrafPort is actually aCGrafPort. If dealing with a
CGrafPort, the fgColor field actually contains the foreground color’s entry in the color table,
so the second call to_ForeColor really messes things up.

The proper way to set and reset the foreground color with classic QuickDraw’s_ ForeColor call
is as follows:

SetPort (myPort);

savedFG := myPort*.fgColor;

ForeColor (redColor) ; {or any other color}

{...drawing takes place here...}

myPort*.fgColor := savedFG; {manually stuff the old fgColor back}

If (32BQD = TRUE) Then {32BQD is a flag which is made and set by}

PortChanged (myPort); {the application; to set it, the application}

{needs to check Gestalt for 32-Bit QuickDraw}

This Note also applies to the routine BackColor.

What Works

The easiest way to work with these limited colors is to use pictures. When you draw the images,

you should draw into a picture. Then when you want to draw the images into your window or to a

printer, call DrawPicture. Pictures work well with the old style colors, and you don’t need to

worry about making sure that the forecolor is current when you draw into your window.

Once you have the picture, you can use it to draw into the screen or to the printer port. You can

also set the WindowRecords windowPic to equal your PictureHandle so updates are

handled by the Window Manager.

a

2 of 3 #259: Old Style Colors

Developer Technical Support August 1990

What Do Those Constants Mean Anyway

Each of the constants contains nine bits of information, and each bit has a special meaning. Figure
1 illustrates the meaning of each of the bits, while Table 1 shows how each of the color constants
fills in the appropriate bits.

bits}8 | 716] 5]}4}/3]2]11][0|
Cyan

Magenta
Yellow

Black

Red

Green

Blue

Inverse (Black-off, White- on)

Normal (Black-on, White-off)

Figure 1-Bit Definitions

black white red green blue cyan magenta yellow
33 30 209 329 389 269 149 89

Cyan 0 0 0 1 1 1 0 0
Magenta 0 0 1 0 1 0 1 0
Yellow 0 0 1 1 0 0 0 1
Black 1 0 0 0 0 0 0 0
Red 0 1 1 0 0 0 1 1
Green 0 1 0 1 0 1 0 1
Blue 0 1 0 0 1 1 1 0
Inverse 0 1 0 0 0 0 0 0
Normal 1 0 1 1 1 1 1 1

Table 1-Color-Bit Correlation

Further Reference:

¢ Inside Macintosh, Volume 1-173, QuickDraw
* Technical Note #277, Of Time and Space and _CopyBits |

ES SS

#259: Old Style Colors 3 of 3

rm

Macintosh U
Technical Notes oS

Developer Technical Support

#260: NuBus Power Allocation

Written by: — Rich “I See Colors” Collyer October 1989

This Technical Note discusses a very real power limit for NuBus™ expansion cards and warns
developers to heed this limit lest they want users trashing their machines by overextending the
Macintosh power supply.

Click-Click Mode?

Designing Cards and Drivers for the Macintosh clearly states that allowed power per NuBus slot is
13.9 watts (pg. 6-6). That is 2 amps at 5 volts, 0.175 amps at 12 volts, and 0.15 amps at -12
volts. If your Nubus card requires more than this allocation, then you need to make sure that users
do not fill all of their Nubus slots. A good rule of thumb is that if users can fill all of their slots
with your card and the machine is still able to boot, then you are okay. If the machine goes into
click-click mode, then you need to make sure that users cannot fill their slots. Click-click mode is
a safety feature of the Macintosh power supply. The Macintosh is trying to start the machine and
finding that the power requirements are greater than it can handle. The problem is that the power
supply is not getting far enough into the startup procedure to turn itself off, so it keeps trying to
turn itself on. The only way out of this mode is to pull the plug.

What’s Allowed and Why

Following are a few scenarios which might cause major heart problems for a user (these stories are
fictional, and the names have been made generic to protect the innocent).

Slot Card Power Requirement

9 video card 10 watts
A EtherTalk 10 watts
B memory card 20 watts
C AtoD 15 watts
D CPU 20 watts
E video card 10 watts

Total 85 watts

This first scenario ends with a power requirement which exceeds the allowed power by 1.6 watts.
The result of this over requirement can cause some very nasty results. Even if the machine could
work, there is no guarantee to cover a thermal problem. The Macintosh was designed with the
assumption that there would only be a need to dissipate 83.4 watts of NuBus power. If the
machine must dissipate more than 83.4 watts of NuBus power, then it is possible that you might
start burning chips.

#260: NuBus Power Allocation 1 of 3

Macintosh Technical Notes

An even worse scenario considers a fully loaded Macintosh IIcx. It is a lot easier to load up a IIcx,
since the IIcx has half as many slots as the II and a power limit of 41.7 watts. This second
scenario demonstrates a less high-powered user with a IIcx.

Slot Card Power Requirement

9 32-bit video card 15 watts
A video card 10 watts
B CPU 20 watts

Total 45 watts

In the second case, the machine is overdrawn by 3.3 watts. You may think that this is not a
reasonable list of power requirements, but the reality of the power requirements is not the point.
The point is that card developers must put forth an effort to protect the users, or we all look very
bad when the silicon starts to melt. It is not very favorable to have our users burning up their
machines because a NuBus card needed more power than it was allowed.

The wattage which a card requires is not the entire problem. It is possible to stay within the 13.9
watt limit and still have problems. You must also stay within the amperage limit for each voltage.
You cannot just assume that since you are not using the 12 and -12 volts that you can use 2.78
amps of 5 volts (13.9 watts); the Macintosh power supply was not designed to convert 12 volt
power allocation to 5 volt when it is needed. Scenario three presents an example of a Macintosh II
which is filled with cards that are within the wattage limit, but that exceed the amperage limit.

Slot Card 5 Volt Power Requirement Amps
9 video card 10 watts 2
A EtherTalk 10 watts 2
B memory card 13.9 watts 2.78
& AtoD 13.9 watts 2.78
D CPU 13.9 watts 2.78
E video card 10 watts 2

Total 71.7 watts 14.34

Under normal conditions, the Macintosh II power supply can handle up to 12 amps at 5 volts. In
the third scenario the NuBus cards are drawing 14.34 amps. Half of the cards are within the limit,

but the other cards are not, and the result is a Macintosh which goes click-click.

But I Need the Power...

Now that we’ve told you not to take more power than you are allowed, we are going to give youa
way out. We understand that it is impossible to fit within this power budget with some types of
NuBus cards; if your card contains a processor, or worse, a lot of RAM, then you are going to run
into the power allocation very quickly. In the rare case when you do need to consume the power
of multiple slots, then you really must make absolutely sure that the slot or slots next to your card
are not used.

The first possible solution is simply blocking off the slot or slots next to your board. You can
build a device which extends out of your card to prevent the user from inserting other cards in the
the adjoining slot or slots. The first slot to cover is the one on the component side of your card,
thus allowing increased air flow on the side of your card which is most likely a little warm. This
method, however, is not necessarily the method of choice. One of the problems with this method
is that the power allocation is not part of the NuBus specification, it is a Macintosh-specific limit.
It is always possible that this limit will be raised on future machines, and you do not want to
implement this solution on machines where the problem is not a problem. The second solution is a

2 of 3 #260: NuBus Power Allocation

Developer Technical Support
October 1989

bit cleaner than the first; however, it also has the potential for a similar problem with future

machines.

The second solution is to design your card as a multiple-card implementation and have an internal

bus which connects the two cards with ribbon cables or another type of connector. The benefits to

this solution are a guarantee that users physically cannot put more cards in their systems than the

power supply can handle and you get additional real estate with which to play.

A third, and perhaps simpler, solution is to ship a slot cover with your card. You can ask users to

install the cover over the slot next to your card (or multiple slots if necessary). This cover should

keep the user from inadvertently using the slot while not forcing the loss of a slot in any future

machine with an increased power budget. This route would require an explanation and visible

warning in the documentation; however, if the users do not heed your warning, then they cannot

very well blame you for their clicking Macintosh (they will probably blame us).

These solutions are not the only ones which exist, but we haven’t thought of any other great ideas.

The main goal is to provide a method which protects users from overextending their machines. If

you can devise such a method, then more power to you (well, not really).

Don’t Get Flamed

So the moral (what’s that) of the story is that you need to put yourself into the shoes of your users
(but don’t try it literally). If they burn up our computers or find themselves in click-click mode
because a NuBus card got a little greedy, then they are going to be very upset, and that is
something that both Apple and third-party developers need to work very hard to prevent. If you
“need” the extra power, then you must make absolutely sure that users are not going to get burned
by your NuBus card.

Further Reference:
* Designing Cards and Drivers for the Macintosh
¢ JEEE Standard for a Simple 32-Bit Backplane Bus: NuBus
* Technical Note #234, NuBus Physical Designs—Beware

NuBus is a trademark of Texas Instruments

a i ee ee es

#260: NuBus Power Allocation 3 of 3

Macintosh 4

Technical Notes @.

Developer Technical Support

#261: Cache As Cache Can

Revised by: Rich Kubota April 1992
Written by: Andrew Shebanow October 1989

This Technical Note documents cache behavior, manipulation of processor caches, and
manipulation of external caches on Macintosh models that incorporate these features. It also
describes how system software uses a memory management unit (when available) to implement
special caching options.
Changes since October 1991: Described use of AppleTalk Transition Queue event,
ATTransSpeedChange, when altering the 68040 cache state on the fly. This call must be issued so
that LocalTalk can reevaluate its timers. Otherwise LocalTalk becomes disabled.

Cache Machines

The Motorola MC68020 microprocessor includes a 256-byte internal instruction cache. The
MC68030 includes a similar-size instruction cache plus a 256-byte writethrough data cache. The
MC68040 has much larger caches, 4K of instructions, and 4K of data. It also supports copyback
caching in addition to the writethrough caching used by the MC68030.

The difference between writethrough and copyback caching is a matter of whether data writes go
directly and immediately to main memory, or whether they go only as far as the data cache to be
copied back to main memory later (if necessary) in a highly optimized fashion.

The MC68030 and MC68040 include memory management units internally. Besides the ability to
divide memory into logical pages and provide memory access control, these memory management
units can also associate cachability attributes with individual pages of memory, affecting how data
is cached on a page-by-page basis.

Stale Data (Baked Fresh Daily)

Caching greatly improves overall system performance but introduces the problem of stale data, or
inconsistency between cached data and the data in actual memory (RAM). In certain cases, cache
maintenance instructions are necessary to maintain coherency between cache and main memory.

Stale Instructions

The first time when stale data becomes a problem occurs when writing self-modifying code on the
MC68020 or any other processor with an instruction cache. The instruction cache remembers,
separately from main memory, many of the instructions it has recently executed. If the processor
executes an instruction, later changes that instruction in memory, and then tries to execute the new
instruction at the same address, there is a probability that the original instruction is still cached.
Since the cache is used before main memory, the old instruction may be executed instead of the
new one, resulting in incorrect program operation.

#261: Cache As Cache Can 1 of 10

Macintosh Technical Notes

To prevent this, any time a program changes an executable instruction in memory, it must flush the
instruction cache before attempting to execute the modified instruction. Flushing a cache invalidates
its entries, forcing the processor to refill cache entries from main memory. In part, this defeats the
purpose of a cache and hurts performance. Nevertheless, the alternative is incorrect program
operation. This serves to emphasize that caches must always be flushed judiciously in order to
maintain correct operation and optimal performance.

As described, self-modifying code is not just code that changes itself directly as it executes. It can

be much more subtle. Code that modifies a jump table entry is modifying executable code and must

flush the instruction cache. Patch installation code often copies code from one block of memory

into another and may modify one or more JMP instruction operands in order to get back to the

original routine—either technique requires flushing the instruction cache.

Stale Data

With the addition of the data cache in the MC68030, performance is further enhanced, but another

cache offers another source of stale data.

Let’s say that you have a whizzy disk controller card that supports DMA. The board reads

command buffers from the main CPU’s memory area and writes status information back to the

command buffer when done. Before the command is started, the MC68030 sets up the command

buffer and zeroes the status code (the following figures are not to scale).

Expansion Card

Data Cache

0

Motherboard MC68030

Figure 1 Write (Writethrough Cache)

At this point the cache and the memory both contain the value 0, since the MC68030’s cache is
writethrough (that is, it always writes data to memory immediately). Now the MC68030 starts the

command running and waits for an interrupt from the disk controller card. It then reads back the
status from the command buffer, which is modified by the DMA card.

a

2 of 10 #261: Cache As Cache Can

Developer Technical Support April 1992

Expansion Card

0

0

Motherboard MC68030

Figure 2 Read (From Cache)

Oops! Because the status code’s value is already cached, the MC68030 thinks that the status is 0,
even though the actual value in memory is —23. This type of thing can cause some very hard-to-
find bugs in your driver.

Copyback Data and Stale Instructions

There is another type of cache called a copyback cache that is supported by more advanced
microprocessors like the MC68040. A copyback cache further improves system performance by
writing data to external memory only when necessary to make room in the cache for more recent
accesses, or when explicitly “pushed” by system software. This is extremely valuable for relatively
small, short-lived data that are accessed frequently but don’t need to persist for a long time, like
local stack frames in C and Pascal function calls.

This increase in performance again comes at some cost in terms of maintaining cache coherency.
Here, the problem is twofold. Fundamentally, a datum that is “written to memory” isn’t really in
memory (meaning main RAM) until it’s pushed out of the data cache. When performing DMA, it is
necessary to push data cache contents into memory before instructing alternate bus masters to look
for it; they’ll only find stale data if it’s still cached. Second, and perhaps even more important, the
instruction and data caches are completely independent of each other. When fetching instructions,
the processor looks in only two places: first the instruction cache, then main memory. It does not
look in the data cache. When performing the types of operations described above that can cause a
stale instruction cache, one must remember that it is impossible to make the instruction cache and
memory coherent if memory itself is stale! The data cache must be flushed; then and only then can
the instruction cache refill with the valid data the processor has written.

Here, some code writes the _LoadSeg trap to memory as part of a jump table update. Figure 3
indicates what happens if only the instruction cache is flushed. When execution later proceeds
through that jump table entry, the processor fetches the opcode from that address and gets zonked
with an illegal F-line exception. Why? _LoadSeg is still in the data cache. The code responsible for

#261: Cache As Cache Can 3 of 10

Macintosh Technical Notes

Data Cache

$A9FO

Instruction Cache

$FFFF

Motherboard MC68040

Figure 3 Write (Copyback Cache) and Fetch

maintaining the jump table failed to push the contents of the data cache before invalidating the
instruction cache. This certainly causes problems on the MC68040.

Another similar problem applies to the time at which cache flushing is performed. When using a
writethrough data cache, it is acceptable to invalidate the instruction cache first and then modify
instructions in memory. With a copyback data cache, it is imperative to make changes to memory

first and then flush caches. Again, this ensures that copyback data is written to memory before the

instruction cache attempts to refill from memory. The key point to remember is that the MC68040

instruction cache always reads from memory, never from the data cache.

Figure 4 shows the path that an instruction properly takes when it is first written as data by a

program that modifies instructions in memory.

Data Cache
FO <—- — —

aaa $A9FO

Instruction Cache

$A9FO

Motherboard MC68040

Figure 4 Write (Copyback Cache), Push, and Fetch

4 of 10 #261: Cache As Cache Can

Developer Technical Support April 1992

It’s worth noting here that although pushing copyback data to memory and invalidating (flushing)
the cache are conceptually different operations, they are at least for the MC68040 irrevocably
connected. This makes flushing the data cache for the sake of pushing its contents to memory a
potentially expensive one. Valid cache data is essentially lost when it is pushed and must be read
from main memory if it is to be accessed again. This should be another reinforcement that cache
flushing must be performed judiciously. It is possible to flush only a portion of the MC68040
caches, and software that flushes caches frequently should consider this optimization to avoid
unnecessary performance degradation when running on this processor. See the interfaces provided
below.

What Is Apple’s Part in This?

There are two answers to this question. First, there are things that Apple has done in ROM to make
life easier while dealing with a caching processor. Second, there are functions provided in ROM or
in system software to allow developers to take some control of their own destinies.

Things That Happen for You

Ever since the Macintosh II made its debut, it has been flushing the instruction cache. It does so at

a number of critical points where code may be moved to a new location, potentially leaving
memory and the instruction cache incoherent. Specifically, there are a number of traps that have the
potential to move code around memory. In each of these cases, the instruction cache is flushed by
system software or ROM.

_BlockMove _LoadSeg
_Read _UnloadSeg

Warning: The _BlockMove trap is not guaranteed to flush caches for block sizes 12
bytes or less. This is a performance optimization. BlockMove is called
often by system software to move small blocks of memory that are not
executable instructions. Flushing the cache in all such cases causes
significant performance degradation. When moving very small blocks of
code with _BlockMove, use one of the explicit cache flushing routines
described below.

Note: C programmers should not assume that the standard library function memcpy ()
invokes BlockMove. An explicit cache flush is required after moving code with
memcpy ().

In general, there may be others. As a rule of thumb, the instruction cache needs to be flushed
explicitly only as a result of actions taken by user code, not as the result of anything a trap might
have done. Traps can take care of themselves.

A memory management unit allows individual pages of memory to be marked noncachable. In
current Macintosh implementations, NuBus™ and I/O address spaces are always marked
noncachable—the processor won’t cache memory stored at NuBus or I/O addresses. This solves
any problems of stale data when processor/DMA “mailboxes” are located in NuBus memory and
eliminates the fundamental problem of stale data at memory-mapped I/O locations. Data at RAM
and ROM addresses are cachable, which makes sense and maximizes performance.

Since DMA still poses a problem when common buffers are located in main RAM, it would seem
that there should be greater intrinsic support for specifying cachability. There is. In order for DMA
masters to be compatible with abstract memory architectures like those defined by the Macintosh
IIci and even more so by virtual memory, they must use the Get Physical routine. Before using

#261: Cache As Cache Can 5 of 10

Macintosh Technical Notes

GetPhysical, a range must always be locked with LockMemory. Since this sequence is so
commonly required when performing DMA, the LockMemory routine has the effect of either
disabling the data cache or marking the corresponding pages noncachable, depending on what’s
possible and what makes the most sense. In many cases, therefore, it is unnecessary to explicitly
flush the data cache. If common DMA buffers are locked with LockMemory, the operating system
ensures cache coherency at least for those buffers.

To ensure compatibility with existing code while taking advantage of copyback cache mode, the
FlushInstruct ionCache function on an MC68040 actually flushes both caches using the CPUSHA
BC instruction. This prevents the need for modification of correct existing code which properly
flushes the instruction cache with FlushInstructionCache. If code is written properly for the
MC68020 and MC68030, it will work on the MC68040 as well, without modification. If code is
written incorrectly or directly manipulates the CACR register of these processors it will fail on the

MC68040. When modifying code in memory or moving code about memory, use

FlushInstructionCache before executing that code.

Facilities That Are Provided for You

Apple provides some system calls that let you flush the data and instruction caches without using
privileged instructions (which is, as you should all know by now, a major no-no).

Following are the interfaces for these calls, for MPW Pascal and C (respectively):

FUNCTION SwapInstructionCache (cacheEnable: BOOLEAN) : BOOLEAN;

pascal Boolean SwapInstructionCache (Boolean cacheEnable) ;

This call enables or disables the instruction cache according to the state passed in cacheEnable
and returns the previous state of the instruction cache as a result.

PROCEDURE FlushInstructionCache;

pascal void FlushInstructionCache (void);

This call flushes the current contents of the instruction cache. This has an adverse effect on CPU

performance, so only call it when absolutely necessary.

FUNCTION SwapDataCache (cacheEnable: BOOLEAN) : BOOLEAN;

pascal Boolean SwapDataCache (Boolean cacheEnable);

This call enables or disables the data cache according to the state passed in cacheEnable and
returns the previous state of the data cache as a result.

PROCEDURE FlushDataCache;

pascal void FlushDataCache (void);

This call flushes the current contents of the data cache. This has an adverse effect on CPU

performance, so only call it when absolutely necessary.

Note: Before you call any of these routines, make sure that the _HwPriv ($A198) trap is
implemented, or your program will crash. _HwPriv is implemented in the
Macintosh IIx ROMs and later, as well as System 6.0.3 and later. The correct way
to check for the trap is using the TrapAvailable function documented in Inside
Macintosh Volume VI (pages 3-7 to 3-9).

These calls are provided as part of the MPW 3.1 library. For those of you without MPW 3.1 or
later, you can use the following MPW assembly-language glue:

6 of 10 #261: Cache As Cache Can

C)

Developer Technical Support April 1992

_HwPriv

CASE OFF

OPWORD $A198

SwapInstructionCache PROC EXPORT

WasFalse:

MOVEA.L

MOVEQ
MOVE .B

MOVE.L

CLR.W

_HwPriv

MOVE .W
TST.W

BEQ.S

MOVEQ

MOVE .B

IMP

ENDPROC

(A7)+,Al

#0,D0

(A7) +,D0

DO, AO

DO

AO,DO

DO

WasFalse

#1,D0

DO, (A7)

(Al)

FlushinstructionCache PROC EXPORT

MOVEA.L

MOVEQ

_HwPriv

JMP

ENDPROC

(A7)+,Al

#1,D0

(Al)

SwapDataCache PROC EXPORT

WasFalse:

MOVEA.L

MOVEQ

MOVE .B
MOVE .L
MOVE .W

_HwPriv

MOVE .W

TST.W

BEQ.S

MOVEQ

MOVE .B

JMP

ENDPROC

FlushDataCache PROC

MOVEA.L

MOVEQ

_HwPriv

JMP

ENDPROC

(A7)+,Al

#0,D0

(A7) +,D0

DO,AO

#2,D0

AO,DO

DO

WasFalse

#1,D0

DO, (A7)

(Al)

EXPORT

(A7)+,Al

#$3,D0

(Al)

; save return address

: clear DO before we shove Boolean into it

; DO <- new mode

HwPriv wants mode in AO

; set low word to 0 (routine selector)

; move old state of cache to DO

; if nonzero, cache was enabled

; if zero, leave result false

set result to true

; save result on stack

save return address

set low word to 1 (routine selector)

save return address

; clear DO before we shove Boolean into it

; DO <- new mode

; _HwPriv wants mode in AO

set low word to 2 (routine selector)

; move old state of cache to DO

if nonzero, cache was enabled

if zero, leave result false

set result to true

save result on stack

save return address

set low word to 3 (routine selector)

There are two additional calls whose interfaces follow. Each requires a little explanation.

The first call is FlushCodeCache, which simply invokes the cacheFlush ($AQOBD) trap. This
trap’s function is to make the instruction cache coherent with memory. On the MC68020 and
MC68030 it simply flushes the instruction cache. On the MC68040 it also flushes the data cache
for copyback compatibility. The advantage of FlushCodeCache as opposed to
FlushInstructionCache is that it was implemented before the _HwPriv trap, and thus can be
used on the Macintosh II while running older system software.

In general, FlushInstructionCache is still the preferred application-level cache flushing
mechanism. FlushInst ructionCache calls FlushCodeCache and is therefore a higher-level call
conceptually. FlushCodeCache may be useful where FlushInstructionCache proves

#261: Cache As Cache Can 7 of 10

Macintosh Technical Notes

unsuitable, or as an alternative to the next call, FlushCodeCacheRange. Obviously, before calling
FlushCodeCache, be certain that _CacheFlush is implemented.

Note: If the processor has a cache to flush, this trap should be properly implemented,
because ROM and system software use this trap’s vector to do their own cache
flushing. In fact, FlushInstructionCache itself uses this vector. This should be
of particular interest to accelerator card developers.

MACRO

_FlushCodeCache

_CacheFlush

ENDM

PROCEDURE FlushCodeCache;

INLINE $AOBD;

void FlushCodeCache (void) = OxAOBD;

The second call is FlushCodeCacheRange. FlushCodeCacheRange is an optimization of
FlushCodeCache designed for processors like the MC68040 which support flushing only a
portion of the cache. (The MC68020 and MC68030 do not support this feature and
FlushCodeCacheRange Simply flushes the entire instruction cache on those processors.) As
described earlier, pushing and flushing cache entries are linked and flushing the entire cache after a
small change like a jump table entry can be expensive. FlushCodeCacheRange allows one to
request that only a specific memory range be flushed, leaving the rest of the cache intact. Note that
this is only a request and that more than the requested range may be flushed if it proves inefficient
to satisfy the request exactly. Also, FlushCodeCacheRange may not be implemented for some
older versions of system software that are not MC68040-aware. If not, FlushCodeCacheRange
returns hwParamErr (—502) and it is necessary to flush the entire cache instead, probably using
FlushCodeCache. If FlushCodeCacheRange succeeds it returns noErr (0). Before calling
F lushCodeCacheRange, be certain that_HwPriv is implemented.

; _FlushCodeCacheRange takes/returns the following parameters:

s -> AO.L = Base of range to flush

; -> Al.L Length of range to flush

: <- DO.W = Result code (noErr = 0, hwParamErr = -502)

MACRO

_FlushCodeCacheRange

moveq #9,d0

_HwPriv

ENDM

"

FUNCTION FlushCodeCacheRange (address: UNIV Ptr; count: LongInt) : OSErr;

INLINE $225F, { MOVEA.L (SP)+,Al1 }

$205F, { MOVEA.L (SP)+,A0 }

$7009, { MOVEQ #9,D0 }

$A198, { _HwPriv }

$3E80; { MOVE.W DO,(SP) }

// MPW C 3.2 makes register-based inline calls very efficient.

#pragma parameter __DO FlushCodeCacheRange(__A0,__ Al)

OSErr FlushCodeCacheRange (void *address, unsigned long count) =

{0x7009, OxA198};

/* MPW C 3.1 and earlier, and THINK C™ should declare the function as e/]

/* “pascal” and use the same inline constants as the Pascal interface: */

pascal OSErr FlushCodeCacheRange (void *address, unsigned long count) =

{Ox225F, Ox205F, 0x7009, OxA198, Ox3E80};

a

8 of 10 #261: Cache As Cache Can

Developer Technical Support
April 1992

Caching Consequences—LocalTalk

As noted above, altering the state of the data/code cache significantly affects the performance of the

68040 processor. This change in effective CPU speed may affect any background process that is

dependent on the processor speed remaining constant. LocalTalk is an example of one such

affected process, as it employs speed sensitive timing loops. The change in CPU speed affects the

LocalTalk timers, to the extent that the LocalTalk no longer functions correctly if it is the current

AppleTalk connection.

Fortunately, the AppleTalk Transition Queue mechanism can be used to notify LocalTalk of the

change in effective CPU speed. Upon notification, LocalTalk recalculates its timer values to match

the current CPU speed. Refer to Inside Macintosh Volume VI, page 32-17, and to Technical Note

#311, “What’s New In AppleTalk Phase 2,” for additional information on the use of the AppleTalk

Transition Queue.

The following code demonstrates the use of the ATEvent procedure to send the

ATTransSpeedChange event. The aTEvent call is provided as part of the MPW 3.2 library.

Important Note: Issue the arTransSpeedChange event only at SystemTask time!

USES AppleTalk; { ATEvent prototyped in AppleTalk unit, MPW 3.2 }

CONST

ATTransSpeedChange = 'sped'; {change in cpu speed transition }

PROCEDURE NotifyLocalTalkSpeedChange;

BEGIN

if LAPMgrExists THEN { check LAP Manager exists, see Tech Note 311 }

{ for the code for LAPMgrExists }

ATEvent (longint (ATTransSpeedChange), NIL);

{ notify speed change event }

END;

Note that only LocalTalk drivers that are included with AppleTalk version 57 or greater, respond to
the ATTranSpeedChange event. System 7.0.1 for the Quadra's, is supplied with AppleTalk
version 56. AppleTalk version 57 is available by using the AppleTalk Remote Access Installation
program, or the Network Software Installer version 1.1. Licensing for AppleTalk can be arranged
by contacting Apple Software Licensing. Software Licensing can be reached as follows:

Software Licensing
Apple Computer, Inc.
20525 Mariani Avenue, M/S 38-I
Cupertino, CA 95014
MCI: 312-5360
AppleLink: SW.LICENSE
Internet: SW.LICENSE@AppleLink.Apple.com
(408) 974-4667

AppleTalk version 53 or greater is required to handle the ATEvent call, however, nothing bad will
happen if you issue the ATTranSpeedChange transition event under AppleTalk versions 53 - 56. It
is important to check that the LAP Manager is implemented before issuing the atEvent call. See
Tech Note 311 for a description of the LAPMgrExists function.

External Caches

ee Te Le Oe ee Yee a ee eae

#261: Cache As Cache Can 9 of 10

Macintosh Technical Notes

The Macintosh IIci and Macintosh IIsi Support external cache cards. Because of the way these caches work, cache coherency is not much of a problem. In fact these caches are usually enabled ; full-time and their operations are totally transparent to all well-behaved hardware and software. A Still, there are corresponding cache control functions to enable, disable, and flush these cache cards. If _HwPriv is implemented, the following routines may be used:

MACRO

_EnableExtCache

moveq #4,d0

_HwPriv

ENDM

PROCEDURE EnableExtCache;

INLINE $7004,SA198;

void EnableExtCache (void) = {0x7004, 0xA198};

MACRO

_DisableExtCache

moveq #5,d0

_HwPriv

ENDM

PROCEDURE DisableExtCache;

INLINE $7005,5$A198;

void DisableExtCache (void) = {0x7005, 0xA198};

MACRO

_FlushExtCache

moveq #6, 00 WJ

_HwPriv

ENDM

PROCEDURE FlushExtCache;

INLINE $7006, $A198;

void FlushExtCache (void) = {0x7006, 0OxA198};

Further Reference:
¢ Inside Macintosh, Volume V, Operating System Utilities
« Inside Macintosh, Volume V1, Compatibility Guidelines
* Designing Cards and Drivers for the Macintosh Family
* M68000 Family Programmer’ s Reference Manual
¢ M68020 32-Bit Microprocessor User’s Manual
* M68030 Enhanced 32-Bit Microprocessor User’ s Manual

* M68040 32-Bit Third-Generation Microprocessor User’ s Manual

NuBus™ is a trademark of Texas Instruments.
THINK C is a trademark of Symantec Corp.

———

10 of 10 #261: Cache As Cache Can

Macintosh as

Technical Notes .

Developer Technical Support

#262: Controlling Status Calls

Written by: Tim Enwall February 1990

This Technical Note discusses situations under which high-level Status calls do not work

correctly and PBStatus calls should be made instead.

When Apple designed the Status trap, it was assumed that device drivers would only return
status information and not require any information other than the csCode to determine what
information to return. The device driver was supposed to return the information in the variable
csParam. However, some recently designed drivers do depend on information being sent to the
device driver’s status routine, and hence csParam must be valid.

The glue code in many development environments builds the parameter block which gets passed to
_Status calls. The high-level Status call passes only the refNum, csCode and
csParamPtr, but the glue neglects to fill in the csParam field of the parameter block because of
the above assumption. The low-level PBStatus call has no such problem because PBStatus
passes the entire parameter block which you must fill in, and hence you assign the csParan field
correctly. Thus the high-level Status call in some cases either works incorrectly, or worse,
causes problems for the device driver.

The most obvious example of a device driver which expects a valid csParam is the video device
driver(s) for Macintosh II Video Cards. Almost all of the documented status calls require
csParam to point to some kind of table. In this case, most of the device driver’s status routines
do not function properly if using the high-level Status call.

Therefore, if you are interfacing to a device driver which you either know or suspect requires
csParam for its status calls, use the low-level PBSt at us call instead of the high-level Status
call. If you are writing a device driver, be aware of this limitation and either alert the users of your
driver to this limitation, or design your status calls to only return csParam.

Further Reference:
¢ Inside Macintosh, Volume II, The Device Manager

eee

#262: Controlling Status Calls 1 of 1

Gp

4
Macintosh =
Technical Notes ©

Developer Technical Support

#263: International Canceling

Written by: John Harvey February 1990

This Technical Note describes potential problems canceling operations with the Command-period

key sequence and international keyboards.

Where Did That Key Go?

Canceling an operation, from printing to compiling, has always been done with the key sequence
Command-period. The problem with this is that on some international systems, one needs to hold
the Shift key down to produce a period. Many keyboard mappings, including that of the U.S.,
ignore the Shift key when the Command key is down. In other words, on a system where a
period (.) is a shifted character (e.g., Italian) pressing Command-Shift-KeyThatMakesA Period
does not generate the ASCII code for a period. Instead, the keyboard mapping software generates
the ASCII code for the unshifted character. If an application is looking for Command-period to
cancel some time intensive operation, and an international user types the shifted key sequence that
normally produces a period along with the Command key, the application is going to miss that
request unless it takes special precautions.

A Bit Confusing (to me at least)

The solution to this potential international disaster is to strip the Command key out of the
modifiers, and then run the key code back through the keyboard mapping software. The trap
_KeyTrans makes this procedure very easy. _KeyTrans takes as parameters a pointer to a
"KCHR' resource (see Technical Note #160, Keyboard Mapping), a word which contains the
keycode and the modifier bits, and a word which serves as a state variable.

One note on the result returned by_KeyTrans. Inside Macintosh, Volume V-195, The Toolbox
Event Manager, states, “ASCII 1 is the ASCII value of the first character generated by the key code
parameter.” This statement is followed by an illustration (Figure 7 on page V-195) which shows
ASCII 1 as the low byte of the high word in the long word result. Although this statement and the
accompanying illustration are correct, they have mislead a number of people (me for one).

It is dangerous to expect the character code in one particular word of the long word result. In fact,
the architecture of the _KeyTrans trap does not specify which word contains the character code
in which you might be interested. This is because the Ke yTrans trap’s primary purpose is to
create a package that can be used to build a key-down event, and the Toolbox Event Manager just
doesn’t care about particular keys. In fact, it is possible to get a result from KeyTrans that
contains character codes in both words. This is how dead keys are handled.

eee

#263: International Canceling 1 of 5

IIE EfggE)E

Macintosh Technical Notes —e—osSsS———eeee ee eeeeeEeeeeeeSeSeSeSSSSSSSSSFSFSFSSSSSFSSFFSFSsesee

But how does one handle a particular character, speci i Ss one han , Specifically a period? The strategy adopted in th
pe function in this Note is to check both words of the result. If a period an in athe wen
and the Command key is down, it is counted as a Command-period key sequence.

Now that everything is straight about parameters and results, it’s time to look at some sample code.
The code fragment which follows ensures that h i bie chee you get that period regardless of the state of the

MPW Pascal

CONST

kMaskModifier = $FEO0; {need to strip command key from Modifiers}

kMaskVirtualKey = S$OOOOFF00; {get virtual key from event message}

kMaskASCII1 = $OOFFO000;

kMaskASCII2= SOQQQOQOOOFF; {get key from KeyTrans return}

kKeyUpMask = $0080;

kPeriod = ORD('.');

TYPE

EventPtr = “EventRecord;

FUNCTION CmdPeriod(theEvent: EventPtr): Boolean;

VAR

keyCode : Integer;

virtualKey,

keyInfo,

lowChar,

highChar,

state,

keyCId : Longint;

hKCHR : Handle;

BEGIN

CmdPeriod := FALSE;

IF (theEvent*.what = keyDown) | (theEvent*.what = autoKey) THEN BEGIN

{see if the command key is down. If it is, get the ASCII }

IF BAND(theEvent*.modifiers,cmdKey) <> 0 THEN BEGIN

virtualKey := BAND(theEvent*.message,kMaskVirtualkey) DIV 256;

{strip the virtual key by ANDing the modifiers with our mask }

keyCode := BAND (theEvent*.modifiers, kMaskModifier) ;

keyCode BOR (keyCode, kKeyUpMask); {let KeyTrans think it was a keyup event, this

will keep special dead key processing from

occurring }

{Finally OR in the virtualKey}

keyCode := BOR(keyCode, virtualKey) ;

state := 0;

keyCId := GetScript (GetEnvirons(smKeyScript), smScriptKeys);

{read the appropriate KCHR resource }

hKCHR := GetResource('KCHR',keyCId);

IF hKCHR <> NIL THEN BEGIN

{ we don't need to lock the resource since KeyTrans will not move memory }

keyInfo := KeyTrans (hKCHR%,keyCode, state) ;

ReleaseResource (nKCHR) ;

END

ELSE

{if we can't get the KCHR for some reason we set keyInfo to the message field. This

ensures that we still get the Cancel operation on systems where '.' isn't shifted. }

a

2 of 5
#263: International Canceling

Developer Technical Support February 1990

keyInfo := theEvent*.message;

(an LowChar := BAND (keyInfo, kMaskASCII2);

HighChar := BSR(BAND(keyInfo, kMaskASCII1),16);

IF (LowChar = kPeriod) | (HighChar = kPeriod) THEN

CmdPeriod := TRUE;

END;

END;

END;

MPW C

#define kMaskModifiers OxFE00O // we need the modifiers without the command key for KeyTrans

#define kMaskVirtualKey OxO0000FFOO //get virtual key from event message for KeyTrans

#define kUpKeyMask 0x0080

#define kShiftWord 8 //we shift the virtual key to mask it into the keyCode for KeyTrans

#define kMaskASCII1 OxOOFFO000 // get the key out of the ASCII1 byte

#define kMaskASCII2 OxO00000FF //get the key out of the ASCII2 byte

#define kPeriod Ox2E // ascii for a period

Boolean CmdPeriod(EventRecord *theEvent)

{

Boolean fTimeToQuit;

short keyCode;

long virtualKey, keyInfo, lowChar, highChar, state, keyCId;

Handle hKCHR;

fTimeToQuit = false;

if (((*theEvent).what == keyDown) || ((*theEvent) .what == autoKey)) {

\ j // see if the command key is down. If it is, find out the ASCII

// equivalent for the accompanying key.

if ((*theEvent) .modifiers & cmdKey) {

virtualKey = ((*theEvent).message & kMaskVirtualKey) >> kShiftWord;

// And out the command key and Or in the virtualKey

keyCode = ((*theEvent).modifiers & kMaskModifiers) | virtualKey;

state = 0;

keyCId = GetScript(GetEnvirons(smKeyScript), smScriptKeys);

HKCHR GetResource('KCHR', keyCId);

if (hKCHR != nil) {

/* Don't bother locking since KeyTrans will never move memory */

keyInfo = KeyTrans(*hKCHR, keyCode, &state);

ReleaseResource(hKCHR);

}
else

keyInfo = (*theEvent) .message;

lowChar = keyInfo & kMaskASCII2;

highChar = (keyInfo & kMaskASCII1) >> 16;

if (lowChar == kPeriod || highChar == kPeriod)

fTimeToQuit = true;

} // end the command key is down

} // end key down event

return(fTimeToQuit);

C) }

RS SS SS SR SS RS SSS SS ES

#263: International Canceling 3 of 5

Macintosh Technical Notes

What About That Resource

The astute observer may have noticed that the code example requires that you read a resource.
Although this certainly isn’t that big of a deal, it is always nice when you can cut down on disk
accesses. In System 7.0 a verb is added that can be used to get_GetEnvirons to retum a
pointer to the current 'KCHR'. The verb is defined and used as follows:

Pascal

CONST

smKCHRCache = 38;

KCHRPtr := GetEnvirons (smKCHRCache) ;

#define smKCHRCache 38

KCHRPtr = GetEnvirons (smKCHRCache) ;

Unfortunately, in system software prior to 7.0, you must use _GetResource as demonstrated

above to obtain the current 'KCHR' resource. However, since GetEnvirons always returns
zero when passed a verb it does not recognize, you can build System 7.0 compatibility into your
application without having to check which system software is running. To do this, you could
modify the routines as follows:

Pascal

CONST {define our own constant until System 7.0 headers ship. At that point, if you

have not shipped, you can put in the real constant}

NewVerb smKeyCache = 38;

VAR

KCHRPtr : Ptr;

KCHRPtr :

hKCHR

i] Ptr (GetEnvirons (NewVerb smKeyCache));

NIL; {set to NIL before starting}

IF KCHRPtr = NIL THEN BEGIN {we didn't get the ptr from GetEnvirons}

keyCId := GetScript (GetEnvirons(smKeyScript), smScriptKeys);

{read the appropriate KCHR resource }

hKCHR := GetResource('KCHR',keyCId);

KCHRPtr := hKCHR%*;

END;

IF KCHRPtr <> NIL THEN BEGIN

{ we don't need to lock the resource since KeyTrans will not move memory }

keyInfo := KeyTrans (KCHRPtr, keyCode, state) ;

IF hKCHR <> NIL THEN

ReleaseResource (hKCHR) ;

END

4o0f5 #263: International Canceling

Developer Technical Support
February 1990

| C

f q /* again we define our own constant for now sod

#define NewVerb_smKeyCache 38

Ptr KCHRPtr;

hKCHR = nil; /* set this to nil before starting */

KCHRPtr = (Ptr)GetEnvirons (NewVerb_smKeyCache);

IF (!KCHRPtr) {

keyCId = GetScript(GetEnvirons(smKeyScript), smScriptKeys);

hKCHR
KCHRPtr

3

Get Resource ('KCHR',keyCId) ;

*hnKCHR;

IF (KCHRPtr) {

keyInfo := KeyTrans(KCHRPtr ,keyCode, state) ;

if (hKCHR)

ReleaseResource (nNKCHR) ;

Further Reference:
° Inside Macintosh, Volume V, The Script Manager
¢ Inside Macintosh, Volume V, The Toolbox Event Manager

| ¢ Technical Note #160, Key Mapping

SL

#263: International Canceling 5 of 5

Macintosh U
© Technical Notes @.

fay

Developer Technical Support

#264: Script Manager 2.0 Date & Time Problems

Written by: John Harvey February 1990

This Technical Note describes known bugs and features in and solutions to the date and time
routines introduced in Script Manager 2.0.

From the beginning, the Macintosh’s ability to handle dates was limited to a rather small range—
slightly more than a century. Enhancements to the Script Manager, introduced with System
Software 6.0, extended this range to +35,000 years. Unfortunately, there is a minor bug in one of
the crucial calls and a “feature” that looks like a bug in another.

You Said It Would Be A Long Time

_LongSecs2Date, the routine that translates a LongDateTime to a LongDateRec, has a
bug caused by using a variable that has not been properly initialized. This bug rears its ugly head
when negative values are passed to the routine. System Software 6.0.4 and later fix this bug, and
there is a simple solution for earlier systems.

If using System Software 6.0.3 and earlier, if you call LongSecs2Date once before you really
want to use it, the variable is cleared. After the initial call, LongSecs2Date works correctly.

For example:

MPW Pascal

PROCEDURE DoDateStuff;

VAR

lsecs: LongDateTime;

ldr: LongDateRec;

BEGIN

InitDateCache (dcr);

lsecs := 0;

LongSecs2Date(lsecs,ldr);

{now you can call LongSecs2Date for real}

END;

#264: Script Manager 2.0 Date & Time Problems 1 of 2

Macintosh Technical Notes

MPW C

void DoDateStuff ()

{
LongDateTime lsecs;

LongDateRec ldr;

/* work around the bug */

lsecs = 0;

LongSecs2Date(&lsecs, &ldr);

/* now call LongSecs2Date for real */

}

Any String To Date

The routine String2Date was originally designed to be as forgiving as possible. It is so
forgiving that it accepts any non-alphabetic character as a separator and accepts a single number as
a valid date. For instance, if you pass_String2Date a string like “<20” it generously assumes
that the less than sign (<) is intended as a divider and that “20” must be intended as a day, since
there are only 12 months in a year. It returns a result of noErr and a date which is the twentieth
of the current month in the current year. The string ““<3*3” produces March 3 of the current year,
while “4>1” politely gives the date April 1 of the current year.

This forgiveness really is not a bug, but a feature. Unfortunately it isn’t a feature that has been
greatly appreciated in the developer community. For that reason, the rules for date and time
dividers are tighter in System 7.0. Current thinking is that all list separators now used in 'it10'
resources will be allowed with a few common date separators used in the U.S. (e.g., colon (:) and
hyphen (-)). For now, it is important to be aware of, shall we say, the flexibility of
_String2Date and avoid thinking of it as an intelligent date parser. If you want to parse

something, youcan use _Int1Tokenize.

Further Reference:
¢ Inside Macintosh, Volume V, The Script Manager
¢ The Script Manager 2.0, Interim Chapter (DTS)

2 of 2 #264: Script Manager 2.0 Date & Time Problems

Macintosh é

aa Technical Notes *

Developer Technical Support

#265: Pascal to C: PROCEDURE Parameters

Revised by: Keith Rollin August 1990
Written by: Keith Rollin February 1990

This Technical Note talks about nested procedures and PROCEDURE parameters in Pascal and what
to do when converting them into C or C++.
Changes since February 1990: Fixed some type coercion problems. |

Pascal and C offer many of the same features, but there are some differences. These differences
make converting between languages or calling libraries written in one language from the other
difficult sometimes. Two closely associated features of Pascal that C does not offer are nested
procedures and PROCEDURE parameters. Since these two features are commonly used when
programming with MacApp, the problem of implementing them in C++ is a common one.

How Pascal Implements Nested Procedures

Pascal lets programmers nest procedures within each other. Doing so allows one to limit the scope
ry of local variables, as well as allow multiple procedures access to the same set of dynamically

created variables.

Let’s take a look at the following bit 0’ code:

PROCEDURE CallBack; { Outer level procedure }

BEGIN

END;

PROCEDURE CallingProcedure; { Outer level procedure }

VAR

aVar: integer;

PROCEDURE NestedCallBack; { Nested procedure - can access “aVar” }

VAR

anotherVar: integer;

BEGIN {NestedCallBack }

aVar := 1;

anotherVar := 2;

END; {NestedCallBack }

BEGIN {CallingProcedure }

CallBack;

NestedCallBack;

END; {CallingProcedure }

SSS SSS

#265: Pascal to C: PROCEDURE Parameters 1 of 8

Macintosh Technical Notes

This code shows three Pascal procedures: CallingProcedure, CallBack, and
NestedCallBack. NestedCallBack is the nested procedure, which means that it can access
the local variables of the procedure it is nested within, namely, CallingProcedure.

The method used to allow NestedCallBack to access its host procedure’s local variables is not
so obvious and involves a little hack. As you may know, local variables are created on the stack
when a procedure is entered, and the 680x0 register A6 is initialized to point to them. Fine, but
this leads to a little conflict within NestedCallBack. It needs to use A6 to point to its own local
variables (e.g., anotherVar), so how does it access its host procedure’s local variables?

The answer, logically enough, is that it uses another register for this purpose. When
NestedCallBack is called from its host procedure, the host’s A6é is pushed onto the stack after
any and all formal parameters have been pushed on, but before the JSR is performed (this extra
parameter is often referred to as the “static link”). As NestedCall1Back is being entered, you
have a stack similar to that in Figure 1. By comparison, Figure 2 shows what the stack would
look like if you made a normal call to a procedure on the outer level, such as the procedure shown
above named CallBack.

previous contents of stack

parameters (if any)

previous contents of stack

parameters (if any)

A6 for CallingProcedure Return Address

Return Address bottom of stack

bottom of stack

Figure 1-Call to NestedCallBack & Figure 2—Call to CallBack

Each procedure knows at compile time whether it is nested or not and adjusts itself accordingly. If
it turns out that a procedure is nested, then it is compiled as if you had declared an extra parameter
at the end of the formal parameter list, one that held the value of the host’s A6. Pascal then uses
this parameter for fetching the local variables of the nested procedure’s host. It pulls this parameter
off of the stack just like any other parameter, sticks it into a handy register, and uses it as a base
address to the host’s local variables, just as it uses A6 as the base address to its own locals.

How Pascal Implements PROCEDURE Parameters

As seen in the previous section, nested procedures require a little help to get themselves up and

running. Specifically, they need an extra parameter called a static link. You've seen one way in

which Pascal provides support for this parameter. In this section, you see another important case.

There are many Toolbox routines that require a pointer to a procedure being passed to them as a

parameter. These procedures are called “callback” procedures, because the Toolbox makes a call

back to those procedures to perform some application-specific function. An example of this type

of routine would be the Control Manager routine TrackControl, which requires a callback

procedure called actionProc.

2 of 8 #265: Pascal to C: PROCEDURE Parameters

Developer Technical Support August 1990

By now, you should see why you cannot pass the address of a nested procedure to such a Toolbox
routine. Nested procedures require that they be passed the static link parameter so that they can
access their host variables. The Toolbox doesn’t support this convention, so it cannot pass the
required static link to the nested routine.

While the Toolbox doesn’t support the nested procedure convention, Pascal itself does support a
method whereby you can pass around all the information necessary to implement a callback
procedure as a nested procedure. Syntactically, this is done by including a full procedure heading
in the list of formal parameters a procedure takes. An example of such could look like the
following:

PROCEDURE SomeProcedure (PROCEDURE CallBackProc(i:integer); iterForward: BOOLEAN);

BEGIN

CallBackProc(5);

END;

SomeProcedure takes two parameters. The first is a PROCEDURE parameter that refers to a
routine that takes a parameter itself, namely, a single integer. In addition, SomeProcedure takes
a BOOLEAN called iterForward as a second parameter. You would call SomeProcedure
with something like the following:

PROCEDURE MyCallingProcedure;

PROCEDURE MyCallBackProcedure(i: integer);

BEGIN { of MyCallBackProcedure }

< mumble >;

END;

BEGIN { of MyCallingProcedure }

SomeProcedure (MyCallBackProcedure, TRUE);

END;

Through the use of the PROCEDURE parameter, you can invoke the callback procedure using a
natural Pascal syntax. In the SomeProcedure example, the statement Cal1BackProc (5)
causes MyCallBackProcedure to be called with a value of five. Not only can you just invoke
the procedure by entering the name of the PROCEDURE variable, but you can pass parameters to it
with full Pascal typechecking invoked. In this case, Pascal ensures that when you call
CallBackProc, you also pass a single integer to it.

PROCEDURE parameters also give the support for nested procedures for which you are looking.
When a PROCEDURE parameter is passed on the stack, two components are used to represent it.
The first is a pointer to the actual procedure. The second is the static link. Therefore, you can
think of a PROCEDURE parameter as being represented by the following record:

TYPE

ProcedureParameter = RECORD

procPtr: Ptr;

staticLink: Ptr;

END;

When you pass a PROCEDURE parameter to a destination procedure, both of these components are
pushed onto the stack as LONG values (four bytes each). When it comes time for the destination
procedure to invoke the callback, any necessary parameters for the callback are placed onto the
stack, followed by the stat icLink value. Then the routine specified by procPtr is called.

#265: Pascal to C: PROCEDURE Parameters 3 of 8

Macintosh Technical Notes

The step where the destination procedure pushes the static link onto the stack is important and
should be examined more closely. Specifically, how do you know that a static link parameter is
necessary at this point? After all, SomeProcedure simply declares that it takes a PROCEDURE
as a parameter; it doesn’t differentiate between nested and non-nested procedures. But, as you saw
in the first section, these two kinds of procedures are called differently. How do you know if the
the static link passed to you needs to be pushed onto the stack for the callback procedure?

The answer is that SomeP rocedure receives a special value for the static link parameter for non-
nested procedures. If the callback procedure is at the outer level, SomeP rocedure receives NIL
for the value of the static link. When Pascal compiles the commands that invoke PROCEDURE
parameters, it generates code that checks the static link. If it is NIL, it doesn’t push it onto the
stack. If it is not NIL, then you are calling a nested procedure, and must push the static link onto
the stack.

So, how do you utilize nested procedures and PROCEDURE parameters in C or C++? Obviously,
you cannot—at least not directly. C and C++ don’t support them. At this point, you might as well
just give up and use Pascal; you always said C++ was highly overrated anyway.

There are two scenarios to examine:

¢ A Pascal routine calls your C++ routine, passing a PROCEDURE parameter to
another Pascal routine you have to call.

¢ Your C++ routine calls a Pascal routine expecting a PROCEDURE parameter, which
you have implemented in C++.

The rest of the Note looks at both of these cases.

Pascal to C++ to Pascal

MacApp supports an object inspector, which it implements by calling a Fields method common
to all descendants of TObject. Each class you define should override this method so that
MacApp can find out about your class’s fields. Such a method definition would look like the
following:

PROCEDURE TJustCommand.Fields (PROCEDURE DoToField(fieldName: Str255; fieldAddr: Ptr;

fieldType: INTEGER)); OVERRIDE;

BEGIN

DoToField('TJustCommand', NIL, bClass);

DoToField('fTEView', @fTEView, bObject) ;

DoToField('fOldJust', @fOldJust, bInteger) ;

DoToField('fNewJust', @fNewJust, bInteger) ;

INHERITED Fields (DoToField) ;

END;

You tell it the name of your class so that whatever routine is calling you (usually MacApp’s
inspector or debugger) can identify the class it is inspecting. Then, for each field in your class,
you call the procedure passed to you, giving it the three parameters it needs. Finally, you call your
superclass’ Fields method so that it can identify its name and fields.

4 of 8 #265: Pascal to C: PROCEDURE Parameters

Developer Technical Support August 1990

When your Fields method is called, the DoToF ie1d parameter appears on the stack as a pointer

to the procedure you are supposed to call, as well as the static link value it needs. When you

actually call DoToField, the necessary parameters are first pushed onto the stack (i.e.,

fieldName, fieldAddr, and fieldType). Pascal then adds some code that makes a

determination based on the value of the static link parameter. If it is non-zero, then you are calling

a nested procedure and need to pass back the static link back on the stack. If static link is zero,
then you are not calling a nested procedure and don’t need to pass that static link back.

Pascal handles all of this for you transparently. This ease in Pascal makes the process of writing a
similar routine in C or C++ that much more difficult, as that process has been hidden from us.

There is no way in C or C++ to pass a variable number of parameters in one statement. In other
words, you cannot do something like the following:

DoToField("\pTJustCommand", nil, bClass, StaticLink ? StaticLink : void); /* No Workie */

That would be too easy. Instead, you must use some inline glue that prepares the stack for you.
This inline procedure accepts the three parameters you see in the Pascal version, as well as both
components of the PROCEDURE parameter (i.e., the procedure pointer and static link). The glue
looks at the static link value and removes it from the stack if it is zero and, thus, not needed.

One solution is as follows:

typedef pascal void (*FieldProcPtr) (StringPtr fieldName, Ptr fieldAddr,

short fieldType, void *DoToField StaticLink) ;

pascal void CallDoToField(StringPtr, Ptr, short, void *, FieldProcPtr)
ame |

Ox205F, // MOVEA.L (A7) +,A0 # get the DoToField pointer
Ox4A97, Vf TST 31 (A7) 7 check the StaticLink
Ox6602, // BNE.S *+$0004 + if non-zero, keep it in
Ox588F, // ADDQ.L #$4,A7 ; if zero, pull it off
0x4E90 // ISR (AO) + Call DoToField
}e

pascal void TJustCommand::Fields(FieldProcPtr DoToField, void *DoToField_ StaticLink)
{
CallDoToField("\pTJustCommand", NULL, bClass, DoToField StaticLink, DoToField) ;
CallDoToField("\pfTEView", (Ptr) &fTEView, bObject, DoToField StaticLink, DoToField) ;
CallDoToField("\pfOldJust", (Ptr) &fOldJust, bInteger, DoToField StaticLink, DoToField) ;
CallDoToField("\pfNewJust", (Ptr) &fNewJust, bInteger, DoToField StaticLink, DoToField) ;
inherited: :Fields (DoToField, DoToField StaticLink) ;

C++ to Pascal to C++

Now look at another case that occurs often in MacApp. This is where your C++ routine calls a
MacApp procedure that needs a PROCEDURE reference back to one of your own routines. For
instance, MacApp has a class called TList that allows you to maintain a list of objects. This class
has a method called Each that allows you to perform some operation on each object in the list.
MacApp takes care of iterating over all of the objects and calls a routine you pass to it for each one.

For this example, you have a list of objects stored in a TList and you want to pass the Graze
message to all of them. At the same time, you want to keep track of how many grazed so much
that they fell off a cliff during the process. If the number of objects grazing off a cliff is greater
than some threshold, then you call _SysBeep. You could use the following procedures to
accomplish this in Object Pascal:

#265: Pascal to C: PROCEDURE Parameters 5 of 8

Macintosh Technical Notes

VAR

myList: TList;

PROCEDURE TMyApplication.GrazeAll;

VAR

offTheCliff: integer;

PROCEDURE DoGraze(theObject: TObject);

BEGIN

TGrazer(theObject) .Graze;

IF TGrazer(theObject) .GrazedOffTheCliff THEN

offTheCliff := offThecliff + 1;

IF offTheCliff > SELF.fCliffThreshhold THEN

Applicat ionBeep;

END;

BEGIN

offTheCliff := 0;

myGrazerList.Each (DoGraze) ;

END;

You use a nested procedure so that DoGraze can access the local variable of fTheCliff. This
allows you to use a variable that has limited scope and that is created dynamically so that you don’t
have to allocate a global variable. Also, since DoGraze is embedded within a

TMyApplication method, you have access to the this symbol (this is the equivalent to

SELF in Object Pascal).

Therefore, the problem for C++ programmers here is that there is no implicit support for getting
access to local variables, such as of fTheCliff, as well as the reference to the correct object

through this. So what’s the alternative for C++ programmers in a case like this?

First, let’s take a quick look at how the Each method is declared:

Object Pascal

TList = OBJECT (TDynamicArray)

PROCEDURE TList.Each(PROCEDURE DoTolItem(item: TObject));

END;

C++

class TList : public TDynamicArray {

public:

virtual pascal void Each(pascal void (*DoToItem) (TObject *item, void

*DoToItem StaticLink), void *DoToItem_StaticLink);

6 of 8 #265: Pascal to C: PROCEDURE Parameters

Developer Technical Support August 1990

As you can see, the two components of the PROCEDURE parameter have to be declared explicitly
in C++. Because of this, you can come up with four different solutions to the problem, and all of
them hinge on being creative with what you pass for the static link parameter.

1. Case: You need access to this, but don’t need to access any local variables. Pass
this in DoToItem_StaticLink directly.

2. Case: You need access to a single local variable, but not SELF. Pass the reference
to that local variable in DoToItem_StaticLink.

3. Case: You need access to multiple amounts of information, including more than

one local variable and this. Pass a pointer to a struct that contains this
information.

4. Case: You don’t need access to anything from the host procedure (including local
variables and this). Pass a NIL for the static link.

Now to look at each of these in more depth.

Pass this in DoToltem_StaticLink Directly

This is the approach where you would pass this as the DoToItem_StaticLink value. You
would want to do this if you needed to access your object, but didn’t need to access any local
variables. Here’s what some C++ code would look like using this method. You pass this as the
Static link parameter and convert it back into an object reference in your callback procedure.

pascal void DoGraze(TObject* item, void* staticLink) {

TMyApplication *self;

self = (TMyApplication *) staticLink;

self->DoSomethingElse();

((TGrazer *)item)->Graze(); |

}

pascal void TMyApplication::GrazeAll() {

myGrazerList->Each(DoGraze, this);

}

Pass the Reference to a Single Local Variable in DoToItem_StaticLink

You would use this method if all you had to do was access a local variable of your host procedure.
Getting to your local variable is now just a matter of dereferencing the stat icLink parameter.

pascal void CountGrazers(TObject* item, void* staticLink) {

int *grazerCountPtr = (int *) staticLink;

++(*grazerCountPtr) ;

}

pascal void TMyApplication::GrazeAll() {

int grazerCount = 0;

myGrazerList-—>Each(CountGrazers, &grazerCount) ;

#265: Pascal to C: PROCEDURE Parameters 7 of 8

Macintosh Technical Notes

Pass a Pointer to a struct in DoToItem_StaticLink

If you need to pass multiple amounts of information, such as more than one local variable,
possibly including a reference to this, you can do so witha struct. This struct would hold
all the local variables you need to pass to the callback routine. You would declare an instance of
this struct in your local parameter list and pass a pointer to it as the static link. In your callback
procedure, you would coerce the stat icLink variable back into a Pointer to this struct,
and then get all the information you need.

An example of this could look as follows:

typedef struct {

int offTheCliff;

TMyApplication *self;

} localVars;

pascal void DoGraze(TObject* item, void* staticLink) {

localVars *hostLocals = (localVars *) staticLink;

((TGrazer *) item) ->Graze();

if ((TGrazer *)item->GrazedOffTheCliff()) {

++ (hostLocals->offTheCliff) ;

}

if (hostLocals->offTheCliff > hostLocals->self->fCliffThreshhold) {

ApplicationBeep () ;

}

}

pascal void TMyApplication::GrazeAll() {

localVars myLocals;

myLocals.self = this;

myLocals.offTheCliff = 0;

myGrazerList->Each(DoGraze, &myLocals) ;

}

Pass a Zero for the Static Link

You would do this in situations where you can get by with the formal parameters that are given to
you and don’t need to access any of your host’s local variables or the object reference. Since
passing a zero means “don’t push a static link onto the stack” in this convention, you have to adjust
the parameter list of your callback DoGraze accordingly.

| typedef pascal void (* EachProcType) (TObject *, void *);

pascal void DoGraze(TObject* item) {

| ((TGrazer *)item)->Graze();

}

pascal void TMyApplication::GrazeAll() {

myGrazerList->Each((EachProcType) DoGraze, nil);

}

Which of these methods you use is up to you.

Further Reference:
¢ MPW 3.0 Pascal Reference, Chapter 8, pp. 145-147
¢ Your dentist, twice a year

8 of 8 #265: Pascal to C: PROCEDURE Parameters

Macintosh 4

Technical Notes @.

Developer Technical Support

#266: Absolute Pointing Device Memory Structure

Revised by: Dave Fleck, Don Ko & Richard Breen April 1992
Written by: David Stevenson February 1990

This Technical Note specifies a memory data structure for use by absolute pointing devices; it was
developed for the Apple Desktop Bus (ADB) but could also be used for devices using serial input.
Generally, this data structure is created and updated by the pointing device’s driver and read by
either an application or the system cursor rendering software.

Definitions

The data structure should reside in memory allocated by the driver at installation time.

An application should attempt to access the data structure via an OpenDriver call, passing a name of
“APD” (Absolute Pointing Device). If the call is successful, a Status call should then be issued,
passing a code of 20 and a pointer to a longword where the address of the data structure will be
returned.

If the OpenDriver call fails, a GetADBInfo call should be issued as described below.

For an ADB pointing device driver, this structure should be pointed to by the “optional data area”
Pointer which is passed to_SetADBInfo. System software and application software can then
find this data structure by calling _GetADBInfo with an ADB device address of 4 and
dereferencing the data area pointer.

Pointing devices and drivers that support this data structure should indicate that they do so by
providing the following identification: the ASCII characters 'TBLT' in the tenth longword of the
header and the number of the particular version of the structure the driver supports in the version
field of the first longword of the header. Figure 1 shows the format of a longword.

PRPPrer a nav ey PTT TT OTT
31 0

Figure 1 Format of a Longword

Bit fields within a longword are specified by a-b where a is the leftmost bit and b is the rightmost
bit; for example, 7-0 specifies the fourth least significant byte in the longword.

The data structure for tablets and other absolute pointing devices consists of a 40-byte header plus
one 60-byte block per cursor. The header contains a pointer that can be used to extend this
structure to contain additional information supplied by particular devices.

#266: Absolute Pointing Device Memory Structure 1 of 7

Macintosh Technical Notes

Header

The first longword of the header consists of the following, as illustrated in Figure 2: data structure
version number, synchronization semaphore, number of cursors, update flags.

version semaphore cursors

Figure 2 Format of Header’s First Longword

An eight-bit field (version, bits 31-24) indicates the version number of the data structure format: a
value of all zeros or all ones is invalid and indicates an uninitialized or possibly corrupted data
structure; a value of 2 indicates that the format is the one here. The second eight-bit field
(semaphore, bits 23-16) is used as a semaphore to coordinate access to this data structure among
multiple processes. (There is currently no operating system support for multiple processes
synchronizing by using a semaphore.) The third eight-bit field (cursors, bits 15-8) indicates the
number of cursors on the device. Two pairs of flags are used to indicate updated information (new
attributes (a) or new data (d)): one pair (app a, bit 7, and app d, bit 6) is set by the application and

read and cleared by the device driver, while the other pair (dev a, bit 3, and dev d, bit 2) is set by

the driver and read and cleared by the application. Other bits in the fourth byte (bits 5-4 and 1-0)
must be zero.

The second longword of the header contains the resolution.

i
Figure 3 Format of Header’s Second Longword

An English and metric flag (m, bit 31) indicates whether measurements are in English (the bit is a

0) or metric (the bit is a 1) units. Other bits in the first byte (bits 30-28) must be zero. A 12-bit

field (angular, bits 27-16) indicates the angular resolution sensed by the pointing device; the value

in this field indicates the number of angular inclinations that can be sensed; the application can map

this range into a full 360°, 180°, or actual inclination range of the device (this field is meaningful

only if the orientation format reports angular measure, that is, if tilt or an attitude matrix is

supported). A 16-bit field (space, bits 15-0) specifies the spatial resolution of the device (the units

of measure used to specify the dimension of the sense area and origin offset (displacement)

longwords in the header and in the coordinate longwords in the cursor blocks: units per inch for

English and units per centimeter for metric). Thus, for example, 1000 in this field would indicate

that dimensions are specified in 0.001 inches.

The third longword of the header contains the X axis dimension of the sense area, the fourth

longword the Y axis dimension of the sense area, and the fifth longword the Z axis dimension of

the sense area. (If a tablet supports both portrait and landscape modes, this is reflected in the values

in the X and Y dimensions.)

The sixth longword of the header contains the X axis displacement of the sense area, the seventh

longword the Y axis displacement of the sense area, and the eighth longword the Z axis

displacement of the sense area. These axis displacements specify the X, Y, and Z coordinate

values, respectively, at the sense area origin. The sense area origin is at the lower left in a 2-D

sense area such as a tablet. The dimensions of the sense area are from a reference point; the

displacements are the minimum values the device returns.

2o0f 7 #266: Absolute Pointing Device Memory Structure

rN

The ninth longword of the header contains a pointer to the first byte of a block that specifies
device-specific extensions. For example, if the device is intelligent, this may point to an area that
contains a command buffer for programming the device.

The tenth longword of the header contains four ASCII characters identifying the device type, in
this case 'TBLT'.

Cursor Block

For each cursor, the following block of information is provided.

The first longword contains a transducer type, capability flags, pressure resolution, and orientation
format, as illustrated in Figure 4.

orient pressure resolution \\ S
Figure 4 Format of Cursor Block’s First Longword

The two-bit transducer type field (t, bits 29-28) specifies the pointing device: zero indicates that
the type is unknown, one indicates pen, and two indicates a cursor. Three flags (disp x, disp y,
and disp z; bits 26, 25, and 24) specify the capability to sense displacements in the X, Y, and Z
dimensions, with a one indicating the capability is present. A four-bit field (orient, bits 19-16)
indicates the format of orientation information: 0 indicates no orientation information is provided,
1 indicates an attitude matrix is supplied, 2 indicates pen tilt from vertical, and 23-20 are reserved
for additional formats. A flag (p, bit 27) indicates whether tangential pressure is sensed, with a one
indicating pressure is sensed. A 16-bit field (pressure resolution) indicates the number of pressure
levels that can be sensed; zero in this field means that pressure is not sensed. This number applies
to both normal and tangential pressure.

As illustrated in Figures 5 and 6, the second and third longwords of the cursor block contain,
respectively, the x scale and translation factors and y scale and translation factors to use when
mapping between a screen window and an area on the tablet. The scaling and translation factors are
provided by the driver. (Typically the factors are calculated from the tablet to screen mapping set
by the user.) An application can read these factors or it can save and replace them with its own.
The saved factors should be restored when the application terminates.

x scale x translation

Figure 5 Format of Cursor Block’s Second Longword

y scale y translation

Figure 6 Format of Cursor Block’s Third Longword

#266: Absolute Pointing Device Memory Structure

Developer Technical Support April 1992

3 of 7

Macintosh Technical Notes

The x and y scale factors are positive fractions (related to the zoom factor of the application) and
the translation values are such that the relation between the (mouse) cursor position and the tablet
coordinates are as follows:

mouse x = (tablet horizontal) * (x scale) + (x translation)

mouse y = -—(tablet vertical) * (y scale) + (y translation)

The negative in the y equation compensates for the different orientation of the tablet coordinate
origin and the screen coordinate origin. (Tablet horizontal is normally the x coordinate and tablet
vertical the y coordinate. See Note 1 for an example calculation.)

The fourth longword of the cursor block contains the proximity flag, cursor update flag, mouse
event flag, number of buttons, mouse-down pressure threshold, and button mask, as illustrated in
Figure 7.

Figure 7 Format of Cursor Block’s Fourth Longword

| The mouse event bit (e, bit 29) is set to 1 by the driver if any button that provides a mouse click
| function is pressed. This bit is valid only when the s bit is 0. A 1 indicates that a mouse button is

“down”; a 0 indicates all mouse buttons are “up.”

The mouse-down pressure threshold (bits 23-16) applies to a transducer capable of sensing
pressure at one or more of its switches (for example, a stylus with a pressure-sensitive tip). The
mouse-down pressure threshold value is set by the user (typically via a CDEV). It specifies the
pressure level that must be met or exceeded for a mouse-down to be posted by the driver. When
the pressure level drops below the threshold, the driver will post a mouse-up. If the pressure
resolution (longword 1, lower word) is 256 or less, the threshold value can be used without
modification. If the resolution exceeds 256, the threshold should be scaled as follows:

scaled threshold = threshold * (pressure resolution / 256)

| The proximity flag (p, bit 31) indicates whether the cursor is within the sense area (or was in
proximity the last time the data structure was updated), with a one indicating that the cursor is in
proximity. The cursor update flag (s, bit 30) is used to disable the driver from updating the system

| cursor or from posting mouse-up and mouse-down events; when this flag is set, the application
assumes this responsibility. A five-bit field (num, bits 28-24) specifies the number of buttons on
the device; a value of zero in this field indicates that the number of buttons is unknown. The button
mask (button mask, bits 15—0 corresponding to buttons 15—0) indicates which buttons are used by
the driver (for example, for system cursor control and mouse-up and mouse-down events) and
which buttons are available for application usage when the s bit is zero. A value of 0 indicates that
the button is being used by the driver; a value of 1 indicates that the button is available for use by
an application. When the s bit is 1, the activity of all buttons is reported in the button update field.
When the s bit is 0, only the activity of buttons marked as available (value of 1) in the button mask
is reported. The button mask field is intended primarily to be read by an application. An application
may alter it, but should restore it upon termination. See Note 2 for more details.

4of 7 #266: Absolute Pointing Device Memory Structure

a>

Developer Technical Support April 1992

The fifth longword of the cursor block contains the button update. The format of this longword is
illustrated in Figure 8.

} error code WK. button update

Figure 8 Format of Cursor Block’s Fifth Longword

An eight-bit field (error, bits 31-16) can be used for an error code return; a zero in this field
indicates no error (or no error code is returned). A 16-bit field (button update, bits 15-0
corresponding to buttons 15—0) encodes the active switch or switches, one switch per bit, with a
one in the bit position indicating that the button is active. By convention, for a stylus, bit zero is
identified with the tip.

The sixth longword of the cursor block contains the pressure. Two 16-bit unsigned numbers (right
justified) indicate detected pressure in normal and tangential directions. Figure 9 illustrates the
format of this longword.

Figure 9 Format of Cursor Block’s Sixth Longword

The seventh longword of the cursor block contains the time stamp. Each time this block of
information is updated, this field records the number of ticks since system startup.

The eighth, ninth, and tenth longwords of the cursor block contain the X, Y, and Z coordinates
respectively.

The eleventh through fifteenth longwords contain orientation information. For an attitude matrix,
each longword contains two 16-bit fields; nine elements can be used to construct the attitude
matrix. Aj 1 and Aj9 are in the first longword, Ay3 and Ad] are in the second, Aj and. A473 are in

the third, A3] and A359 are in the fourth, and A33 is in the fifth, as illustrated in Figure 10.

Figure 10 Attitude Matrix

#266: Absolute Pointing Device Memory Structure 5 of 7

Macintosh Technical Notes

For pen tilt, the x-tilt is in the upper 16 bits of longword nine, while the y-tilt is in the lower 16
bits; the other four longwords are unused as illustrated in Figure 11.

x-tilt y-tilt

Figure 11 X-Tilt and Y-Tilt

The tilt values are signed numbers. The tilt values range from —(angular resolution / 2) to +(angular
resolution / 2). When the pen is perpendicular to the tablet in both the x and y coordinates, the x
and y tilt values are 0.

Notes

1. The following is an example of mapping between a screen window and the tablet:

Assume that an area on the tablet with absolute coordinates (0,0), (0,10000), YO
(10000,10000), (10000,0) is to be mapped onto a screen window with
corresponding screen coordinates (0,720), (0,0), (720,0), (720,720); that is, the
tablet’s origin is in the bottom left corner while the window’s is in the top left, and
the tablet is 10,000 unit square while the window is 720 unit square. The x scale is
720/10000=0.072, as is the y scale. The value would actually be calculated using a
32 by 16 divide, with the numerator (720) in the upper 16 bits of the 32-bit
numerator (and 0 in the lower 16 bits); the result is the “fractional” part of the
division to be stored in the scale field in the memory structure. The x translation is 0
and the y translation is 720. These figures can be determined by taking the known
coordinates for a single point in both frames and solving each equation for the
following translation, using the coordinates for the tablet’s absolute origin:

O = mouse x = (0)*(.072) + x translation = 0

720 = mouse y = -(10000)*(.072) + y translation = 0

Now the tablet coordinate (1098, 253) is mapped into the window coordinate
system (79,702):

mouse x = (1098)*(.072) + 0 = 79

mouse y = -—(253)*(.072) + 720 = 702

2. An application, Control Panel device, or other (non-driver) entity may modify the
following fields:

Header, word 1: semaphore, app and dev flags;

60f 7 #266: Absolute Pointing Device Memory Structure

ee

Developer Technical Support
April 1992

Cursor Block, words 2,3: scaling and translation, and word 4: s bit, mouse-down

pressure threshold (only if deemed necessary), and button mask.

In particular, the English or metric flag in Header word 2 is established by the

driver and cannot be changed by an application, Control Panel device, or other non-

driver entity.

Setting the s bit to 1 allows the application to view the state of all buttons via the

button update field. It inhibits the driver, however, from performing any user

defined functions associated with the buttons. If an application wishes to use some

of the buttons, but leave some available for user functions, it can change the button

mask (leaving the s bit at 0). The application should save the mask before replacing

it with its own settings. Mouse events may or may not continue to be received

depending on whether the application has taken control of the mouse function

button(s). Upon termination the application should restore the button mask.

The mouse-down pressure threshold is basically intended to be a read-only field. It

indicates the user’s preference for the amount of pressure to be exerted for a mouse-

down to occur. Although it’s not advised, an application can overwrite this field

with its own value and restore it upon termination.

3. When an application terminates it should restore any parameters it may have

changed.

Further Reference:
¢ Inside Macintosh, Volume V, The Apple Desktop Bus
¢ Technical Note #206, Space Aliens Ate My Mouse (ADB—The Untold Story)
* MacDTS Sample Code #17, TbltDrvr

SS

#266: Absolute Pointing Device Memory Structure 7ot7

@&

4
Macintosh Se

Technical Notes e

Developer Technical Support

#267: TextEdit Technicalities

Revised by: Mary Burke
Written by: § Mary Burke

April 1990
February 1990

This Technical Note discusses some areas in TextEdit that have not previously been clearly
documented.
Changes since February 1990: Added a note about the changes in TextEdit for System

Software 6.0.5, documented the low-memory global TESysJust, clarified information about
text direction and _TESetJust, discussed problems with the SetWordBreak routine along
with a solution to work around it, and described the differences in dialog text item behavior.

TextEdit in 6.0.5

In addition to all the features of earlier versions, TextEdit 3.0 now allows you to take advantage of
the Script Manager’s handling of systems with more than one script system installed. TextEdit
uses the Script Manager to support such systems and now exhibits the correct behavior for editing
and displaying text in multiple styles and different scripts. Multiple scripts can even exist on a
single line due to TextEdit’s use of the Script Manager. The new version of TextEdit in 6.0.5:

handles mixed-directional text
synchronizes keyboards and fonts
handles double-byte characters
determines word boundaries and line breaks
provides outline highlighting in the background
buffers text for performance improvements
permits left justification in right-to-left directional scripts
customizes word breaking
customizes measuring

Refer to the TextEdit chapter in Inside Macintosh, Volume VI, for detailed documentation on
TextEdit 3.0. If you do not have Inside Macintosh, Volume VI, contact Developer Technical
Support at the address listed in Technical Note #0 for a copy of this documentation.

eee

#267: TextEdit Technicalities 1 of 4

Macintosh Technical Notes

The LineStarts Array and nLines

The LineStarts array is a field in a TextEdit record th i iti ; s at contains the offset position of th
character of each line. This array has the following boundary conditions: ee cme

¢ Itis a zero-based array.
* The last entry in the array must have the same value as teLength.
* The maximum number of entries is 16,000.

To determine the length of a line you can use the information contained in the LineStarts array
and nLines. For example, if you want to determine the length of line n, subtract the value
contained in entry n of the array from the value in the entry (n+1):

lengthOfLineN := myTE**.lineStarts[nt+1] - myTE**.lineStarts(n];

The terminating condition for this measurement is whenn = nLines + 1. Itis important not
to change the information contained in the array.

TESysJust

TESysJust is a low-memory global that specifies the system justification. The default value of
this global is normally based on the system script. It is -1 when a system’s default line direction is
right to left, and 0 for a default left-to-right line direction. Applications may change the value using
the Script Manager routine Set SysJust; however, these applications should save the current
value before using it and restore it before exiting the application or processing a MultiFinder
suspend event. The current value may be obtained using the Script Manager routine

GetSysJust.

Forcing Text Direction

The original TextEdit documentation introduced TESetJust with three possible choices for

justification: teJustLeft (0), teJustCenter (1), and teJustRight (-1). These choices

are appropriate for script systems that are read from left to right. However, in script systems that

are read from right to left, text is incorrectly displayed as left justified in dialog boxes and in other

areas of applications where users cannot explicitly set the justification. To fix this problem, the

behavior of teJust Left has changed to match the line direction of the system in use, which is

the value stored in TESysJust. Another constant has been added to allow an application to force

left justification: teForceLeft (-2). This constant has been available for some time, but it has

not been documented until now. If your application does not allow the user to change the

justification, then it should use teJustLeft; if it does, then it should use teForceLeft for

left justification.

A Little More on Redraw in _TESetStyle

If the redraw parameter used in _TESet Style is FALSE, line breaks, line heights, and line

ascents are not recalculated. Therefore a succeeding call to a routine using any of this information

does not reflect the new style information. For example, a call to_TEGetHeight (which returns

a total height between two specified lines) uses the line height set previous to the_TESetStyle

call. Acallto TECalText is necessary to update this information. If redraw is TRUE, the

i

2 of 4 #267: TextEdit Technicalities

Developer Technical Support April 1990

current style information is reflected. This behavior also holds for the redraw parameter in

_TEReplaceStyle.

TEDispatchRec

There is currently space reserved for four documented hooks in the TEDispatchRec:
TEEO1Hook, TEWidthHook, TEDrawHook and TEHitTestHook. The space beyond these
hooks is reserved, and any attempt to use this private area results in corrupted TextEdit data.

Custom Word Breaks

A problem exists in one of TextEdit’s advanced procedures, SetWordBreak. The current glue
code does not preserve the state of the registers correctly; however, the solution is fairly simple.
Instead of calling Set WordBreak and passing a pointer to your custom word break routine, pass
the pointer to your external glue which should call your custom word break routine. Following is
the glue code that correctly handles the registers:

WordBreakProc PROC EXPORT

IMPORT MYWORDBREAK 7Must be uppercase here

MOVEM.L D1-D2/A1,-(SP)

CLR.W - (SP) ;Space for result

MOVE.L AO, -(SP) ;Move the ptr to stack

MOVE .W DO, -(SP) ;Move the charpos to Stack

JSR MYWORDBREAK

MOVE .W (SP) +,D0 ;Set Z bit

MOVEM.L (SP) +,D1-D2/A1

RTS

ENDP

An external declaration is also necessary:

FUNCTION WordBreakProc(text: Ptr; charPos: INTEGER) : BOOLEAN; EXTERNAL;

as is the function itself. One thing that should be noted is that it is not really necessary to have
MyWordBreak boolean, but rather to have the Z bit set properly. The result of the function
should be zero when you do not want a break; otherwise, a non-zero value indicates a break is
desired.

FUNCTION MyWordBreak(text : Ptr; charPos : INTEGER) : INTEGER;

{ Your word break code here. }

For more information, refer to the TextEdit chapter of Jnside Macintosh, Volume I-380.

#267: TextEdit Technicalities 3 of 4

Macintosh Technical Notes

Static and Editable Text

The Dialog Manager depends on TextEdit to display text in dialog boxes. For an editable text field,
the Dialog Manager simply calls _TEUpdate. Before making this call, it may double the width of
the rectangle to contain the text if the height of the rectangle is sufficient for only one line and the
line direction specified by TESysJust is left to right. In this case, the Dialog Manager extends
ine rectangle on the right. Note, however, this does not occur when your line direction is right to
left.

For static text items, TextBox is used instead. When the display rectangle is not large enough.
_ TextBox clips the text to the size of the specified rectangle. To avoid the clipping problem,
simply make the display rectangle larger. If your dialog box contains both static and editable text
items, the difference in the text handling may appear inconsistent.

Further Reference:
e Inside Macintosh, Volumes I,V & VI, TextEdit
¢ Inside Macintosh, Volume V, The Script Manager
¢ Inside Macintosh, Volume I, The Dialog Manager
¢ Technical Note #207, TextEdit Changes in System 6.0

aE

4 of 4 #267: TextEdit Technicalities

oO
Macintosh “

Technical Notes s

Developer Technical Support

#268: MacinTalk—The Final Chapter

Written by: Jim Reekes February 1990

This Technical Note discusses the MacinTalk software product.

The Introduction

For the introduction of the Macintosh computer, it was decided (by the powers formerly in charge)
that such a computer would need something very special to make it a unique event. To aid in this
concept, a third-party company was contracted to write a speech synthesizer which would allow
the Macintosh computer to introduce itself. The contract was signed, and the work begun.

The outcome of this work was MacinTalk. MacinTalk is a file that can be placed into the System
Folder of an ordinary Macintosh computer and allow text to be transformed into speech for the
introduction in 1984. It was felt to be an interesting piece of software, so Apple made it available
to developers. Interfaces to MacinTalk were published and Apple Software Licensing allowed it to
be included with developers’ products.

The original project was to get a speech driver for the Macintosh, but it did not include obtaining
the source code to this driver. Apple only has exactly what it gives to developers: a file to be
copied into the System Folder, and this file cannot be changed since Apple does not have the
source code.

MacinTalk works by using a VBL task to write data directly to the sound hardware of the
Macintosh Plus and SE logic boards—a method which Apple does not support. It has only been
through the efforts of the Sound Manager that software that writes directly to this sound hardware
continues to work. MacinTalk continues to write to the hardware addresses of the Macintosh
128K logic board, but the Sound Manager and the Apple Sound Chip work together to allow
programs like MacinTalk to continue working on newer machines. The Sound Manager and the
Apple Sound Chip were introduced with the Macintosh II.

The Sound Manager watches the hardware addresses that used to be present on the Macintosh.
When the Sound Manager detects activity at one of these addresses, it goes into a “compatibility”
mode. In this mode, it routes the data to the real sound hardware, but while this is happening,
proper Sound Manager code cannot run—even the Sound Manager’s SysBeep does not work
when MacinTalk is in use. Furthermore, the compatibility mode cannot be turned off until the
application requiring it calls_ExitToShell. Even an application that uses sound properly, with
correct code, does not work if another application opens the MacinTalk driver. There are no
solutions to this incompatibility. MultiFinder and System 7.0 allow more than one application to
run concurrently, so it is possible for an older application which uses MacinTalk to limit the
features and abilities of a new and improved application.

#268: MacinTalk—The Final Chapter 1 of 2

Macintosh Technical Notes

Around the time of the Macintosh II introduction, Apple made a single hack to MacinTalk to
remove self-modifying code which caused a problem for 68020-based machines. This modified
version, known as 1.31, was available from APDA with the warning that “Apple does not provide
any support for MacinTalk. Not even to Apple Certified Developers.” While this warning is still
true and APDA continues to sell MacinTalk 1.31 as a “Class 3” product, the official Apple position
about it is: “Apple Computer, Inc. does not recommend that you use Class 3 products for
developing commercial software—they are intended for your personal enjoyment only.”

In other words, if you find MacinTalk interesting and entertaining—go ahead and purchase it.
Write some code and enjoy. However, be warned that MacinTalk should not be included as part
of any commercial product. Apple Computer, Inc. provides no support for MacinTalk other than
what is purchased with the package itself, and there will be no support in the future. Apple is
committed to providing the developer community with an array of speech technologies integrated
with the Sound Manager. In preparation for certain system software changes, such as System 7.0,
Apple does not recommend the continued use of the existing MacinTalk package.

The Surgeon General Warning

The development of MacinTalk ended with the introduction of the Macintosh in 1984. Nothing

more will be done to this product. It is a compatibility risk to use MacinTalk. It causes the Sound

Manager to fail. It will not work with the new Sound Manager planned for System 7.0. This

system revision will also introduce the new feature of virtual memory; it is not expected that

MacinTalk will work while the user has Virtual Memory running. It may not work at all with

future versions of the Macintosh hardware. Continued use of MacinTalk is a major compatibility

risk. Do not operate heavy machinery while under the influence of this product.

Further Reference:

* Inside Macintosh, Volume V, Compatibility Guidelines
* The Sound Manager, Interim Chapter (DTS)
* Technical Note #19, How to Produce Continuous Sound Without Clicking

a EEUU EIEIIIIEIIIIEISEISSIISSES ESSE

2 of 2 #268: MacinTalk—The Final Chapter

a
4 Macintosh @

Technical Notes °

Developer Technical Support

#269: 'ckid' Resource Format

Written by: Keith Rollin April 1990

This Technical Note describes the 'ckid' resource format used by MPW’s Projector. If you are
writing an editor or development system, you may wish to allow or disallow file modification
based on the information in the resource.

MPW 3.0 and greater implement a source code control system called Projector. Projector manages
sets of source code files known as projects. Users are able to check out source code, make
modifications to it, and check it back into the project. Source code can be checked out as
“modifiable” or “read-only.” Only one modifiable version of a source file is allowed to be checked
out at a time. This feature is very useful if you store your files on a server such as AppleShare;
anyone else trying to check out the same file can only check it out “read-only,” ensuring that two
people are not modifying the same file at the same time.

Note: This is an overly simplistic description of Projector. It can actually manage more
than just source code and has provisions for variations on the modifiable or read-
only scheme, such as being able to create experimental offshoots of the main source
code called branches.

MPW attaches Projector information to checked out files by adding 'ckid' resources to them.
This resource contains information such as to what project the file is attached, when the file was
checked out, who checked it out, and whether or not it was checked out read-only. If it is checked
out read-only, the MPW Shell takes note of this, and does not allow the user to edit the file.

If you are working on a development or source code editing system, then you may wish to respect
the 'ckid' resource. At the very least, this means not deleting it. When saving changes to an
existing file, some applications write the modified data to a temporary file, delete the old file, and
rename the temporary file to have the same name as the original. Unfortunately, this deletes the
'ckid" resource, preventing the user from checking their file back into the Projector database.
aes saving files with this technique should transfer the resource over before deleting the
old file.

If you want to include more support for the resource, you could prevent the user from making
changes if the file is checked out read-only. This can be done by reading the 'ckid" resource
and looking at the appropriate fields. The entire format of the 'ckid' resource is appended to the
end of this Note. You should be interested in only four fields of the resource:

version This two-byte field holds the version number of the 'ckid!'
resource. The current version number is 4. The information
presented in this Note is valid for this version number only. Any
attempt to apply the information presented here to a 'ckid'
resource with a different version would be bad.

OO eee

#269: 'ckid' Resource Format lof 5

Macintosh Technical Notes

checkSum This four-byte field holds a checksum to validate the rest of the
resource. It is generated by summing all the subsequent longwords
in the resource handle, skipping the checksum field itself and any
extra bytes at the end that don’t compose a longword.

readOnly This two-byte field indicates whether the attached file is checked out
for modifications or not. If the file is not checked out for
modifications, this field contains a zero. If the file is modifiable,
this field is non-zero and contains special version information for
Projector.

modifyReadOnly This one-byte field provides a limited override to the readOnly
field. Sometimes it is desirable to be able to modify a file that has
been checked out read-only. One may want to do this if they have a
file checked out read-only, but later decide to make modifications to
it and no longer have access to the Projector database to check out a
modifiable version. Under MPW, the user can execute the

ModifyReadOnly command. This sets the modifyReadOnly
field to non-zero, indicating that the file can be edited, even though it

is checked out read-only.

In your application, you may wish to inhibit modifications to a file if it has a 'ckid"' resource and

has been checked out read-only. In addition, as a convenience to your customers, you may wish

to include a ModifyReadOnly feature of your own. To do this, you would need to set the

modifyReadOn1y field to non-zero and recalculate the checksum.

The following routines can help perform these functions. CKIDIsModifiable takes a handle to

a 'ckid' resource and returns TRUE if it indicates that the file is modifiable and FALSE

otherwise. HandleCheckSum takes a handle toa 'ckid' resource and returns a calculated

checksum.

MPW Pascal

TYPE

CKIDRec = PACKED RECORD

checkSum: LONGINT;

Loc: LONGINT;

version: INTEGER;

readOnly: INTEGER;

branch: BYTE;

modifyReadOnly: Boolean;

{ There’s more, but this is all we need }

END;

CKIDPtr = “CKIDRec;

CKIDHandle = *CKIDPtr;

FUNCTION CKIDIsModifiable(ckid: CKIDHandle): Boolean;

BEGIN

IF ckid = NIL THEN

CKIDIsModifiable := TRUE

ELSE

WITH ckid** DO

CKIDIsModifiable := (readOnly <> 0) |

((readOnly = 0) & modifyReadOnly);

END;

2 of 5 #269: 'ckid’ Resource Format

Developer Technical Support
April 1990

FUNCTION HandleCheckSum(h: Handle): LONGINT;

VAR

sum: LONGINT;

size: LONGINT;

p: LongintPtr;

BEGIN

sum := 0;

size := (GetHandleSize(h) DIV SizeOf(LONGINT)) - 1;

p := LongintPtr(h*%);

p := LongintPtr(ORD(p) + SizeOf(LONGINT)); { skip over first long

WHILE (size > 0) DO BEGIN

(checksum field) }

size := size - 1;

sum := sum + p%;

p := LongintPtr(ORD(p) + SizeOf(LONGINT));

END;

HandleCheckSum := sum;

END;

MPW C

typedef unsigned long uLong;

typedef struct {

uLong checkSum;

long LOC;

short version;

short readOnly;

char branch;

Boolean modifyReadOnly;

/* There’s more, but this is all we need */

} CKIDRec, *CKIDPtr, **CKIDHandle;

pascal Boolean CKIDIsModifiable(CKIDHandle ckid)

{
if (ckid == nil)

return (true);

else

return(((**ckid).readOnly != 0) ||

(((**ckid) .readOnly == 0) &&

}

pascal uLong HandleCheckSum(Handle h)

{

(**ckid) .modifyReadOnly));

long size;

uLong sum = 0;

uLong *p;

size = (GetHandleSize(h) / sizeof(long)) - 1;

Pp = (uLong *) *h;

ptt; /* skip over first long (checksum field) */

while (size-- > 0) {

sum += *p++;

}

return (sum) ;

i

#269: 'ckid' Resource Format 3 of 5

Macintosh Technical Notes

If you wanted to include a Modi
Pascal fragment:

h :=

IF (h <> NIL) &

h**.modifyReadOnly :=

h**.checkSum :=

END;

‘ckid' Resource format

CKIDHandle (Get1Resource('ckid',

(h**.version

TRUE;

HandleCheckSum (Handle (h));

ChangedResource (Handle (h));

fyReadOnly function, you could use something like the following

128));

= 4) THEN BEGIN

This MPW Rez resource template is for your application’s information only. It is valid only for
version 4 of the resource. Please do not write to this resource or create one of your own. If you
feel that you need to change fields in the resource, then limit yourself to the checkSum and
modifyReadOn1y fields, and only if the version field is equal to 4. This resource format
will change in the future.

type 'ckid'

{
unsigned longint; /* checkSum */

unsigned longint LOC = 1071985200; /* location identifier */

integer version = 4; /* ckid version number */

integer readOnly = 0; /* Check out state, if = 0 it is modifiable */

Byte noBranch = 0; /* if modifiable & Byte != 0 then branch was made

on check out */
Byte clean = 0,

MODIFIED = 1; /* did user execute “ModifyReadOnly” on this file? */

unsigned longint UNUSED; /* not used */

unsigned longint; /* date and time of checkout */

unsigned longint; /* mod date of file */

unsigned longint; /* PIDwa *7

unsigned longint; /* PID.b */

integer; /* user ID */

integer; /* file ID */

integer; /* rev ID */

pstring; /* Project path */

Byte = 0;

pstring; /* User name */

Byte = 0;

pstring; /* Revision number */

Byte = 0;

pstring; /* File name */

Byte = 0;

pstring; /* task */

Byte = 0;

wstring; /* comment */

Byte = 0;

4o0f5 #269: 'ckid' Resource Format

Developer Technical Support
April 1990

Notes

The branch field (field 5) holds the letter of this branch (i.e., “a”, “b”, “c”, etc.). It holds zero if

this revision is on the main branch.

PID is the Project ID. It is generated using a combination of the tick count and time on your

computer in a way that should be sufficient to generate unique Project IDs for every project ever

created.

The pst ring and wst ring fields are variable length fields (pst ring is a string preceded by a

length BYTE, while wst ring is a string preceded by a length WORD), which means that you

cannot directly represent this resource with a RECORD in Pascal or struct in C.

Further Reference:
* Macintosh Programmer’s WorkShop 3.0 Reference, Chapter 7,

Projector: Project Management

ee ee ee eee eee ee ee ee

#269: 'ckid' Resource Format 5 of 5 te)

Macintosh 4

Technical Notes @.

Developer Technical Support

#270: AppleTalk Timers Explained

Written by: | Sriram Subramanian & Pete Helme April 1990

This Technical Note explains how to effectively use timers and retry mechanisms of the various
AppleTalk protocols to achieve maximum performance on an internet.

The most fundamental service in an AppleTalk internet is the Data Delivery Protocol (DDP), which
provides a best-effort, connectionless, packet delivery system. A sequence of packets sent using
DDP on an AppleTalk internet between a pair of machines may traverse a single high-speed
Ethernet network or it may wind across multiple intermediate data links such as LocalTalk,
TokenRing, etc., which are connected by routers. Some packet loss is always inevitable because
of the loosely coupled nature of the underlying networks. Even on a single high-speed Ethernet
network, packets can be lost due to collisions or a busy destination node. The AppleTalk
Transaction Protocol (ATP), the AppleTalk Data Stream Protocol (ADSP), and other high-level
protocols protect again packet loss and ensure reliability by using positive acknowledgement with
packet retransmission mechanism.

The basic transaction process in ATP consists of a client in a requesting node sending a
Transaction Request (TReq) packet to a client in a responding node. The client in the responding
node is expected to service the request and generate a Transaction Response (TResp) packet, which
also serves as an acknowledgement. The ATP process in the requesting node also starts a timer
when it sends a packet and retransmits a packet if the timer expires before a response arrives. Ina
large internet with multiple gateways, it is impossible to know how quickly acknowledgements
may return to the requestor. If you set the retry time to be too small, you may be retransmitting a
request while a delayed response is en route, but if you wait too long to retransmit a request,
application performance may suffer. More importantly, the delay at each gateway depends upon
the traffic, so the time required to transmit a packet and receive an acknowledgement varies from
One instant to another. To further complicate matters, two packets sent back to back could take
completely different routes to the destination.

Selecting ATP Retry Time And Retry Count

You can use the round trip time for a transaction as a heuristic for setting the retry time and retry
count. The round trip time between two nodes in a particular internet at a particular time is usually
deterministic.

The easiest way to set the retry time is to assign a static value based on the round trip time for a
transaction. The AppleTalk Echo Protocol (AEP) can be used to obtain the round trip time in a
given moment between two nodes. AEP is implemented in each node as a DDP client residing on
Statically-assigned socket number four. You should use DDP to send AEP requests through any
socket that is available. You can listen for AEP responses by implementing a socket listener. The
following code is an example AEP socket listener.

a

#270: AppleTalk Timers Explained 1 of 5

Macintosh Technical Notes

™

oN. ;

7 EchoDude y

? x)

+ 3/90 pvh - MacDTS

+ ©1990 Apple Computer, Inc.

#7 The following MPW Asm code is a socket listener for reading in returned Echo
+ (DDP type 4) packets.

+ The target device was shipped a packet with a 'l' in the first byte of the data area

+ by way of a DDPWrite. It was sent to socket 4, the Echoer socket. If the target

; device has an Echoer, it will send a return packet to us of equal size except it

; will have replaced the '1l' in the first byte with the value '2'. This indicates an

EchoReply packet.

The listener itself (RcvEcho) is added with a POpenSkt (Inside Mac V-513) call by

+ passing the address of the listener in the listener field of the parameter block.

; All we really are trying to accomplish here is to set up a notification for returned

; packets from the target Echoer. A time (Ticks) is stuffed into a location

; our app can find (actually back into the packet buffer) and will be used to

; calculate round trips times. We'll also save off the hop count from the packet

; header for fun too since I have nothing better to do with my time on weekends.

; More could be done with this listener as far as making sure that we are only

; receiving back a packet from the node we sent it to etc.... but we can't

+ encompass everything in a sample. Okay, well we could... but we have to leave

+ something for you guys to do.

; It should be noted that careful preservation of register A5 is necessary.

; LAP requires that A5 be preserved AFTER the call to ReadRest. i.e. you =

; cannot save A5 onto the stack when your socket listener is entered, call ReadRest

; and then restore AS from the stack and exit. Wah. LAP requires that the address VY
; Placed in A5 during ReadRest be there when your socket listener is exited.

; So. if you need a different A5 after the call to ReadRest make sure you restore

; it before RTS-ing back the caller.

e-

Called:

AO,A1,D1 : Preserve until after ReadRest

i; A2 -> MPP local variables

? A3 -> RHA after DDP header

‘ A4 -> ReadPacket, 2(A4) -> ReadRest

; AS Useable until ReadRest

; A6,D4-D7 : Preserve across call

, ee ETEEEEEEIIIEISINSISISSSSSSSSSSSSSSS nn

EchoSkt EQU 4 ; Echo socket number

EP EQU 4 ; EP DDP protocol type

EPReq EQU 1 ; Code for echo request

2 EPReply EQU ; Code for echo reply

i

2 of 5 #270: AppleTalk Timers Explained

Developer Technical Support April 1990

Read the packet into the echo buffer

Se Ne Ne

RevEcho PROC EXPORT

EXPORT our_A5 : CODE

EXPORT our Buff : CODE

IMPORT GBOB: DATA

BRA.S checkEcho

our_A5S

Dc.L 0

our_Buff

Dc.L 0

our_Hops

DC.W 0

our_Ticks

pc.L 0

checkEcho

CMP .B #EP,- (A3) ; Make sure it's an echo packet

BNE.S RevEIgnore + Ignore it if not

LEA toRHA(A2), A3 ; top of RHA

CLR.L D2 ; clean up D2

MOVE .B lapType(A3), D2 ; lap type

CMP .B #longDDP, D2 ; check for long header (Type #2 packet)

BNE.S noHops 7; wah... no hops if short packet

MOVE .B lapType+1(A3), D2 ; this is the hop count byte, lst byte in DDP header

AND .B #$3C, D2 + mask to middle 4 bits of byte for hop count

; Ix tl xtlHiotPISsStxi{ xi

ASR.B #2, D2 7 shift 2 bits to right

LEA our_Hops, A3 ; address of our storage

MOVE.B D2, (A3) ; move # of hops into our storage

noHops

MOVE.W #DDPMaxData, D3 ; our buffer is #DDPMaxData in size

LEA our_Buff, A3 + address of buffer to read packet into

MOVE.L (A3), A3 7 set buffer

JSR 2 (A4) ; ReadRest of packet into buffer

BEQ.S RevEchoReply ; If no error, continue

BRA.S RevEchoFail ; dang...

RcvEIgnore

CLR D3 ; Set to ignore packet

JMP 2 (A4) 7 Ignore it, ReadRest and return

BRA.S RevEchoFail

RevEchoReply

CMP .B #EPReply, -DDPMaxData (A3) ; make sure it's our reply packet

7 it shouldn't be anything else, but check

; just in case

BNE.S RevEchoFail 7 if not our reply then blow

MOVE.L AS, D2 7 save dude in D2

LEA our_AS, A5 ; address of our A5 local storage

MOVE.L (AS), AS # make AS our AS for application global use

MOVE.B #1, GBOB(AS) 7 set flag confirming reception of

7 echo reply packet

LEA our Buff, A3 ; address of our local buffer storage into A3

MOVE.L (A3), A3 ? get saved pointer and set buffer.

LEA our_Hops, A5 7 address of hops local storage... notice we

; are TRASHING A5 with this!!!!!

MOVE .W (A5), (A3)+ + copy in hop count to buffer

MOVE.L Ticks, (A3) * next copy in Ticks

MOVE.L D2, AS ; restore dude

RTS 7; return to caller

RevEchoFail

RTS ; return to caller

ENDP

#270: AppleTalk Timers Explained 3 of S

Macintosh Technical Notes

setUpSktListener PROC EXPORT

IMPORT our_A5 : CODE

IMPORT our Buff : CODE

LEA our_A5, AO
MOVE.L CurrentA5, (AO)

this copies

this copies CurrentA5 into our local

storage for global use in the listener

max size of data in a packet Se Me Ne Ne MOVE .W #DDPMaxData, DO

_NewPtr CLEAR

BNE.S setUpFailed if NIL then forget it ™

LEA our Buff, Al

MOVE.L AO, (Al)

MOVE .L AO, DO

RTS

setUpFailed

CLR.L DO

we need to save the pointer reference

in a place the listener can find it

return value to caller

sete

™ tell caller we failed by returning nil

; (caller expecting valid ptr returned)

RTS

ENDP

END

We now resume our regular programming...

You should typically get an AEP response packet within a few milliseconds. If there is no
response for a period of time, typically about 10 seconds, you should resend your AEP request to
account for a lost request or lost packets. To be really safe, you should resend your AEP request
with different data to take into account the response to the first packet coming back later. The retry
time could then be simply set to k*Round_Trip Time, where the value of k depends upon the
request semantics, like total data size.

This technique of statically setting the retry time is not adequate to accommodate the varying delays
encountered in a internet environment at different times. You could dynamically adjust the retry
time based on an adaptive retransmission algorithm that continuously monitors round trip times and
adjusts its timeout parameter accordingly. To implement an adaptive algorithm, you can record the
round trip time for each transaction. One common technique is to keep the average round trip time
as a weighted average and use new round trip times from transactions to change the average
slowly. For example, one averaging technique! uses a constant weighing factor, q, whereO < q
< 1, to weigh the oldest average against the latest round trip time:

W_aver = (q * W_aver) + ((1 - q) * New_Round_Trip_Time)

Choosing a value for q close to 1 makes the weighted average immune to changes that last a short
time. Choosing a value for q close to 0 makes the weighted average respond to changes in the
delay very quickly.

The total time (i.e., retry time * retry count) before a request is concluded as failed
could be anywhere from 10 seconds to a couple of minutes, depending on the type of the client
application and the relative distance between the source and the destination.

1 Douglass Corner, InterNetworking with TCP/IP.
KARN, P. and C. PARTRIDGE [August 1987], “Improving Round-Trip Time Estimates in Reliable Transport

Protocols”, Proceedings of ACM SIGCOMM 1987.

4of 5 #270: AppleTalk Timers Explained

Developer Technical Support April 1990

NBP Retry Counts

You cannot really use the AEP to estimate round trip times for NBP packets because you need to
use NBP to determine the internet address of the node from which an echo is being sought. In this
case, you have to use the type of device that you are looking for as a heuristic for setting the retry
count. The LaserWriter, for example, may be busy and not respond to a LkUp packet. In such a
case, you might want to do a quick lookup to return a partial list to the user like the Chooser. You
could then do a longer lookup to get a more complete list of mappings. You should use a “back
off’ algorithm to make the subsequent lookups further apart to generate progressively less traffic.
Name lookups are expensive and produce a lot of network traffic, and name confirmation is the
recommended call to use when confirming mappings obtained through early bindings. Because
Name lookups are expensive, you should avoid searching all the zones in the internet.

Setting TRel Timer in SendRequest

AppleTalk Phase 2 drivers allow you to set the TRel timer in SendRequest or NSendRequest
calls with ATP XO (exactly once) service so as not to be locked into the pre-AppleTalk Phase 2
time of 30 seconds. You should set this timer based on the round trip time. Generally, if the
round trip time is less than one second, the default TRel time setting of 30 seconds is adequate. If
the round trip time is more, you can increase the TRel time proportionately.

xppTimeout and xppRetry

The two ZIP calls, Get ZoneList and Get LocalZones, made on the .XPP driver contain the
ATP retry interval (in seconds) and count, in the xppTimeout and xppRet ry parameters. Both
these functions are ATP request-response transactions between a node and a router on the network
to which the requesting node is attached. The round trp is relatively short for this transaction, and
you should have very small values of xppTimeout and xppRetry, typically two and three,
respectively.

Further Reference:
¢ Inside AppleTalk
¢ Inside Macintosh, Volumes II & V, The AppleTalk Manager
* Technical Note #9, Will Your AppleTalk Application Support Internets?
¢ Technical Note #250, AppleTalk Phase 2 on the Macintosh

#270: AppleTalk Timers Explained 5 of 5

@

Macintosh U
Technical Notes @.

Developer Technical Support

#271: Macintosh IIfx: The Inside Story

Written by: — Rich “I See Colors” Collyer February 1990

This Technical Note addresses various areas of potential incompatibilities with the Macintosh IIfx
and current software applications and provides information about some of Apple’s compatibility
software updates.

What?’s Inside

On the Macintosh IIfx, the CPU no longer handles I/O operations like floppy disk access, SCC
access, and mouse events. Instead of the CPU doing all of the work, the IIfx contains a couple of
separate I/O processors, Apple custom ASICs, to handle all floppy disk, mouse, and SCC I/O.
With the advent of these new I/O processors (IOP), the IIfx can handle smooth cursor movement
and time consuming disk operations simultaneously. These new IOPs are just an example of the
new capability of this machine.

Each of the following sections talks about the changes and added functionality which makes life
difficult for some types of applications. The IOPs in the IIfx cause some applications problems,
and this Note shows why certain techniques no longer work and provides solutions to work
around these incompatibilities where possible. A few additional sections provide information
about updated System Software or peripheral software from Apple which the IIfx requires for
operation.

ADB

Applications which depend upon direct access to the ADB transceiver or its VIA registers do not
work with the IIfx, because the IOP which now handles ADB is not available for direct access. As
in the past, the hardware is subject to change, and applications which access it directly break when
new hardware is introduced. There is no solution for applications which try to directly access the
ADB hardware; these applications must now use the ADB Manager or they cannot run on the IIfx
and future Macintosh models.

CD-ROM Driver

To use the AppleCD SC with a Macintosh IIfx (and IIci), you must use version 3.0.1 or later of
the Apple CD-ROM drivers. Earlier versions of this driver are incompatible with this hardware.
You can obtain a copy of this driver from any authorized Apple dealer, the Developer CD Series,
AppleLink (Developer Services: Macintosh Developer Technical Support: Peripheral Software),
and the Apple FTP site on the Internet (Apple.COM under ~ftp/pub/dts/sw.license/).

#271: Macintosh IIfx: The Inside Story lof5

Macintosh Technical Notes

EtherTalk Driver (.ENET)

To use the Apple EtherTalk card with a Macintosh IIfx, you should use version 2.0.2 of the
EtherTalk driver. Earlier versions of this driver do not perform as well with this hardware. You
can obtain a copy of this driver from any authorized Apple dealer, the Developer CD Series,
AppleLink (Developer Services: Macintosh Developer Technical Support: Peripheral Software),
and the Apple FTP site on the Internet (Apple.COM under ~ftp/pub/dts/sw.license/).

MacsBug

To use MacsBug with a Macintosh IIfx, you must use version 6.2. Earlier versions of MacsBug
are incompatible with this hardware. You can obtain a copy of MacsBug 6.2 from APDA, the
Developer CD Series, and AppleLink (Developer Services: Macintosh Developer Technical
Support: Tools: MacsBug).

NuBus

If the Macintosh IIfx executes a Read-Modify-Write NuBus™ code sequence to a card (i.e., TAS or

test and set) and immediately follows it with a regular cycle Read or Write, the system hangs. The

solution to this problem is to execute five NOP instructions between the TAS and the next cycle.

This number of NOP instructions should also handle future accelerations of the CPU clock, should

Apple decide to further accelerate it.

SADE MultiFinder

To use SADE with a Macintosh IIfx, you must use version 6.1b9 of MultiFinder with the Set

Aside feature. Earlier versions of MultiFinder are incompatible with SADE on this hardware. You

can obtain a copy of MultiFinder 6.1b9 from APDA with SADE 1.1, the Developer CD Series, and

AppleLink (Developer Services: Macintosh Developer Technical Support: Tools: SADE

MultiFinder). Developers may not distribute MultiFinder 6.1bx to customers, even if licensed to

distribute Apple’s Macintosh System Software.

SCC

Like the processor which controls floppy disk and ADB 1/O, the IIfx has another ASIC to control

the SCC, but unlike the former, this processor is capable of running in a special “IOP Bypass”

mode which allows direct access to the SCC.

The new SCC architecture also contains a few other differences from the previous architecture. On

the IIfx, there is no longer a VIA line available for monitoring the Wait/Request signal of the SCC.

Applications which depend upon this bit have no solution to this problem and are incompatible

with the IIfx. In addition, on the IIfx the vSync bit (which has been available since the Macintosh

SE) has moved to a new location; however, Apple is providing developers with a trap call

(_ HWP riv) which allows applications to enable or disable this bit in its new location, thereby

providing a solution for applications which depend upon this bit. For more information on this

trap call, see the vSync Bit section later in this Note. Technical Note #261, Cache As Cache Can,

also addresses HWPriv.

a

2 of 5 #271: Macintosh IIfx: The Inside Story

Developer Technical Support April 1990

IIfx Serial Switch cdev

If an application requires direct access to the SCC, then you should license the IIfx Serial Switch
cdev from Apple Software Licensing. The native mode of the IIfx uses a special processor to
handle all SCC work, thus increasing overall machine performance by offloading this task from the
CPU. However, applications must sacrifice direct SCC access for this performance gain. The IIfx
Serial Switch cdev allows applications which must directly access the SCC to bypass the processor
while sacrificing the increased performance.

This cdev sets a bit in parameter RAM which the IIfx checks during startup. If “Faster” mode is
chosen (default), then the IIfx uses the special processor, but if “Compatibility” mode is chosen,
then the IIfx lets the CPU handle SCC processing, which allows direct access. To license this
cdev, contact:

Apple Software Licensing
Apple Computer, Inc.
20525 Mariani Avenue, M/S 38-I
Cupertino, CA 95014
(408) 974-4667
AppleLink: Sw.License
Internet: Sw.License@AppleLink.Apple.com

There is no way for an application to determine in which mode it is running; therefore, if the
machine is in “Faster” mode and an application attempts a direct call to the SCC, the machine
crashes.

Wait/Request Bit

On previous Macintosh models, there is a Wait/Request bit on the VIA1 register A for monitoring
incoming serial data while the Macintosh is busy with some other operation. When the SCC
receives a character, it sets this bit in the VIA, which tells the operating system that the SCC needs
attention. Since the IIfx has a dedicated processor for SCC transactions, it has no need for this
mechanism. Even if a machine is using the IOP Bypass mode to directly access the SCC, this line
is not active, so applications which rely upon it are incompatible with the IIfx. For more
information about this bit, refer to the Guide to the Macintosh Family Hardware, Second Edition.

vSync Bit

The _HWPriv ($A198, selector 7) routine enables or disables external SCC clocking. The
external clock comes to the SCC through the RTxC signal, which is connected to the GPi pin on
the serial port connector. This routine is used instead of writing directly to the vSync bit on VIA1
(which is not implemented on the IIfx), and it is backpatched into all previous CPUs, except the
Macintosh Plus, which does not support external clocking. _HWPriv only works in IOP Bypass
mode on the IIfx, and is documented below for your convenience:

Entry:

dO.1 = routine selector = 7

a0.1 = <port number>.w <enable/disable ext clock>.w

23-16: port number 0 = port A, 1 = port B,... for future expansion

15-0 : 0 = internal clocking, 1 =, external clocking

Exit:

dO.1 = zero if good, -1 if error

a0.l1 = <port number>.w <last state of external clock>.w

#271: Macintosh IIfx: The Inside Story 3 of S

Macintosh Technical Notes

Synchronous SCC I/O

If an application expects to make synchronous SCC I/O calls with interrupts turned off, it does not
work on the IIfx, because the new IOP serial driver uses the Deferred Task Manager, which is
interrupt driven. If an application tries to do something like communicate with the IOP SCC driver
when interrupts are turned off, the IIfx hangs.

SCSI

The Macintosh IIfx may cause developers problems in two areas which deal with the SCSI
interface. The first are the SCSI low-memory globals. A few applications rely upon
undocumented low-memory globals which point to addresses in the SCSI controller chip;
however, on the Macintosh IIfx, these globals now point to an entirely different area. If an
application depends upon these globals, it either does nothing or crashes on the IIfx. The second
problem deals with SCSI termination. For more information about SCSI termination on the
Macintosh IIfx and how it differs from previous Macintosh models, refer to Technical Note #273,

SCSI Termination.

In addition, although the IIfx hardware has SCSI DMA capability, the Macintosh System Software
does not yet take advantage of it. Apple recommends that you wait until the Macintosh System
Software implements support for the IIfx SCSI DMA to use this hardware feature.

SWIM

On the IIfx, the floppy disk controller, the SWIM, is not directly accessible; instead, the IIfx has a
processor which handles all floppy drive access. This processor, an Apple custom ASIC, is not
accessible to third-party developers. The I/O processing hardware is subject to change, and
applications which attempt to access it directly are likely to break when new hardware is
introduced.

Apple has always recommended against direct hardware access, but some applications do it
anyway, and these applications now have problems with the new IIfx hardware. The most
common reason these applications access the hardware directly is to move hidden information to
and from the disk. As a partial solution to this problem, the IIfx includes a new version of the
Sony driver which allows applications to make a control call to get raw data from the disk. For
more information on this new driver and control call, refer to Technical Note #272, What Your

Sony Drives For You.

Asynchronous Disk I/O

If an application expects to make asynchronous I/O calls to the Sony driver with interrupts turned
off, it does not work on the IIfx, because the new IOP drivers are interrupt driven. If an
application tries to do something like open a resource when interrupts are turned off, the IIfx
hangs.

4 of 5 #271: Macintosh IIfx: The Inside Story

YO

Developer Technical Support
April 1990

VIA2

All of the functionality of VIA2 has been moved to other chips in Macintosh Ilfx, so if an

application depends on VIA2 registers, it must find a different way to get the information for which

it is looking to be compatible with the IIfx.

This is What Makes a “Wicked Fast” Macintosh

The basic message of this Note is that if developers directly access Macintosh hardware, their

applications are likely to break on new hardware like the Macintosh IIfx. If an application is
having compatibility problems with the IIfx, they are probably due to one of these documented
changes, and this Note should help provide the necessary solutions where they are available. If an
application is having compatibility problems with the IIfx and they are not related to one of these
areas, then qualified developers should contact Developer Technical Support for help in tracking
down the problem.

Further Reference:

°* Guide to the Macintosh Family Hardware, Second Edition
Inside Macintosh, Volume V, Compatibility Guidelines
Inside Macintosh, Volume V, Deferred Task Manager
Technical Note #2, Compatibility Guidelines
Technical Note #117, Compatibility: Why and How
Technical Note #129, _SysEnvirons: System 6.0 and Beyond
Technical Note #261, Cache as Cache Can.
Technical Note #272, What Your Sony Drives For You.
Technical Note #273, SCSI Termination e e e e e e e e

NuBus is a trademark of Texas Instruments.

eee

#271: Macintosh IIfx: The Inside Story 5 of 5

Ul
Macintosh a

Technical Notes -

Developer Technical Support

#272: What Your Sony Drives For You

Revised by: Rich “I See Colors” Collyer & Cameron Birse June 1990

Written by: Rich “I See Colors” Collyer & Cameron Birse April 1990

This Technical Note discusses the Sony driver control and status calls that are available on the

Macintosh.
Changes since April 1990: Corrected Figure 2, since the Return Physical Drive Icon

(csCode = 21) returns an error message instead of an icon on the Macintosh Plus.

This Note covers the external (software) interface to the Sony 3.5” floppy disk and Hard Disk 20

driver. It describes all the new calls, including those for Modified Frequency Modulation (MFM)

driver versions. This discussion assumes a general understanding of the operation of Macintosh

drivers. As all of these calls are not available on all Macintosh models, the following table shows

which calls are available on which models:

All Read, Write, Kill, Eject, Set Tag Buffer, Drive

Status

128K and later ROMs Verify Disk, Format Disk, Track Cache Control,
Return Physical Drive Icon

256K and later ROMS Return Media Icon, Return Drive Info
SuperDrive equipped Return Format List
IIfx only Diagnostic Raw Track Dump

Prime (Read & Write) Calls

Read and write calls to Macintosh drivers are described in general in Jnside Macintosh, Volume II,
The Device Manager, but for completeness, this discussion also includes them. The Device
Manager prime routines expect to have the following fields set up in the I/O parameter block:

ioCompletion pointer to a completion routine (asynchronous calls) or NIL
(synchronous calls)

ioVRefNum drive number (for device calls) or volume reference number
(for file system calls)

ioRefNum driver’s reference number (-5 for floppy disks or -2 for Hard
Disk 20)

ioBuffer pointer to the location in memory where data is read to or
written from

ioReqCount number of bytes to read from or write to the disk
ioPosMode tells what the absolute starting point is: beginning, end, or

net location (bit 6 is set to 1 to do a read-verify instead of
area

ioPosOffset offset in bytes relative to the Starting point in ioPosMode

a ae ee ne are a oe eS

#272: What Your Sony Drives For You 1 of 11

Macintosh Technical Notes

When you make a call to the Sony driver’s prime routine, register AO points to this I/O parameter block and register A1 points to the driver’s Device Control Entry (DCE). The Device Manager sets the ioTrap field of the parameter block to either $A002 for a read request or $A003 for a write request, so the driver can determine the appropriate action. The Device Manager also sets the a. field of the driver’s DCE to the startin g byte offset relative to the beginning of e disk.

You can call the Sony driver either synchronously or asynchronously; however, making an immediate “mode” call to the driver causes it to bomb. The driver begins a read or write request,
retums control to the caller (either the user (asynchronous) or the Device Manager (synchronous)),
then completes the request asynchronously at the interrupt level. When the request is completed or
aborted, the driver returns one of the followin g result codes:

_ SSS
noErr 0 noerror
wPrErr -44 diskette is write protected
paramErr -50 — some of the requested blocks are past the end of the

disk or ioReqCount is not an even multiple of 512
bytes

nsDrvErr -56 no such drive number
noDriveErr -64 — drive not installed
offLinErr -65 read or write request made to an ejected disk
noNybErr -66 could not find five nibbles in 200 tries (Group Coded

Recording (GCR)) or byte timeout (MFM)

noAdrMkErr -67 could not find a valid address mark
dataVerErr -68 read verify compare failed
badCkSmErr -69 address mark checksum was incorrect
badBtSlpErr -70 one of the address mark bit slip nibbles was incorrect

(GCR)
noDtaMkErr -71 could not find a data mark header
badDCkSum -72 bad data mark checksum
badDBtSlp -73 one of the data mark bit slip nibbles was incorrect

(GCR)
wrUnderRun -74 could not write fast enough to keep up with the IWM
cantStepErr -75. step handshake failed during seek
tkOBadErr -76 track zero detect sensor does not change during a

head recalibration
init IWMErr -77 unable to initialize IWM
twoSideErr -78 tried to read a double-sided disk on a single-sided

drive
spdAdjErr -79 unable to correctly adjust the drive speed (GCR,

400K drives only)
seekErr -80 wrong track number read in a sector’s address field
sectNFErr -81 sector number never found on a track

a
 LS—S—e—

2 of 11 #272: What Your Sony Drives For You

U

Developer Technical Support June 1990

Control Calls

Control calls perform all of the operations not related to reading from or writing to a particular disk

associated with this driver. The control opcode is passed to the driver in the csCode field of the

I/O parameter block (byte 26). Control calls which return information do so by passing it back,

starting at the csParanm field of the I/O parameter block (byte 28). Following is a description of

each control operation with any result codes it returns.

Kill I/O (csCode=1)

Kill I/O is called to abort any current I/O request in progress. The Sony driver does not support

this control call and always returns a result code of -1.

Verify Disk (csCode=5)

Verify Disk reads every sector from the selected disk to verify that they all have been written

correctly. If any sector is found to be bad, it aborts immediately and returns one of the following

error codes:

noErr Q noerror
eontrolesy -17 verify failed (Hard Disk 20 only)

nsDrvErr -56 no such drive number
noDriveErr -64 drive not installed
noNybErr -66 various read errors
badDBtSlp -73 _ bad data bit slip error
cantStepErr -75 step handshake failed during seek
init IWMErr -77 unable to initialize IWM
pdAdjErr -79 unable to correctly adjust disk speed
verErr -84 __track failed to verify

Format Disk (csCode=6)

If the selected disk is a floppy disk, Format Disk writes address headers and data fields for every
sector on the disk (for GCR disks only) and does a limited verification of the format by checking
that the address field of the first sector on each track can be read. If the selected disk is a Hard
Disk 20, Format Disk does not do an actual format of the media, but instead initializes the data of
each sector to all zeroes. If any error occurs (including write-protected media), Format Disk aborts
the formatting and returns an error code.

The csParan field is used to specify the type of format to be done on floppy disks only. In pre-
SWIM versions of the driver, putting a $0001 at csParam creates a single-sided disk, while a
non-$0001 value (usually $0002) creates a double-sided disk. In the SWIM and later versions,
this value is an index of a list of possible formats for the given hardware and disk combination (see
the Return Format List (csCode = 6) status call for values).

NN

#272: What Your Sony Drives For You 3 of 11

Macintosh Technical Notes

Eject Disk

noErr

controlErr

wPrErr

paramErr

nsDrvErr

noDriveErr

noNybErr

badBtSlpErr

wrUnderRun

cantStepErr

initIWMErr

spdAdjErr

fmtlErr

fmt2Err

noIndexErr

-70

-75

-82

-83

-83

no error
format failed (Hard Disk 20 only)
disk is write-protected
format type is out of range
no such drive number
drive not installed
various read errors

write underrun occurred
step handshake failed during seek
unable to initialize IWM

unable to correctly adjust disk speed
cannot find sector zero after track
format
cannot get enough sync between
sectors
timed out waiting for drive’s index
pulse (MFM only)

(csCode=7)

Eject Disk ejects the disk in the selected drive if that drive supports removable media. Since Hard
Disk 20 drives are not removable, if one is ejected, the driver posts a diskInserted event so
that the operating system remounts the drive.

noErr

nsDrvErr

noDriveErr

cantStepErr

tkOBadErr

initIWMErr

Set Tag Buffer

Q no error
-56 no such drive number
-64 — drive not installed
-75 step handshake failed during seek
-76 track zero detect does not change

during head recalibration
-77 unable to initialize IWM

(csCode=8)

If csParam is zero, then no separate tag buffer is used. If csParam is non-zero, it is assumed to
contain a pointer to a buffer where tag bytes from each block are read into or written from on each
prime call. Every time a block is read from the disk, the 12 tag bytes are copied into the file tags
buffer at TagData+2 ($2FC) and then into the user’s tag buffer. When a block is written, tag
bytes are copied into the file tag buffer from the user’s tag buffer, and then written to the disk with
the rest of the block. The position of a particular block’s tag bytes in the user tag buffer is
determined by that block’s position relative to the first block read or written on the current prime
call. The file tags for GCR disks include information that a scavenging utility could use to rebuild
a disk if the directory structure were trashed. Figure 1 illustrates the tags. For more detailed
information about tag buffers, refer to Inside Macintosh, Volume II, The Disk Driver.

a as

#272: What Your Sony Drives For You 4 of 11

Y

Developer Technical Support
June 1990

Figure 1-File Tags

aon Oo

Track Cache Control (csCode=9)

When the track cache is enabled, all of the sectors on the last track accessed during a read request

are read into a buffer in RAM. The sectors that were actually requested are also returned in the

user’s buffer. On future read requests, if the track is the same as the last read track, the sector data

is read from the cache instead of the disk. Write requests to the driver are passed directly to the

disk, and any of the sectors written that are in the cache are marked invalid. Two bytes are passed

at csParam to control the cache:

csParam csParam+1

=(): disable the cache <0: remove the cache
#0: enable the cache =0: do not remove or install

>0: install the cache

When the cache is removed, 680x0 register DO contains the previous size of the cache.

noErr Q noerror
memFullErr -108 not enough room in heap zone to

install track cache

Return Physical Drive Icon (csCode=21)

This call returns a pointer to an icon describing the selected drive’s physical location. The
supported drive icons are shown in Figure 2. Note that only the icons for a particular machine are
included in that version of the driver. The Hard Disk 20 icon is in the drive’s ROM, so it is
available only when a Hard Disk 20 is connected.

cr S| 6s SS SB fw
MacintoshSE/30 Mecintosh SE MacintoshSE MacintoshSE Macintosh Il, Macintosh Il,

Intemal Extemal Upper Intemal — Lower Internal IIx, or IlfxLeft IIx, or IIfx Right

: & a : ‘ : =| = CO)
Macintosh Ilcx Macintosh Ilex | Macintosh Macintosh Macintosh Hard Disk 20
or Ilci Intemal or Ilci Extemal Portable Portable Portable

Upper Lower Extemal

Figure 2—Physical Drive Icons

#272: What Your Sony Drives For You 5 of 11

Macintosh Technical Notes

noErr Q noerror
controlErr -17._ icon does not exist or is not available

(Hard Disk 20 only) 6 4
nsDrvErr -56 nosuch drive number A
noDriveErr -64 — drive not installed

Return Media Icon (csCode=22)

Return Media Icon returns a pointer to an icon for the selected drive’s media type. The Sony
floppy disk icon is stored in the driver, while the Hard Disk 20 icon is retrieved from the drive’s
ROM.

hel |

= |
Sony floppy disk Hard Disk 20 |

Figure 3—Media Icons |

noErr Q ‘noerror

controlErr -17 icon does not exist or is not available
(Hard Disk 20 only)

nsDrvErr -56 no such drive number |

noDriveErr -64 — drive not installed |
|

Return Drive Info (csCode=23) |

Return Drive Info returns a 32-bit value in csParam that describes the location and attributes of X "]
the selected drive.

24 16

ANSE
0=primary/1=secondary:

O=removable media/1=fixed media
0=IWM/1=SCSI

O=internal/1=externa

Figure 4-Return Drive Info in csParam

As illustrated in Figure 4, most of the bits of this returned value are currently not used and left
open for future expansion. The drive type field occupies bits zero to three and describes the kind
of drive that is connected. Currently six different “types” are supported:

no such drive
unspecified drive
400K Sony
800K Sony
SuperDrive (400K/800K GCR, 720K/1440K MFM)
reserved
reserved
Hard Disk 20 ™

-15 reserved , COANNANAHRWNr ©

6 of 11 #272: What Your Sony Drives For You

Developer Technical Support
June 1990

The attributes field occupies bits 8 to 11 and describes the location (internal or external, primary or

secondary), drive interface (IWM or SCSI), and media type (fixed or removable).

noErr Q noerror

nsDrvErr -56 no such drive number

noDriveErr -64 — drive not installed

Diagnostic Raw Track Dump (csCode=18244)

This control call reads all or part of a track and returns the raw data it finds so applications can

access a floppy disk at a very low level without having to directly access the hardware. This call is

available in the ROM of the Macintosh IIfx. An application should check for the presence of this

call, and if it’s not available, either bail out or find another way to read the raw data. If you make

the call and it is not supported on the machine, then it returns with a -17 controlErr. This call

is needed since the SWIM chip is not going to be directly addressable in the future. The following

parameters are passed starting at csParam:

ee ee ee ee
+0 clockBitsBuffer longint pointer to packed bit array (MFM

disks only), or NIL

+4 dataBuffer longint —_ pointer to raw track data, or NIL

+8 byteCount longint number of bytes requested
(dataBuffer must be able to hold this
many bytes)

+12 numDone longint number of bytes actually read
(<byteCount)

+16 searchMode word when to start collecting bytes:
0 = as soon as spindle motor is up

to speed
1= after reading an address field
2= after reading a data field
3= at the index mark (MFM disks

only)

+18 track word which track to read (0-79)

+20 side byte which side to read (0-1)

+21 sector byte which sector to synchronize on
(GCR=0-8,9,10,11; MFM=1-9 or 1-
18); however, any value from 0-255
is okay

If clockBit sBuf fer is not NIL, it points to a buffer that must be at least one-eighth the size of

dataBuffer. It consists of an array of bits signifying whether or not the corresponding byte in
dataBuf fer is a mark or data byte. If a bit is equal to one, the byte is an MFM mark byte, but if
it 1s equal to zero, the byte is an MFM data byte. The relationship between bits in
clockBitsBuffer and dataBuffer is shown in Figure 5. The example shows a typical
MFM address field. 6 P uP

-_—

#272: What Your Sony Drives For You 7 of 11

Macintosh Technical Notes ASRS Tecnica Note

0 12 3 4 5 6 7 8 9 10 11

Tasos [oof fos] lol oe
hetttetteety be
7 6 5 4 3 2107 6 5 4

clockBitsBuffe Ht {1 [+ [ofo]ofofo]o]fo]o]o|

byte 0 byte 1

dataBuffer

Figure 5-clockBitsBuffer versus dataBuffer

Note: If both clockBit sBuffer and dataBuffer are NIL, the call does nothing.
This provides a way for applications to determine if the call exists without first
having to allocate large buffers.

Note: The clockBitsBuffer has random data in it for GCR disks, but the
dataBuf fer has valid information.

ByteCount specifies the number of raw bytes to read. It may not be possible to read that many
bytes on every Macintosh due to differences in the way that the hardware and software are
implemented, so the call returns the number of bytes that were actually read in numDone. If
byteCount is zero, the call does nothing.

SearchMode specifies when to begin actually collecting bytes. The first case (0) implies that the
location where reading begins is somewhat random. Cases 1 and 2 begin reading bytes as soon
after the end of an address or data field as possible. If the read is done on an MFM disk, the call Ly
resynchronizes and begins reading at the next mark byte that follows a sync field. The last case
synchronizes with the drive’s index signal and then begins reading as soon as it sees a mark byte
that follows a sync field.

The track, side, and sector fields are self-explanatory. Of course, the sector number is not

needed or used when searchMode is either 0 or 3.

UY
ee ee

8 of 11 #272: What Your Sony Drives For You

Developer Technical Support
June 1990

a

noErr Q noerror

controlErr -17 this call is not supported on the host Macintosh

paramErr -50 one or more of the parameters is out of range

nsDrvErr -56 no such drive number

noDriveErr -64 — drive not installed

offLinErr -65 read or write request made to an ejected disk

noNybErr -66 could not find five nibbles in 200 tries (GCR) or byte

timeout (MFM)

noAdrMkErr -67 could not find a valid address mark

badCkSmErr -69 address mark checksum was incorrect

badBtSlpErr -70 one of the address mark bit slip nibbles was incorrect

(GCR)

noDtaMkErr -71 could not find a data mark header

badDCkSum -72 bad data mark checksum

badDBtSlp -73_ one of the data mark bit slip nibbles was incorrect

(GCR)

cantStepErr -75 step handshake failed during seek

twoSideErr -78 tried to read a double-sided disk on a single-sided

drive

spdAdjErr -79 unable to correctly adjust the drive speed (GCR,

400K drives only)

seekErr -80 wrong track number read in a sector’s address field

sectNFErr -81 sector number never found on a track

Status Calls

The Sony driver currently supports three status calls, which are described in this section. As with
the control calls, the status opcode is passed to the driver in the csCode field of the I/O parameter
block (byte 26). The returned status information is passed back starting at the csParam field of
the I/O parameter block (byte 28).

Return Format List (csCode=6)

Return Format List is only supported in SWIM or later versions of the Sony driver, whether or not
MFM disks are supported. It returns a list of all possible disk formats that are supported with the
current combination of disk controller, drive, and media. On entry, csParam contains a value
specifying the maximum number of formats to return (refer to Technical Note #262, Controlling
Status Calls, for more information), and csParam+2 contains a pointer to a table which contains
the list. On exit, csParam contains the number of formats returned (no more than specified) and
the table contains the list of formats. If no disk is inserted in the drive, the call returns a
= tp ata code. The format information is given in an eight-byte record as shown in
igure 6.

ne

#272: What Your Sony Drives For You 9 of 11

Macintosh Technical Notes

7 0 7 0 7

disk capacity in BLOCKS
i # of sides | # of sectors per track side

O=single-density, 1=double-density
reserved (0)

l=current disk has this format
1=number of tracks,sides,sectors is valid, 0=fields can be user-defined

Figure 6-Format Information From Return Format List

Ifa track, side, or sector field is zero when the TSS valid bit is set to one, that field is
considered to be a “don’t care” as far as describin g the format of the disk. When the TSS valid bit
is zero, the track, side, and sector fields may be driver-defined. The formats supported by
the driver are as follows:

Capacity TSS SD # of # of # of
Format in blocks valid or DD Sides Sectors Tracks
400K GCR 800 yes SD 1 10 80
800K GCR 1600 yes SD 2 10! 80
720K MFM2 1440 yes SD 2 9 80
1440K MFM2.3 2880 yes DD Z 18 80
Hard Disk 20 38965 no SD 0 0 0

1 average number of sectors

2 requires SWIM and SuperDrive

3 requires HD media

noErr Q noerror
paramErr -50 error in user's parameter list
nsDrvErr -56 no such drive number
noDriveErr -64 drive not installed

——_——_.n— —————n—lOOllOOOOO aaa LPL

10 of 11 #272: What Your Sony Drives For You

Developer Technical Support
June 1990

Drive Status (csCode=8)

D> Drive Status returns information about a particular drive starting at csParam. Drive Status returns

only a noErr (0) message.

Offset Name Description

0) current track
p bit 7 set=write-protected
3 disk-in-place? <0 = disk is being ejected

0 = no disk is currently in the drive
1 = disk was just inserted but no read or

write requests have been made for this disk

2 = OS has tried to mount the disk (i.e., read

request to driver)

3 = same as 2, except that this is a high-

density disk formatted as 400K/800K GCR

8 = same as 2 except for an Hard Disk 20 (8
means it’s also non-ejectable)

4 drive installed? —1 = no drive installed
0 = do not know
1 = drive installed

5 number of sides: 0 = single-sided; -1 = double-sided

6 drive queue element: 6 qLink: pointer to next queue element

10 qType: type of queue (drvQType)

12 dqDrive: drive number
14 dqRefNum: Sony driver’s reference
number

(> 16 dqFSID: file system ID
18 two-sided format?: 0 = current disk has single-sided format

-1 = current disk has double-sided format
19 new interface: 0 = old drive interface (400K)

-1 = new interface (800K and later)
20 soft error count (2 bytes)

Further Reference:
¢ Inside Macintosh, Volumes I], IV & V, The Disk Driver
¢ Technical Note #262, Controlling Status Calls.

——————

#272: What Your Sony Drives For You 11 of 11

Macintosh 4

Technical Notes @.

Developer Technical Support

#273: SCSI Termination

Revised by: Dave Radcliffe May 1992
Written by: — Rich “I See Colors” Collyer April 1990

This Technical Note discusses SCSI termination on the Macintosh, including the new rules of
termination which are necessary with the advent of the high-speed Macintosh IIfx. a
Changes since June 1990: Added a discussion of Macintosh Quadra SCSI termination.

Why Is the Terminator After Sarah Connor?

One of the features of the Macintosh IIfx is a new SCSI chip that provides SCSI data transfer rates
up to three megabytes per second, faster than any existing Macintosh model except the Macintosh
Quadra. To achieve these transfer rates, components on the Macintosh IIfx logic board are smaller
and faster, requiring different termination configurations than previous Macintosh models.

The Macintosh IIfx requires the use of a combination of the following three new termination parts.
Users need to use these parts instead of existing SCSI termination parts to configure a IIfx with
SCSI devices. The Macintosh Quadra does not require special termination as the IIfx does, but it
does have some special rules of its own and these are discussed in a later section.

Apple SCSI Cable Terminator II. The Apple SCSI Cable Terminator II is a revised external
terminator for the Macintosh IIfx. All finished goods Macintosh IIfx systems ship with this
terminator in the box. It is easily recognized because of the black color. Under no circumstances
should one use more than a single Apple SCSI Cable Terminator II on an external SCSI chain—
doing so may damage the logic board.

Internal SCSI Termination Block. The Internal SCSI Termination Block provides internal
termination resistance for Macintosh IIfx systems without internal hard drives. All finished goods
systems shipping without internal hard drives have the Internal SCSI Terminator Block installed.

Internal SCSI Filter. The Internal SCSI Filter provides termination capacitance for internal
Macintosh IIfx hard drives that shipped prior to March 19, 1990. All finished goods systems
shipping without internal hard drives have the Internal SCSI filter installed.

The new termination configurations are simple, and you can remember them with a single rule:
Macintosh IIfx systems with external SCSI chains require a terminator at both ends of the SCSI
chain. One is internal to the system, while the second is external, located at the end of the chain.

The reason for the new terminator is that on the Macintosh IIfx and future hardware, the SCSI
controller chip is a two micron part which makes it very fast. One of the results of this speed is that
the chip now thinks that glitches in the /REQ line are real signals. This problem is not likely to occur
on all of the Macintosh IIfx machines, but if you have a problem with your hard drive not getting
mounted on the new machine, you should try a new terminator first. The symptom is more likely to
show up on machines with several (three or more) external SCSI devices attached to the computer
and long strands of SCSI cables. Figure 1 illustrates the old-style terminator with the signal showing
eeeeeEeeEeeeeeSSSSSSSSSSSSMMMMMMMhheee

#273: SCSI Termination 1 of 4

Macintosh Technical Notes

the spike propagation.

+5V

Figure 1 Old-Style Terminator (Gray)

Basically, if a majority of the data lines change state at once, there is a sudden drain on the TPWR
line which is resistively coupled to all of the lines, including the /REQ line. This sudden drain
causes a spike in the line, and this spike is propagated into the /REQ line and to the SCSI controller
chip. The newer SCSI controller chip in the IIfx interprets this spike as a /REQ signal and starts
reading data from the data lines; however, since the data lines need 55 ns to settle, the data that the

controller chip reads is junk.

All internal hard disk drives sold by Apple with the IIfx and later machines have the Internal SCSI
Filter installed; however, most third-party drives do not yet have this filter installed and must be
modified by a qualified service provider to work correctly with the IIfx.

How to Stop the Terminator

Since the problem is caused by a drop in the TPWR line, the fix is to smooth out the line. One

need only add a 2.2 uF capacitor and a 0.01 uF ceramic capacitor as illustrated in Figure 2. These

capacitors act like a battery and provide a little extra current when it is needed. This extra current

results in a smoother signal, which the SCSI controller chip does not interpret as a /REQ signal.

—e| |~— 55ns
+5V

2.2uF L0.01nF
3302 | ion

Figure 2 New-Style Terminator (Black)

2 of 4 #273: SCSI Termination

Developer Technical Support May 1992

This new type of filter is only for internal hard disk drives. The Macintosh IIfx ships with a new
and improved external terminator (black in color), so hard drive manufacturers do not need to
worry about external termination. Apple also ships an internal filter with every IIfx that handles
the capacitance problem. This internal terminator has two parts. The first is the resistors for the
terminator. This part should already be installed on all internal hard disk drives, so it is used only
for CPUs that do not have an internal hard drive. The second part of the internal terminator is the
capacitor filter. This filter should be installed on the hard disk drive end of the SCSI internal cable.
If your hard drive implements the new capacitors, you can, and should, install the capacitor
filter—you cannot have too much capacitance.

External Termination

If you manufacture an external SCSI device do not include termination in it. The only terminator
that should be outside of a Macintosh IIfx is Apple’s external terminator, and it should be at the
end of the SCSI chain. If you make a SCSI terminator, it is most likely incompatible and may
cause damage to the hardware or the data. If your SCSI device cannot connect with Apple’s
terminator, then you should provide an adapter that allows your SCSI device to attach to the
provided terminator.

Note: A notice in the Macintosh IIfx finished goods box instructs customers to return self-
terminating SCSI devices to the service provider to disable termination.

You’re Terminated

Not every Macintosh IIfx owner is likely to experience this inconvenience, but a few will. If your
customers report problems that appear to be termination related, then the first possible solution is
to fix the terminator (for external devices) or implement the filter (for internal devices). If you
manufacture an external SCSI device that is self-terminating, you should remove it. This
incompatibility will continue with future hardware products and could even surface on the
Macintosh IIci.

Macintosh Quadra Termination

Proper SCSI termination is critical for correct operation of the Macintosh Quadra computers, just
as with all Macintosh computers. The Macintosh Quadra computers require external SCSI
termination at the end of the device chain, either supplied by the last device in the chain, or using a
standard Apple SCSI Cable Terminator (M0332LL/A). Note that this is the standard SCSI
terminator, not the black terminator required by the Macintosh IIfx (although the black IIfx
terminator may be used as well).

Termination is generally supplied at the factory for use with internal SCSI devices. Some early
floppy-only Macintosh Quadra 700 units may not have internal termination, so users who attach
external SCSI devices (without having added an internal SCSI device) may need to double
terminate their external SCSI chain. Properly terminated floppy-only Macintosh Quadra 700 units
will have a terminator inserted into the motherboard internal SCSI cable connector. Users of
erty SCSI devices must, of course, remove this terminator before connecting their internal
CSI device.

eo SSSSSSSSSSSSSSSSSSSSSSSsse

3 of 4 #273: SCSI Termination

Macintosh Technical Notes

The Macintosh Quadra 900 is the first Macintosh computer to provide a separate, internal SCSI
bus. This bus is physically isolated from the external SCSI bus and must also be properly
terminated. The cable provided with the machine includes all the termination necessary, so all
internal devices must have SCSI termination removed before connecting to the internal Macintosh
Quadra 900 SCSI cable. If extra termination is supplied it may cause intermittent hardware failures
as well as physical damage to the device.

Developers who ship terminated SCSI devices for possible internal use in the Macintosh Quadra
900 must provide users with instructions for removing the termination.

a

4of 4 #273: SCSI Termination

fan

Macintosh 4

Technical Notes é.

Developer Technical Support

#274: The Compleat Guide to TeachText

Written by: Bryan Stearns, DTS Emeritus April 1990

This Technical Note explains how to use TeachText to create release notes, complete with pictures,
which every Macintosh owner can read. This Note assumes familiarity with ResEdit.

Background

TeachText is two, two, two applications in one, and Apple ships it with every Macintosh. It’s a
simple text editing training tool with support for the standard editing primitives, saving and
printing, and it’s also a tool which allows every Macintosh owner to browse read-only release
notes or other documents which may contain text and pictures.

Since TeachText only allows a single open document at a time, it uses the document’s file type to
determine which of the two applications it should be. If the file type is “TEXT” (as are all files
created by TeachText), it operates as a simple text editor, but if the file type is “ttro” (lowercase is
significant), it only allows the user to scroll through the document or print its contents—
modifications are not allowed, thus making the file read-only.

How TeachText Handle Pictures

TeachText operates on documents of the two file types previously described, and either may
contain pictures. However, pictures tend to disappear when editing the document in which they
are contained (to those hardy souls attempting to create documents with pictures who must put up
with this during the creation process, my apologies), thus all documents which contain pictures
should be distributed as read-only (i.e., file type “ttro”).

A document’s pictures are stored as purgeable 'PICT' resources in the resource fork of the
document. Whenever a file is opened, each of these picture resources is loaded in numerical order,
and its size is read into an array (so TeachText can later test to see if a picture needs to be drawn
into the window without loading the picture). After the picture resources are loaded (and every
time the window is resized thereafter), TeachText scans the text of the document for non-breaking
space characters (ASCII $CA, entered as Option-Space Bar and usually used instead of a space to
prevent related words from being split across line boundaries). In TeachText documents, a non-
breaking space character represents the line on which the top of a picture resides. Figure 1
illustrates this relationship.

#274: The Compleat Guide to TeachText 1 of 5

Macintosh Technical Notes

test document

This is a line of text in a TeachText document.

°O Non-breaking space —>
(invisible) places top

of picture.

Carriage returns

(invisible) place the —®&>
text which follows

after the picture.

|
q
O
1
|
{
1
1
{
1
|
1
1
This is more text which has been placed after the

non-breaking space above and several carriage returns

to space it below the picture.

Figure 1-Picture With Non-Breaking Space and Surrounding Text

If there are more non-breaking space characters than 'PICT' resources, TeachText ignores the
extra non-breaking spaces. Likewise, if there are more 'PICT' resources than non-breaking

space characters, TeachText ignores the extra 'PICT' resources. Every time an update event
occurs, TeachText checks each picture in the array, and if any of the pictures in the array overlap
the current update region, it draws that picture.

As it happens, TextEdit is particularly messy about redrawing large portions of the screen when a
user is entering text, and this makes editing documents with pictures rather clumsy. Since resizing
the window causes another scan for non-breaking space characters as well as an update event,
sizing the window in any way causes TeachText to “refresh” the pictures.

Creating Release Notes With TeachText

So how does one use TeachText to create release notes? It’s easy. Get those creative juices
flowing, grab a cup of strong coffee (or your favorite highly-caffeinated beverage), and read on.

Write the Text

You can handle this part yourself. Use any word processor or text editor that supports saving to
text-only files (i.e., those files of type “TEXT”). You can even use TeachText if you so desire.
Don’t worry about fonts or styles, since TeachText only gives you the default application font in
plain style. Don’t put carriage returns after each line either, since TeachText automatically wraps
lines, just like a real word processor (the TeachText window conforms to the size of the current

screen, so don’t depend on the breaks you see either). Don’t worry about non-breaking space
characters at this point either; you’ll get a chance to add them later. Just think about what pictures

2 of 5 #274: The Compleat Guide to TeachText

Developer Technical Support
April 1990

you want (if you want them at all) and in what order you want them. When you are finished with

the text, save a text-only file. If your word processor gives you the option of putting carriage

returns after lines or after paragraphs, choose the after paragraphs option.

Draw the Pictures

First make a backup of your Scrapbook file (you should find it in your System Folder) if it

contains anything you consider important. After backing it up, throw away the original copy (this

makes things much easier later on in the process), but don’t worry, if you made a backup you can

use it to restore the original when finished. If you prefer, you can just rename the Scrapbook file,

which effectively makes a backup copy.

Unfortunately, the ideal method for creating a picture involves both a paint program and a draw

program. In addition, you should use Geneva 12 point font (or another System font like Monaco

9, Chicago 12, or Geneva 9) in your picture since that is the font that the rest of the text in the
TeachText document uses. Once you are finished with your pictures, save them to a document,
then do one of the following:

1. If you used a painting program to draw your pictures:

Select your picture with a Lasso tool to ensure that only the minimum size of the
image is copied. This takes up less space on disk and centers the picture in the
document better for the user. Copy the picture then paste it into the Scrapbook.
Repeat these steps for each individual picture you wish to include in the document.

2. If you used a draw program to draw your pictures:

Copy each of your pictures into the Scrapbook. Launch a paint program, then copy
each picture from the Scrapbook into the paint program. Once every picture is in a
paint document, open the Scrapbook and clear each of your pictures from the
Scrapbook. The Scrapbook should say “Empty Scrapbook” when you are finished
(unless you did not start with a fresh Scrapbook). Now follow the procedure in the
steps for a painting program to copy and paste each of your pictures back into the
Scrapbook.

At this point, regardless of which program you originally used to create your pictures, they should
all be aa Scrapbook and in bitmap form (after being copied with a Lasso tool from a paint
program).

Because of a quirk in the Printing Manager and PostScripte, you have to perform one more step.
Launch a draw program, then copy each picture from the Scrapbook into the draw program. Once
every picture is in a draw document, open the Scrapbook and clear each of your pictures from the
Scrapbook. The Scrapbook should say “Empty Scrapbook” when you are finished (unless you
did not start with a fresh Scrapbook). Now copy each picture back to the Scrapbook. This
process makes the pictures “transparent” when printed, and this is important to avoid a problem
with white, horizontal stripes running through your pictures.

Add the Pictures

Now to add the pictures to the TeachText document. Launch ResEdit and open the text-only
TeachText document (you may want to work on a backup copy). ResEdit may warn you that the
file does not have a resource fork and opening it will create one. This is fine, since you want a
resource fork. If ResEdit does not warn you, then the file already has a resource fork (this means
that there may already be resources there).

#274: The Compleat Guide to TeachText 30f5

Macintosh Technical Notes

If the ResEdit window you get (whose title is that of the document name) contains any four-letter
words (no, not those four-letter words, but words like 'MPSR' , 'ETAB', etc.) other than
"PICT. then you should select them and clear them from the document. If you have already
added some pictures to this file (and are replacing some of them), you should be especially careful,
since it is easy to accidently delete the wrong one.

Now open your Scrapbook file (the one with all the pictures in it). Its ResEdit window should
contain 'PICT', 'SMAP', and 'vers' resources. Select 'PICT' (don’t double-click), and
copy this resource to the TeachText document by bringing it’s window to the front and selecting
Paste from the Edit menu. If you do this step correctly, your pictures and text should all be in the
same document. Now save the TeachText document so you don’t have to do this step again and
close the Scrapbook.

Now you need to put the pictures into the proper numerical order so they show up in the correct
order in the TeachText document. Numbering starts at 1000 (i-e., first picture should be 1000,
second picture 1001, etc.). To order these pictures, double-click on the 'PICT' in the TeachText
document’s window. You should get another window which contains each of the pictures you
copied into this document. Use the scroll bar until you find the first picture you want to appear in
the document. Select it (by clicking on it once), and choose the Get Info or Get Resource Info
option to get information on the resource. ResEdit displays an information window about the
selected resource with space to enter a name and an ID (there is already a random ID number
assigned). Change the ID to 1000 and give the picture a name too (i.e., “Figure 1”, etc.). Near
the bottom of this window you can see the resource attributes. Be sure that the “Purgeable”
attribute is checked, then close the window. Repeat this process for each succeeding picture,
giving each a successive number (i.e., 1001, 1002, 1003, etc.). When you are finished with all of

the pictures, save the file and quit ResEdit.

That is the difficult part; the rest is icing. Go get some more coffee or whatever it is you are

drinking.

Edit the Text to Make It Look Pretty With the Pictures

Launch TeachText and open your document. Find the location where you want to place the first

picture and position the text cursor there. Enter a carriage return or two (more if you want more

space before the picture) then a non-breaking space character (Option-Space Bar, remember),

which will be invisible. Now resize the window, and voild, when the window redraws, your

picture will be just below the non-breaking space character. Now enter as many carriage returns as

necessary to provide space for the picture. When you enter the first carriage return, TeachText will

erase the picture, so you will need to resize the window again to verify your spacing.

Once you have enough room for the first picture (you probably want to leave an extra blank line or

two after it too), move on to the next desired picture location and repeat the process. Continue this

process (and don’t forget to save the document along the way) until you have placed all of the

pictures. When you finish placing the pictures, you should save the document again and try

printing it on both an ImageWriter and LaserWriter if possible. You may wish to tweak the picture
spacing or location to keep them from crossing printed-page boundaries.

When you are satisfied with the results, Quit TeachText.

Make the File Read-Only

Make a copy of the file (to save a step if you decide to edit it again) then launch ResEdit. Now

choose Get Info from the File menu and change the file type from “TEXT” to “ttro” (the lowercase

EE

4 of 5 #274: The Compleat Guide to TeachText

|
|

Developer Technical Support April 1990

is significant) and check to make sure the creator type is “ttxt”. Now quit ResEdit and save the

changes to the document when prompted.

That’s all there is to it. (Now that wasn’t that bad, was it?)

A Few Hints On Creating Good Documents With Pictures

The following hints should help to make your TeachText document creation faster and more
efficient as well as make the final document as nice as possible for the user.

Always use the Lasso tool in paint programs to select pictures to appear in
TeachText documents; it makes them smaller.

Keep pictures as small and simple as possible; the document takes up less room on
disk and scrolling is faster.

If two pictures appear on top of each other, you probably have two non-breaking
space characters on the same line. Simply delete one to fix it. It is generally a good
idea to put non-breaking space characters on a line by themselves with a blank line
before it. In addition, always leave room for an extra line after the picture so you
do not have the picture running into the text which follows it.

If you need to use the non-breaking space character as a non-breaking space, you
can. Since TeachText assigns the numbered 'PICT' resources to the non-
breaking space characters in the document, you can simply skip a resource number
to use a non-breaking space character as a non-breaking space in the text. For
example, if you had four non-breaking spaces in the document and you wanted
pictures at the first, second, and fourth, you would number your 'PICT'
resources 1000, 1001, and 1003. The third non-breaking space character would
normally have 'PICT' resource 1002 assigned to it, but since there is not a
resource with this ID, it simply acts as a non-breaking space in the document.

Do not worry about how horrible everything looks when you are editing; users will
not be able to edit your document (unless they have read this Note), so they will not
see the awful flashing, disappearing pictures, etc.

Make the document read-only even if you do not use pictures. Distributing read-
only documents to users gives the consistent impression that Release Notes are not
to be modified.

If your pictures are not appearing as you think they should, and if you cannot figure
out what might be wrong by following the sequence in this Note, then try the
following: Open the document with ResEdit. Click once on the 'PICT' list and
choose Open General from the File menu of ResEdit 1.x. You should get a
window with a list of all of your pictures, in order, and numbered sequentially from
1000. If this is not what you get, then you have missed a step along the way and
need to make sure all your pictures are in the resource and numbered sequentially.

Further Reference:

* Macintosh ResEdit Reference

PostScript is a registered trademark of Adobe Systems, Incorporated

#274: The Compleat Guide to TeachText

eee

5 of 5

C

Macintosh U

Technical Notes @.

Developer Technical Support

#275: 32-Bit QuickDraw: Version 1.2 Features

Written by: Guillermo Ortiz April 1990

This Technical Note describes the changes and enhancements to 32-Bit QuickDraw from version
1.0 (as shipped on the original Color Disk) to version 1.2, which ships with System Software
6.0.5 and later. This Note assumes familiarity with Inside Macintosh, Volume V, Color
QuickDraw, and 32-Bit QuickDraw release notes.

32-Bit QuickDraw

Version 1.0 of 32-Bit QuickDraw shipped in May 1989 in response to the growing need for Color
QuickDraw support for direct color devices and pictures (PICT2) and video boards for large-screen
monitors which require 32-bit addressing for black and white operation. This original version of
32-Bit QuickDraw was a separate file that had to be copied manually into the System Folder. With
the introduction of the Macintosh IIci, Apple put 32-Bit QuickDraw into ROM. Now System
Software 6.0.5 and later offer 32-Bit QuickDraw as an integral part of the System Software which
can be installed by the standard Installer (although the file is still separate).

This Note describes the changes and enhancements in version 1.2 of 32-Bit QuickDraw from
version 1.0. Beginning with version 1.2, QuickDraw functionality is identical on all Color
QuickDraw machines, including all the performance improvements which were originally only
available in the IIci ROM.

New Features (In No Particular Order)

PICTs Contain Font Name Information

Every time you draw text inside of an_OpenPicture and ClosePicture pair, QuickDraw
stores the name of the current font and uses it when playing back the picture. The opcode used to
save this information is $002C and its data is as follows:

PictFontInfo = Record

length : Integer; { length of data in- bytes }

fontID : Integer; { ID in the source system }

fontName : Str255;

END;

QuickDraw only saves this information one time for each font used in a picture. When QuickDraw
plays back a picture, it uses the font ID as a reference into the list of font names which are used to
set the correct font on the target system.

#275: 32-Bit QuickDraw: Version 1.2 Features lof 5

Macintosh Technical Notes

For example, the following code:

GetFNum('Venice', theFontID) ; { Set a font before opening PICT}

TextFont (theFontID) ;

pHand2 := OpenPicture (pictRect);

MoveTo (20,20);

DrawString(' Better be Venice');

GetFNum('Geneva', theFontID);

TextFont (theFontID) ;

MoveTo (20, 40) ;

DrawString('Geneva') ;

GetFNum('New York', theFontID);

TextFont (theFontID);

MoveTo (20, 60) ;

DrawString('New York');

GetFNum('Geneva', theFontID);

TextFont (theFontID) ;

MoveTo (20, 80);

DrawString('Geneva');

ClosePicture;

generates a picture containing font information like this:

OpCode 0x002C {9,

"0005 0656 656E 6963 65"} /* save current font «/

TxFont 'venice'

DHDVText {20, 20, " Better be Venice"}

OpCode 0x002C (9, /* save next font name *x/

"0003 0647 656E 6576 61"}

TxFont ‘geneva'

DVText {20, "Geneva"}

OpCode 0x002C {11, /* ditto */

"0002 O84E 6577 2059 6F72 6B")

TxFont 'newYork'

DVText {20, "New York"}

TxFont 'geneva' /* second Geneva does not

need another $002C guy */

DVText {20, "Geneva"}

This feature works regardless of the type of picture being saved, including old style PICTs in a
black and white port. Using _OpenCPicture instead of OpenPicture to start a recording
session results in the same functionality.

Direct PixPat Structures Now Supported

QuickDraw now supports 16-bit and 32-bit per pixel PixPat structures (patType = 1). In
addition, it now supports a new patType (3) which uses dithering whenever 16-bit or 32-bit
pixel patterns are displayed on indexed devices.

Direct 'cicn' Resources Now Supported

QuickDraw now supports 16-bit and 32-bit per pixel 'cicn' resources. The 16-bit per pixel is
particularly cool since you save the space required for an 8-bit 'clut'.

2 of S #275: 32-Bit QuickDraw: Version 1.2 Features

Developer Technical Support April 1990

GWorlds Can Now Be Allocated in MultiFinder Temporary Memory

You can now use the new useMFTempBit (bit 2) in a call to NewGWorld as an option to
allocate pixels in MultiFinder temporary memory. In addition, you can now allocate screen buffers
in MultiFinder temporary memory using the following routine, defined in Pascal and C:

FUNCTION NewTempScreenBuffer (globalRect: Rect; purgeable: BOOLEAN;

VAR gdh: GDHandle;

VAR offscreenPixMap: PixMapHandle): QDErr;

INLINE $203C,SO000E, $0015,$AB1D; { Move.L #$000E0015,D0

_QDOffscreen

}

pascal QDErr NewTempScreenBuffer (Rect *globalRect, BOOLEAN purgeable,

GDHandle *gdh,

PixMapHandle *offscreenPixMap)

={0x203C, 0x000E, 0x0015, 0xAB1D};

Indexed to Indexed Dithering

_CopyBits now supports the ditherCopy transfer mode whenever the destination device is
between one and eight bits per pixel, regardless of the depth of the source image. With this
support, an eight-bit image can now be approximated on a one-bit or a four-bit device by using
error diffusion. Furthermore, an eight-bit image could also be dithered to a different set of 256
colors or a four-bit image could be dithered to an eight-bit device that does not have the desired
colors.

32-Bit Addressed PixMap Structures

Version 1.2 defines a new pmVersion (baseAddr32 = 4) for 32-bit pointer baseAddr
values. The baseAddr of such PixMap structures is treated as a 32-bit address, so no stripping
or address translation is performed on it in 32-bit mode. This is a specially useful feature when the
base address of a PixMap points to a NuBus™ address, for example in a video grabber board.

A new call, Pixmap32Bit, is now available to inquire if a given PixMap requires 32-bit
addressing.

FUNCTION Pixmap32Bit (pmh:pixMapHandle) :Boolean;

INLINE $203C,$0004, $0016,SABID; { Move.L #$00040016,D0

_OQDOffscreen

}

pascal BOOLEAN Pixmap32Bit (pixMapHandle pmh)

= {0x203C,0x0004, 0x0016,0xAB1D};

Updated GetPixBaseAddress

Version 1.2 updates Get PixBaseAddress to return the address of any PixMap. The routine
does the right address translation or stripping for all PixMap structures, including screen devices,
unlocked GWorlds, and 32-bit addressed PixMap structures. The address it returns is only valid
in 32-bit addressing mode. Also unless the PixMap is locked and made unpurgeable, the address
a by Get PixBaseAddress is only valid until any call to QuickDraw or the toolbox is
made.

#275: 32-Bit QuickDraw: Version 1.2 Features 3 of 5

Macintosh Technical Notes

_CopyBits from Screen Devices

The picture recording mechanism has changed so that if you call _CopyBits while recording a
picture with the source PixMap being a screen device, the data is correctly accumulated into the
picture. Note that if the screen being copied is not the main screen, then the PixMap must be a
32-bit addressed PixMap. No auxiliary screen buffer is allocated if the source rectangle covers
only one screen.

New Picture Recording Trap

Version 1.2 adds a new call, _OpenCPicture, to create pictures that contain information
regarding the native resolution of the recorded image. When QuickDraw draws this picture, it
scales the image to the resolution of the target device. Applications that need to scale the images
directly can also access this information.

FUNCTION OpenCPicture(VAR CPictInfo:CPictRecord) :PicHandle;

INLINE S$AA20;

pascal PicHandle OpenCPicture(CPictRecord *CPictInfo)

= OxAA20;

where

struct CPictRecord {

Rect CPicFrame; /* Bounding rect of Picture at native resolution */

Fixed CPicHRes; /* native horizontal resolution in pixels/inch */

Fixed CPicVRes; /* native vertical resolution in pixels/inch x/

short CPicVersion; /* version of this PICT info set to -2 */

short reserved; /* for future expansion set to zero */

long reserved; /* for future expansion set to zero */

;

The new picture header data looks like the following:

Size in bytes Name Description
Zz picSize low word of picture size
8 picFrame bounding box at 72 dpi

Picture Header
2 version op _ version opcode = $0011
2 version version number = $02FF
2 Header op header opcode = $0C00
pe version -2 for PICTs created with OpenCPicture
2 reserved
4 HRes native horizontal resolution (Fixed)
4 VRes native vertical resolution (Fixed)

8 SrcRect native source rectangle
4 reserved

40f5 #275: 32-Bit QuickDraw: Version 1.2 Features

CY

Developer Technical Support April 1990

The following is a sample PICT created with OpenCPicture:

00 48 /* low word of size */

00 00 00 00 00 7D 00 7D /* picFrame at 72 dpi *7

00 11 /* PICT version opcode */

02 FF /* version number dtd

oc 00 /* PICT header Opcode x]

FF FE /* PICT version -2 af

00 00 /* reserved =f

01 20 00 00 /* HRes (Fixed) toll

01 20 00 00 /* VRes (Fixed) */

00 00 00 00 01 F4 01 F4 /* picFrame at native resolution */

00 00 00 00 /* reserved bad

/* picture data follows */

00 FF /* end of picture opcode Lae

Random Notes

For information on bug fixes in the System Software 6.0.5 release of 32-Bit QuickDraw (version
1,2), please refer to the System Software 6.0.5 Change History, which is available on the
Developer CD Series, AppleLink in the Developer Services Bulletin Board (Developer Services:
Macintosh Developer Technical Support: System Software), and the Apple FTP site on the Internet
in the ~ftp/pub/dts/sw.license.

Note that the dispatching mechanism for the new_QDOffscreen calls is slightly different than
previously documented; it now requires that the high word passed in DO contain the total length of
the parameters (in bytes). The reason for this change is that if the call is made in an earlier version

of 32-Bit QuickDraw, the system can strip the parameters from the stack and return QDError set
to the caller (instead of crashing).

Further Reference:
¢ Inside Macintosh, Volume V, Color QuickDraw
¢ 32-Bit QuickDraw Release Notes (available from APDA)
* System Software 6.0.5 Change History
* develop, Issue!

NuBus is a trademark of Texas Instruments.

eT ee

#275: 32-Bit QuickDraw: Version 1.2 Features 5 of 5

Macintosh 4

Technical Notes os

Developer Technical Support

#276: Gimmie Depth Or Gimmie Death
(So You Want to be a Monitors Impersonator?)

Revised by: | Guillermo Ortiz June 1990

Written by: Guillermo Ortiz April 1990

This Technical Note describes two new system calls that allow an application to change the depth

and flags for a given device and also check whether a device supports a particular depth and flags

setting. Apple provides these calls to give developers a better way to help users make changes
when they consider it appropriate. Abusive use of these calls is a sure way to guarantee that the
Thought Police come after you to confiscate your Macintoshes, your stock of Mountain Dewe, and
your Technical Notes binder. This Note assumes familiarity with Inside Macintosh, Volume V,

Graphics Devices.
Changes since April 1990: Corrected trap addresses and dispatch numbers in the SetDepth
and Get Depth definitions.

Historic Novella

Since the introduction of the Macintosh II, developers have had the strong urge to change the depth
of Macintosh screens under program control. Developers often ask, “How can I change the depth
from my application like the Monitors cdev does?” The reasons for this question have varied from
pure Macintosh hacking spirit to valid reasons to the lack of finding a good solution which would
work regardless of the depth setting the user may choose.

A poor scenario occurs when a developer wants to impose a certain depth and color or black and
white setting because the application does not work well, if at all, with any other configuration.
The responses from DTS always include questions about what happens to the application when the
system in use does not support this “optimal” configuration or when one monitor is set to the
magic configuration, but others are not, or when the user brings the application to the front and it
finds that the user has changed the setting to something with which it is not equipped to deal.

On the other hand, DTS does see situations where an application that deals with certain image types
may work better with a particular setting and would like to present the user with a dialog box
similar to the Monitors cdev to allow the user to change the depth and color settings from within
the application.

SS

#276: Gimmie Depth Or Gimmie Death (So You Want to be a Monitors Impersonator?) 1 of 3

Macintosh Technical Notes

Not everyone agrees on the wisdom of providing facilities for an application to allow users to
change depth and color settings from within itself, but all agree that a well-behaved application
(remembering that well-behaved applications are more likely to survive system and hardware
changes) should only change depth and color settings in the following circumstances:

* Depth changes can only be made with the user’s consent; never change depths
because it is simply convenient for the application. The user paid for his system
and if the user wants color, be prepared to give color. If the user wants millions of
colors, don’t change the display to one-bit black and white.

¢ The minimal amount of user input to change depth and color settings should be to
provide a preferences dialog box where the user would be given a yes or no choice
to change depths when a particular action is chosen. The application should make
the “no” choice the default and have a sensible mechanism for handling the situation
when the user chooses no.

* Under no condition should an application change depth or color settings while in
the background. An application should only initiate depth or color changes when it
is the frontmost application; do not twiddle with the user’s settings while in the
background.

The Calls

Beginning with System Software 6.0.5 (regardless of whether or not 32-Bit QuickDraw is
installed), applications can make a call to Set Depth to change the depth and flag settings for a
given device.

FUNCTION SetDepth(gd:GDHandle; newDepth,whichFlags, newFlags: Integer) :Integer;

INLINE $203C,$000A, $0013,SAAA2; { Move.L #$000A0013,D0

_PMgrDispatch

}

pascal short SetDepth(GDHandle gd, short newDepth,short whichFlags, short newFlags)

= {0x203C, OxO00A, 0x0013, OxAAA2};

Where gd is the device to be changed, newDepth is the desired depth (you can pass the bit depth
or the mode necessary to set the requested depth,) whichF lags is a bit field selector specifying
which bits in newF lags are meaningful, and newF lags are bits to be set in the gdF lags field
of the device record as specified by whichFlags. For example, if you want to set a depth of
eight in black and white, the call would be as follows:

someResult := SetDepth(myGDevice,8,1,0);

In this call, newDepth = 8 sets aneight-bit depth,whichFlags = 1 indicates that only bit
one of newF lags is important, and newFlags = 0 clears the gdDevType flag in the device
record (0 = monochrome, 1 = color). SetDepth returns zero if successful or a non-zero value if
it cannot impose the desired depth on the requested device.

ee ———————————————

2 of 3 #276: Gimmie Depth Or Gimmie Death (So You Want to be a Monitors Impersonator?)

UY

Developer Technical Support
June 1990

Also beginning with System Software 6.0.5, applications can make a call to HasDepth to verify

if a given device supports a mode for the desired depth.

FUNCTION HasDepth (gd:GDHandle; newDepth,whichFlags, newFlags: Integer) :Integer;

INLINE $203C,S$O000A $0014,SAAA2; { Move.L #$000A0014,D0

_PMgrDispatch

}

pascal short HasDepth(GDHandle gd, short newDepth, short whichFlags, short newF lags)

= {0x203C,0x000A 0x0014, 0xAAA2};

Where gd is the device to be verified, newDepth is the desired depth, whichF lags is a bit field

selector specifying which bits in newF lags are meaningful, and newF lags are bits to be

checked in the gdF lags field of the device record as specified by whichFlags. HasDepth

returns zero if the desired depth or flag setting is not supported on the given device; otherwise,

HasDepth returns the mode necessary to set the device to the desired depth (which may be

passed as the newDepth parameter in a call to SetDepth).

Further Reference:
° Inside Macintosh, Volume V, Graphics Devices
¢ Designing Cards and Drivers for the Macintosh Family, Second Edition

Mountain Dew is a registered trademark of Pepsico, Inc.

ee ee a ee ee ee
ee

#276: Gimmie Depth Or Gimmie Death (So You Want to be a Monitors Impersonator?) 3 of 3

Macintosh @

Technical Notes .

Developer Technical Support

#277: Of Time and Space and _CopyBits

Written by: Forrest Tanaka June 1990

This Technical Note describes the various factors that can influence the speed of _CopyBits so

that developers can set up conditions to achieve the best performance for the particular situation.

Can You Influence the Speed of _CopyBits?

CopyBits has never been an “easy” QuickDraw routine, like LineTooreven OpenPort.

Most programmers who are just beginning to adjust themselves to the Macintosh usually have to

give CopyBits a few tries before the right bits copy to the right places. Even many who feel

that they have become Macintosh programmers still see reflections in their monitors of furrows

between their eyebrows as they begin to press the key labelled “C.”

CopyBits is one of those routines that is so full of subtlety, it has the beginnings of something

that could be considered to be personality. One subtlety involves the second most important

thought that’s on the minds of any computer programmer: execution speed. Why is_CopyBits

fast? Why is it slow? Can I influence its speed? Is there really a clandestine state of reason? Is

there a price to speed?

Influences on the Speed of _CopyBits

Yes, you can influence the speed of CopyBits. Yes, it’s even predictable. And yes, it’s

possible that you have to compromise to get the maximum speed. This Note is intended to give

you a deeper understanding of the ways that the speed of _CopyBits can be affected; and

hopefully you can then set up conditions fora _CopyBits call without the disturbing notion that

someone else might be doing the same thing just a little bit better than you.

This Note talks about every factor that affects the speed of _CopyBits that I can think of and that

can be reasonably controlled by a programmer or the person using an application. There are other

factors not mentioned in this Note because I felt that they were just too esoteric to describe with

any meaning.

In each case, this Note tries to give real-life examples showing the effect of each factor. These
examples are just to give you a relative idea of the importance of each effect. In real life, the effects
of the different factors give results that could be a lot different from the results presented in this
Note. Each example is based on 100 CopyBits calls from an off-screen pixel map to the screen
on a Macintosh IIcx with an Apple Extended Video Card which is running System Software 6.0.5
and 32-Bit QuickDraw 1.2. The off-screen pixel map is eight bits deep with the standard eight-bit
color table and 256 pixels high by 256 pixels wide. The screen is also in eight-bit color mode.
Calling CopyBits to copy the entire off-screen pixel map to the screen 100 times takes 204
ticks, and this Note refers to this figure as the “standard test.” Since a tick on a Macintosh is

#277: Of Time and Space and _CopyBits 1 of 11

Macintosh Technical Notes

approximately 1/60 of a second, the standard test runs at slightly less than 30 frames per second. As this Note discusses each factor, it presents an example with that factor changing and all other factors remaining the same as the standard test, which allows you to compare performance of the changed factor to that of the standard test of 204 ticks.

What follows is a discussion of each factor that can influence the speed of CopyBits, inno particular order. a

Dimensions of the Copied Area

One of the most obvious factors has to do with the dimensions of the copied area. CopyBits
takes as parameters two rectangles which specify the portion of the source pixel map from which
you want to copy and the portion of the destination pixel map to which you want to copy it. All
other factors being equal, the larger the rectangles, the more pixels CopyBits has to copy and
the longer it takes to do the job. To keep CopyBits as fast as possible, copy the smallest
rectangle possible.

Modifying the standard test so that _CopyBits only copies a 128-pixel wide by 128-pixel tall
area produces a result of 109 ticks, which compares to the 204 tick performance for a 256-pixel
wide by 256-pixel tall area.

QuickDraw is usually faster drawing wide things than it is drawing tall things, because consecutive
pixels in memory are displayed horizontally. Drawing a series of pixels that are next to each other
horizontally is easy because QuickDraw simply has to set consecutive memory locations, while
drawing a series of pixels that are next to each other vertically is just a little bit harder because the
address of each pixel must be calculated. _CopyBits is no exception to this general rule; it
copies a row of pixels, goes to the next row, copies that row, goes to the next row, and so on.
The time spent going between rows is a lot more than the time going between pixels on one row,
so the effect is that_CopyBits is faster copying a short and wide section of a pixel map than it is
copying a tall and narrow one. To keep _CopyBits as fast as possible, copy the shortest
rectangle possible.

Modifying the standard test again so that the source and destination rectangles are 256 pixels wide
by 50 pixels tall produces a result of 110 ticks, while modifying it so that the source and
destination rectangles are 50 pixels wide by 256 pixels tall results in a time of 123 ticks. These 13
ticks may not seem like a big deal, but combined with other factors, there may be a case where they
make a big difference.

Shape and Size of the Clip, Visible, and Mask Regions

CopyBits always makes sure that it stays within the lines, so to speak. _CopyBits copies
pixels clipped to the maskRgn that you pass as the last parameter to the call. If the destination is
the current GrafPort, CopyBits additionally clips to a region that’s the intersection of the
clipRgn and visRgn of the port. If the intersection of these three regions is not rectangular,
then CopyBits has to check each pixel to make sure it falls within the intersection, and this

check slows _CopyBits down. If the intersection of these three regions is rectangular, then
CopyBits takes the fast case of copying constant-sized rows. To keep _CopyBits as fast as

possible, make sure the intersection of the clipRgn and visRgn of the destination GrafPort
and the maskRgn is rectangular. Of course, if the destination GrafPort is a window, then the
visRgn is under the user’s control.

2 of 11 #277: Of Time and Space and _CopyBits

Developer Technical Support June 1990

In general, if the region that you are copying into has straight vertical edges for the most part, the
time penalty of using a non-rectangular region is not that bad. Regions that only have small
portions that are straight and vertical are the ones that slow _CopyBits down in a big way.
Regions that are twisted or that have holes or islands can also have a big effect upon the speed,
depending upon how complicated they are. As a rule of thumb, if a region looks like it slows

_CopyBits, it probably does.

Modifying the standard test so the maskRgn is set to a circle that inscribes the example pixel map
results in a time of 303 ticks, which is considerably longer than the standard test result of 204 ticks
that involved copying a much larger area. Modifying the maskRgn to a square with 226 pixels per
side, which has about the same total area of the circle just used, results in a time of 176 ticks.

Transfer Modes

Macintoshes without Color QuickDraw have eight transfer modes that work with CopyBits,
while those Macintoshes with Color QuickDraw get an additional nine modes. Because the
algorithms for each of these modes can be pretty different from the others, the time it takes

_CopyBits to work with each of these modes can vary radically. For several of these modes, the
speed of _CopyBits can vary a lot depending upon the particular image being copied and the
image over which this image is copied. It can also vary non-linearly depending upon the depth of
the pixel maps. The arithmetic modes in particular are highly optimized for 32-bit deep pixel maps.

The standard test copies a fairly average-looking ray-traced image to a white background.
Modifying the standard test to erase the background between each of the 100 calls to _CopyBits
produced the following results for the modes listed (the tests were obviously also changed to
reflect the proper mode. In addition, to make the results a little more meaningful, the time it took to
erase the background has been subtracted from each result.

srcCopy 204 notSrcCopy 469 addOver 1500 adMax 1504
srcOr 436 notSrcOr 444 addPin 1514 adMin 1501
srcBic 441 notSrcBic 441 subOver 1493 blend 1553
srcXor 438 notSrceXor 436 subPin 1525 transparent 1107

hilite 3127

Of course, the amount of time taken by some of these modes can be changed by changing the
image to copy and the image over which it is copied. These figures are just to give an idea of how
fast or slow some of these modes are in this particular situation.

There is actually one more mode which is not mentioned: ditherCopy. Apple introduced this
mode with 32-Bit QuickDraw, and it makes CopyBits do error-diffusion dithering when
copying a pixel map from one depth to a pixel map of a lesser depth or to a pixel map of the same
depth with a different color table. The speed of this transfer mode can be very fast or very slow,
depending upon what pixel depths and colors are used and the particular image being copied. The
ditherCopy mode is not included in the table since the range of figures is potentially very large;
play with it and see for yourself. For more information about this mode, refer to the Color
QuickDraw chapter in Inside Macintosh, Volume VI and the 32-Bit QuickDraw Developers’ Notes
from APDA.

#277: Of Time and Space and _CopyBits 3 of 11

Macintosh Technical Notes

Colorization

There is a variation of CopyBits if the destination pixel map is the current port and the
foreground color is not black or the background color is not white. If this is the case, then the
source image is colorized when it’s copied. For details, see Technical Note #163, Adding Color
with _CopyBits. Because this colorization requires extra processing, CopyBits slows down.
To keep _CopyBits as fast as possible, make sure the foreground color is black, the background
color is white, and that the current GDevice pixel map’s color table has white in the first position
and black in the last position.

Modifying the standard test so that the foreground color is pure red and the background color pure
blue produces a result of 579 ticks.

Pixel Alignment

The alignment of pixels in the source pixel map relative to their alignment the destination pixel map
can be surprisingly important to the speed of _CopyBits, but what is pixel alignment?
Following is an example to demonstrate the concept of pixel alignment. Imagine you want to
perform a_CopyBits ona one-bit-per-pixel off-screen pixel map into a window on a one-bit-
per-pixel screen, and the window is three pixels from the left edge of the screen.

If you copy the entire off-screen pixel map to the left edge of the window, then _CopyBits must
realign the pixels. Since the leftmost pixels of the off-screen pixel map are on a byte boundary, but
the left edge of the window is three pixels away from a byte boundary, CopyBits has to shift
(or realign) each byte from the off-screen pixel map by three pixels before placing it on the screen.
The process of aligning the pixels slows down CopyBits.

Figure 1 shows an example of this realignment. An off-screen bit map specified by a pointer to a
BitMap called of fScreen is being copied to a window specified by a WindowPtr called
window. window, which is 256 pixels wide and 256 pixels high, is positioned 50 pixels from
the top of the screen and three pixels from the left edge of the screen. The screen has 512 pixels
horizontally and 342 pixels vertically. The source rectangle that is passed to CopyBits is

sourceRect and the destination rectangle is destinationRect. Because of fScreen is
misaligned by three pixels, CopyBits has to shift of fScreen by three pixels before placing
the image on the screen.

4 of 11 #277: Of Time and Space and _CopyBits

Developer Technical Support June 1990

rowBytes = 64 —f

NW .----1 window*.portRect:
' [Top:0 Left:0 Bottom:256 Right:256]

Cc] window’.portBits.bounds:

[Top:-50 Left:-3 Bottom:292 Right:509]

; destinationRect:

ae [Top:0 Left:0 Bottom:13 Right:16]

Three-pixel shift
P offScreen*.portRect:

[Top:0 Left:0 Bottom: 13 Right:16]

offScreen”*.portBits.bounds:

[Top:0 Left:0 Bottom: 13 Right:16]

sourceRect:

(Top:0 Left:0 Bottom:13 Right:16]

Figure 1l-offscreen Needs Realignment

By adjusting the off-screen pixel map so that its leftmost pixels are also three pixels away from a

byte boundary, CopyBits can just copy the bytes without shifting, which is a lot faster. This
example holds true on all Macintosh models, whether they have Color QuickDraw or not. To keep
_CopyBits as fast as possible, make sure the pixels in memory are aligned with the pixels on the
screen. Figure 2 shows the same situation as Figure 1, except that of Screen is now properly
aligned to window.

#277: Of Time and Space and _CopyBits 5 of 11

Macintosh Technical Notes

rowBytes = 64 —J

window%’.portRect:

[Top:0 Left:0 Bottom:256 Right:256]

window”’.portBits.bounds:

[Top:-50 Left:-3 Bottom:292 Right:509]

destinationRect:

(Top:0 Left:0 Bottom: 13 Right: 16]

No pixel shifting offScreen*.portRect:
a a [Top:0 Left:0 Bottom: 13 Right:16]

offScreen”*.portBits.bounds:

(Top:0 Left:-3 Bottom:13 Right: 16]

sourceRect:

[Top:0 Left:0 Bottom: 13 Right: 16]

Bytes = 4 ———_- ~<o8 -—_________——. - -..

Figure 2-offscreen Aligned

Many, if not most, Color QuickDraw Macintoshes have video cards that can display one pixel per
byte, so one would think that pixel alignment does not apply in these cases, since all pixels are at
byte boundaries. This statement is true enough, but there is still another kind of alignment that
should be done on these machines. Macintoshes with Color QuickDraw generally have full 32-bit
microprocessors, and these microprocessors are at their fastest when they can transfer long words
aligned on long-word boundaries in memory.

Modifying the last example so that the off-screen pixel map and the screen are both eight-bits-per-
pixel, the pixel at the extreme top left corner of the off-screen pixel map is located at a long-word
boundary, because the Macintosh Memory Manager forces it to be located there; however, the pixel
at the extreme top left corner of the window is located three bytes away from the previous long-
word boundary. No bit shifting is needed, because each pixel takes up a whole byte, but
_CopyBits does have to take the non-optimum case of copying long words on non-long-word

6 of 11 #277: Of Time and Space and _CopyBits

Developer Technical Support June 1990

boundaries. This case works fine, but it is not quite as fast as it could be. To keep _CopyBits

as fast as possible, make sure pixels in the source and destination pixel maps are aligned on long-

word boundaries.

Since 1984, Macintosh programmers have been told that rowBytes must be even. That is still

true, but to allow CopyBits to copy an entire pixel map on long-word boundaries, rowBytes

must be a multiple of four so that every line in a pixel map begins on a long-word boundary. The

following formula can be used to find the minimum rowBytes needed for a pixel map’s bounds

rectangle with right and left coordinates of bounds. right and bounds. left, and a pixel

depth of pixelDepth:

rowBytes := ((pixelDepth * (bounds.right - bounds.left) + 31) DIV 32) * 4;

Off-screen GWor1d support, which was introduced with 32-Bit QuickDraw, can automatically set

up a pixel map so that it’s properly aligned to any part of the destination pixel map or bit map. You

can specify that you want this by passing zero for the pixel depth and passing the rectangle of the

destination area in global coordinates. See the 32-Bit QuickDraw Developers’ Notes and “Braving
Offscreen Worlds” in d e v elo p, January 1990 for details.

The way that _NewGWorld aligns a GWorld is to set up the off-screen pixel map so that its
rowBytes is four bytes wider than one would normally calculate. Four bytes is the maximum
amount that any pixel map would have to be realigned at any pixel depth. The bounds rectangle’s
left coordinate is set to the negative of the left coordinate of the destination rectangle in global
coordinates modulo (32 / pixel depth), because this is maximum amount that a pixel map must be
shifted to achieve perfect alignment. To build on the earlier example, assume you have a 128-pixel
wide, eight-bit deep, off-screen pixel map to copy to a window that is three pixels away from the
left edge of an eight-bit color screen.

First, the rowBytes for the off-screen pixel map is set to 131 to allow room for realignment. To
align the off-screen pixel map to the on-screen window, the left coordinate of the off-screen bit
map’s bounds is set to -3 and the right coordinate is still at 128. Notice that the off-screen pixel
map’s bounds is now 131 pixels wide. Now, the pixels in the off-screen pixel map with a
horizontal coordinate of 0 are located three bytes away from the previous long-word boundary.
The pixels on the left edge of the window are also located three bytes away from the previous long-
word boundary, so_CopyBits can copy long words on long-word boundaries.

If a user moves the window so that it’s two pixels from the left edge of the screen, the off-screen
pixel map must be realigned. _UpdateGWorld is used to do this. It changes the left coordinate
of the off-screen pixel map’s bounds rectangle to -2 and then it shifts all the pixels in the off-
screen pixel map one pixel to the left. The extra four bytes in each row provide the room for this
shifting. (Gives you some new respect for the off-screen support, doesn’t it?)

This same discussion applies to any pixel depth, though shallower pixel depths require bit shifting
rather than byte shifting. The same principles apply, though. Notice that in a 32-bit deep pixel
map, all pixels are aligned on long-word boundaries, so no bit shifting or byte shifting ever needs
. be done on one of those. _NewGWorld still adds four to rowBytes even in this case,
owever.

Modifying the standard test so that the source and destination pixel maps are four bits deep with
perfect pixel alignment produces a result of 78 ticks; however, if the destination pixel map is one
pixel left of perfect alignment, the result is 228 ticks.

#277: Of Time and Space and _CopyBits 7 of 11

Macintosh Technical Notes

Speed of the Hardware, Of Course

Obviously, the speed of the machine your application is running on affects the speed of
_CopyBits. To make CopyBits as fast as possible, spend a lot of money. However, there
is more to the speed of _CopyBits than the speed of the Macintosh itself. When the Macintosh
128K was released, there was only one place for pixel images: main memory. Today, the situation
is more complicated. If you have a modular Macintosh, the pixel image for the screen is in the
memory of a NuBus™ video card. If you have a Macintosh IIci, you can optionally abandon the
NuBus video card and use on-board video which takes up part of main memory. If you have an
8°24 GC card with enough memory, the pixel images can be cached in the card’s memory along
with the screen’s pixel image.

All of these different locations have different access speeds, and that can affect the speed of
_CopyBits. Additionally, different Macintoshes have different RAM access speeds. The
Macintosh II, IIx, IIcx, and SE/30 have faster RAM than the Macintosh Plus or SE. The
Macintosh IIci RAM access speed is faster still, and the Macintosh IIfx has faster RAM access than
the IIci. Different video cards have different access speeds. The IIci has a cache card option
which can vastly speed up on-board video RAM access speed. Third-party video cards that work
in iy Processor Direct Slot of the Macintosh SE and SE/30 have their own speed characteristics as
well.

There can also be a speed cost for crossing the different areas. If CopyBits copies between
main memory and a NuBus video card, the image data has to be transferred across NuBus.
NuBus is a speed bottleneck, so copying an image across NuBus is slower than copying the image
from one part of the screen to another or copying from one part of main memory to another.
Modifying the standard test to create two windows and two off-screen pixel maps—all eight bits
deep with the standard color table then doing every combination of copying between off-screens,
between windows, and between off-screens and windows produces the following results:

Off-screen to off-screen: 147
Screen to screen: 188
Off-screen to screen: 204
Screen to off-screen: 201

Performing the standard test on a Macintosh IIfx running System Software 6.0.5 with an Apple
Extended Video Card yields a result of 153 ticks, which is not too shabby considering that the
transfer is still going through NuBus.

Depth of Pixel Maps

This factor is pretty obvious and is sort of similar to the effect of the dimensions of the copied area:
the more bits per pixel there are in the pixel map to copy, the more memory that _CopyBits has
to move and the longer it takes to get the job done, assuming that the source and destination pixel
maps have the same depth. To make CopyBits as fast as possible, make sure the pixel maps
are as shallow as possible.

If CopyBits has to copy toa pixel map that has a different depth from the source pixel map, the
relationship between speed and depth becomes more complicated. There is a tradeoff between the
time taken to change the depth of an image and the absolute amount of data that has to be
processed. Copying from a 1-bit deep pixel map to a 32-bit deep pixel map is not that slow
because the amount of image data in the 1-bit deep pixel map is so small.

8 of 11 #277: Of Time and Space and _CopyBits

r

1990
Developer Technical Support

June

Modifying the standard test to transfer a four-bit deep pixel map to another four-bit deep pixel map

produces a result of 78 ticks.

Color Mapping

Color QuickDraw expects a color table attached to every indexed pixel map. Color tables specify

what color each pixel value in the pixel map represents. When an application calls _CopyBits to

copy a pixel map into another pixel map, _CopyBits reproduces the colors of the image in the

source pixel map as closely as possible—even if the colors available in the destination pixel map

are different than those available in the source pixel map. This reproduction is done through a

process called “color mapping.”

When color mapping is done, the source pixel values are transformed into RGBColor records

using the source pixel map’s color table. These RGBColor records are passed to

Color2Index which finds the pixel values of the closest available colors in the current

GDevice pixel map’s color table. This same process is done when the source and destination
pixel maps have differing depths. The color table attached to the destination pixel map is not used
in color mapping. The colors available in the current GDevice pixel map’s color table are used
instead. So, the destination pixel map must have the same colors for the same pixel values as the

current GDevice. Otherwise, the resulting image in the destination pixel map gets the wrong
colors. See Inside Macintosh, Volume V-141, The Color Manager, for a description of

_Color2Index. It’s also helpful to read the “Inverse Tables” section in the same chapter on
page V-137.

Now, if the source color table contains virtually the same colors for the same pixel values as the
current GDevice pixel map’s color table, then any particular pixel value has the same color
regardless of whether it is in the source or destination pixel map. In this case, color mapping is a
waste of time, because the pixels can be copied directly from the source pixel map to the
destination pixel map without a loss of color fidelity. _CopyBits takes advantage of this special
case to yield some big speed improvements. How is this special case detected? Before this
question is answered, it’s useful to understand how Color QuickDraw uses color tables.

The ctSeed Field

The first field in a color table is the ct Seed field. This LongInt can be thought of as the color
table’s version of the scrapCount field of the desk scrap. Whenever an application calls
_ZeroScrap, the desk scrap’s scrapCount is changed. An application can tell that the desk
scrap has changed by checking to see if the scrapCount has changed. Similarly, whenever the
contents of a color table are changed in any way, the ct Seed field should be changed to indicate
to anyone using that color table that it has been modified.

Additionally, Color QuickDraw often uses the ct Seed as a fast check for color table equality. If
two color tables have the same ct Seed, then Color QuickDraw often assumes that their contents
are equivalent.

After creating a new color table, an application has to get a valid value for the ct Seed field, and it
can do so with the _GetCTSeed routine. This routine generates a valid ct Seed value suitable
for a new color table. See /nside Macintosh, Volume V-143, The Color Manager, for a description
of GetCTSeed.

System Software 7.0 and 32-Bit QuickDraw each offer a routine called _CTabChanged which
should be called after a color table is modified. It takes a handle to the changed color table as a
eee a ee ea ee a Sr eee ee nS ae Le So er ae

#277: Of Time and Space and _CopyBits 9 of 11

Macintosh Technical Notes

parameter. If the _CTabChanged routine is not available, then the application should instead
change ctSeed to a different valid value by calling GetcTSeed and assigning the result to
ctSeed, just like it’s done when the application creates a new color table. You must use either
one of these methods to tell Color QuickDraw that the color table has chan ged, or else the modified
color table could be confused with the old color table, or with some other color table—this is
especially critical if an 8°24 GC card is being used. See the 32-Bit QuickDraw Developers’ Notes
for details about the CTabChanged routine.

The ctFlags Field

The ctF lags field is used as a set of flags that indicate some characteristics of the color table.
Currently, only the top two bits of ct Flags are of any interest to developers. The most
significant bit of ctF lags (bit 15) indicates whether the color table is a sequential color table or
an indexed color table. Bit 14 indicates that the color table is a special kind of sequential table if it
is set. In these kinds of color tables, the value fields indicate a palette entry in the destination
window’s palette. See the Palette Manager section of the 32-Bit QuickDraw Developers’ Notes for
a discussion about this capability.

Sequential Color Tables

If bit 15 of ct Flags is set, the color table is a sequential color table. Sequential color tables are

usually found attached to GDevice pixel maps and to GWor1d pixel maps.

In sequential color tables, the position of each color in the color table indicates the pixel value to
which it corresponds. For example, the fifth entry in a sequential color table always has a pixel
value of four (pixel values start at zero). The value field of each ColorSpec is not defined in

sequential color tables, though they are used in color tables for screen GDevice records to
indicate that a particular color is reserved, protected, or both.

Indexed Color Tables

If bit 15 and 14 of ct Flags are clear, the color table is an indexed color table. In indexed color

tables, the value field of each ColorSpec indicates the pixel value of the RGB in that

ColorSpec. For example, if the fifth ColorSpec in the color table has a value field
containing 10, then that color has a pixel value of 10, not 4, as it would have been if this were a
sequential color table.

Color Mapping or Non-Color Mapping

As noted before, CopyBits can detect whether it has to do color mapping or not, so that it can

take advantage of the speed benefits of no color mapping if possible. How is this done? First,

_CopyBits checks to see if the ct Seed field of the source and destination color tables are the

same and if the source and destination pixel maps have the same depths. If both of these

conditions are true, then CopyBits assumes that the two color tables are identical and it just

copies the pixels directly without color mapping. If the ctSeed fields are different, CopyBits

checks manually through all of the colors in the source pixel map’s color table map to see if they

map to the same pixel values in the current GDevice pixel map’s color table as they do in their

own color table. If they do, then CopyBits again takes the fast case.

Soto keep CopyBits as fast as possible, make sure that the source and destination color tables

have virtually the same colors for the same pixel values. This applies even if one color table is an

indexed color table and the other is a sequential color table, or if the source and destination color

tables are both indexed but the order of the ColorSpec records differ.

a ee eee ee eee ee en Ee ee

10 of 11 #277: Of Time and Space and _CopyBits

Developer Technical Support June 1990

Modifying the standard test so that the source pixel map has a color table that is the reverse of the
standard eight-bit system color table (the grays have low pixel values and the light pinks and
yellows have high pixel values) and the destination pixel map has the standard eight-bit system
color table produces a result of 470 ticks.

By the way, color tables do not make any sense for direct pixel maps, so this discussion does not
apply to them. Direct pixel maps do have a color table attached to them, but they’re just there so
that an application that assumes that a color table is attached does not bomb.

Scaling

If the source and destination rectangles are the same size, CopyBits has the fairly easy task of
just transferring the pixels from the source pixel map to the destination pixel map; however, if the
source and destination rectangles are different sizes, CopyBits has to scale the copied image,
which slows it down a lot. To keep _CopyBits as fast as possible, make sure the source and
destination rectangles have the exact same dimensions.

Modifying the standard test to copy a 128 by 128 pixel portion of the source pixel map to the
whole 256 by 256 pixel window produces a result of 1,159 ticks.

Of Time and Space

Hopefully, this Note makes it a lot clearer to you how to set up a Situation in which your
_CopyBits calls are as fast as your situation allows. It’s important to realize that this Note does
not cover every single factor that has an influence on the speed of CopyBits. There are many
more factors which are just too unpredictable. For example, CopyBits is highly optimized for
many special cases, and those optimizations can have a big effect on the speed of the copy. Also,

the speed of _CopyBits can be affected by interrupt-level tasks. It’s up to you to fine tune your
programs to your particular situations.

Further Reference:
Inside Macintosh, Volume I, QuickDraw
Inside Macintosh, Volume V, The Color Manager

Inside Macintosh, Volume V1, Color QuickDraw
Technical Note #163, Adding Color With _CopyBits
develop, January 1990, “Realistic Color for Real-World Applications”
develop, January 1990, “Braving Offscreen GWorlds”
32-Bit QuickDraw Developers’ Notes (APDA)

NuBus is a trademark of Texas Instruments

#277: Of Time and Space and _CopyBits 11 of 11

Macintosh &
Technical Notes s

Developer Technical Support

#278: _PBClose the Barn Door

Written by: Dave Radcliffe June 1990

This Technical Note discusses the need for Macintosh device drivers to implement _PBClose.

Introduction

You may get the idea when implementing device drivers that_PBClose is superfluous. After all,
if you have a resident driver for a NuBus™ video board, the only time your driver is not needed is
if the operating system is going away. It might seem that nothing important can happen after the
operating system goes away, so why bother with PBClose? Well, it turns out a lot can happen,
and this Note tells you why it is important to implement a Close (_PBClose) routine.

Transformations

The problem with your driver not being needed when the operating system is going away is that
there is more than one way for the operating system to go away. Besides the user choosing Restart
or Shutdown from the Special menu, it is possible for the Macintosh operating system to be
transformed into an entirely new operating system. This is exactly what happens when A/UX
Starts.

The A/UX Startup application (Sash in the pre-A/UX 2.0 days) attempts to shut down the
Macintosh operating system as much as possible, including closing all drivers, loading A/UX, and
Starting it running. It does not perform a RESET, so if you have not disabled interrupts in your
Close routine, A/UX may get up and running and find itself receiving interrupts for a board about
which it knows nothing—a situation which makes it very unhappy.

In summary, A/UX Startup issues a _PBClose call to your driver, so your driver must
implement a Close routine and it must accomplish the following (even if you never intend to
support your board under A/UX):

¢ Disable all interrupts for your device.
¢ Remove your interrupt handler, replacing any changed interrupt vectors.
* Release any private data storage held by your driver.

Further Reference:
¢ Inside Macintosh, Volumes II, IV, & V, The Device Manager
* Designing Cards and Drivers for the Macintosh Family, Second Edition

NuBus is a trademark of Texas Instruments.

a

#278: _PBClose the Barn Door 1 of 1

4 Macintosh “«

Technical Notes A

Developer Technical Support

#279: 'LDEF' Madness

Written by: Byron “scapegoat” Han & Alex Kazim June 1990

This Technical Note uncovers a problem with writing Pascal list definition procedures and two
(yes, count ’em, two) different methods to work around it.

The Hook

List definition procedures ('LDEF' resources) are pieces of stand-alone code that specify the
behavior of a list (i.e., how items are drawn and highlighted, etc.) You can write these procedures
in a high-level language or in assembly-language, and they have an entry point with the following
calling convention:

PROCEDURE MyList (lMessage: INTEGER; 1Select: BOOLEAN; lRect: Rect; 1Cell: Cell;

lDataOffset, lDataLen: INTEGER; lHandle: ListHandle) ;

Note that the 1Rect parameter is a structure greater than four bytes in length, so you must pass a
pointer to it. If you write the list definition procedure in a language like Pascal, the rectangle
pointed to by 1Rect is copied into a safe, locally modifiable place.

The Line

When an application calls LNew, the List Manager performs its own initialization prior to calling
the list definition procedure with the 1InitMsg message. Note that since the initialization of the
list does not deal with any cells directly, the 1Select, 1Rect, 1Cell, 1DataOffset, and
1DataLen parameters are supposed to be ignored by the list definition procedure when dealing
with the 1InitMsg message.

The Sinker

The problem is that the List Manager stuffs garbage into these parameters. Therefore, when the list
definition procedure tries to copy the cell rectangle into a local copy, the pointer to the cell rectangle
has a chance of being odd, which causes an address error on 68000-based machines, and it is
likely to generate a bus error on all other machines.

a a ee Oe ae ee ee

#279: "LDEF' Madness 1 of 2

Macintosh Technical Notes

Solution A

A simple assembly-language header for the list definition procedure to even out the cell rectangle
pointer for the 1InitMsg message can fix the problem:

MainLDEF MAIN EXPORT

IMPORT MyLDEF

; Stack Frame definition
LHandle EQU 8 + Handle to list data record
LDataLen EQU LHandle+4 ; length of data
LDataOffset EQU LDataLen+2 ; offset to data
LCell EQU LDataOffset+2 ; cell that was hit
LRect EQU LCel1+4 ; rect to draw in
LSelect EQU LRect +4 + 1l=selected, O=not selected
LMessage EQU LSelect+2 ; O=Init, 1=Draw, 2=Hilite, 3=Close
LParamSize EQU LMessaget+2-8 ; # of bytes of parameters

BRA.S @0o ; enter here

; standard header

DC.W) ; flags word

DC.B ‘LDEF'! ; type

DC.W 0 ; LDEF resource ID

DC.W 0 ; version

@0 LINK A6é, #0

MOVE.W LMessage(A6),D0 ; get the message

CMP .W #1lInitMsg, DO

BNE.S @1 ; not initialization message

MOVE.L_ #0, LRect (A6) ; } Quarantee that this is even

@1 UNLK A6

JMP My LDEF

RTS

END

The code fragment guarantees that when the list definition procedure tries to copy the 1Rect
parameter to a safe place, a bus error does not occur.

Solution B

A simpler solution is to declare the entry point to your Pascal 'LDEF' to be the following:

PROCEDURE MyList (lMessage: INTEGER; lSelect: BOOLEAN; VAR 1lRect: Rect; 1Cell: Cell;

lDataOffset, lDataLen: INTEGER; lHandle: ListHandle);

This revised declaration disables the Pascal compiler’s automatic copying of the rectangle data; you

need to take care not to modify the cell rectangle passed in 1Rect.

Safe Family Experience

Writing list definition procedures can be a rich and rewarding experience and is a great thing to do
on a Saturday night. With a little bit of assembly-language glue, it can even be a safe family
experience too.

Further Reference:
¢ Inside Macintosh, Volume IV, The List Manager Package
¢ Technical Note #110, MPW: Writing Stand-Alone Code

2 of 2 #279: 'LDEF' Madness

~~

Macintosh U
Technical Notes @.

Developer Technical Support

#280: “Bugs In MacApp? Yes, But I Love It!”

Written by: Keith Rollin, Norbert Lindenberg, the MacApp Engineers, and You August 1990

This Technical Note describes latest information about bugs or unexpected “features” in MacApp.
Where possible, solutions and fixes are noted. DTS intends this Note to be a complete list of all
known bugs in MacApp and will update it as old bugs are fixed or new ones appear. If you have
encountered a bug or unexpected feature which is not described here, be sure to let DTS know.
Specific code examples and suggested fixes are useful.

This version of the Note reflects the state of MacApp 2.0, released March 22, 1990. Unless
otherwise noted, all bugs with listed fixes will be fixed in the next version of MacApp. A script to
apply many of the fixes listed here can be found on the Developer CD Series, AppleLink
(Developer Support:Developer Services:Macintosh Development Tool Discussions:MacApp
Discussion), and the Apple FTP site.

The MacApp Management would like to note that MacApp is a high velocity ride with many twists
and turns (all alike). Please keep your hands inside at all times.

There are 107,737 lines of Object Pascal, C++, Assembly, and Rez code that go into the MacApp
Library and Build system. As such, it is inevitable that a few bugs creep in. The purpose of this
Note is to inform you of these bugs, not to scare you away from MacApp. There are dozens of
commercially available programs that lead normal everyday lives which are built on top of MacApp
as it stands today. Most of the bugs listed here won’t show up in regular use (at least, they didn’t
in our test programs), so they may not affect you. If they do, you can use the fixes or solutions
identified here (“‘Fixes” are intended to be applied directly to the MacApp source, while “solutions”
identify techniques to override or avoid a method to resolve the problem).

MacApp.Lib Bugs

TApplication

1. When being suspended in MultiFinder, MacApp commits command objects which affect
the clipboard, rather than checking if the scrap has changed when switching back in.

Solution: Not yet determined. This is an area of serious consideration for the next
version of MacApp.

2. MacApp should hide the clipboard window on a suspend event and redisplay it on a resume
event.

Solution: Override the TApplicat ion methods About ToLoseControl and
RegainControl. About ToLoseControl should remember whether
or not the clipboard window is currently open and call
gClipWindow.Close if itis. RegainControl should look at the

eee

#280: “Bugs In MacApp? Yes, But I Love It!” 1 of 37

Macintosh Technical Notes

state of the clipboard window saved by About ToLoseCont rol, and call
gClipWindow. Open if the window needs to be reshown.

There are problems with the value of the mouseDidMove parameter to TCommand when
called by TApplication.TrackMouse. When the TrackPhase is trackPress,
TCommand.TrackMouse is called with mouseDidMove set to TRUE even though the
mouse hasn’t had a chance to move. When the TrackPhase is trackMove,
mouseDidMove is FALSE whenever the mouse moves back inside the hysteresis range.
When the TrackPhase is trackRelease, mouseDidMove is TRUE even if the
mouse never moved.

Fix: In TApplication.TrackMouse (file UMacApp.TApplication.p):

¢ The first call to TrackOnce should read:

TrackOnce(trackPress, FALSE) ;

¢ The assignment of didMove should read:

didMove := movedOnce & (NOT EqualVPt (previousPoint, theMouse)).

¢ The last call to TrackOnce should read:

TrackOnce(trackRelease, didMove) ;

Once those changes have been applied, the parts of MacApp that assume
mouseDidMove = TRUE when aTrackPhase = TrackPress need to be
updated. In the methods TCel1SelectCommand.TrackMouse and
TRCSelectCommand.TrackMouse (file UGridView.inc1.p), replace:

IF mouseDidMove THEN

With:

IF mouseDidMove | (aTrackPhase = TrackPress) THEN

With these changes, it is possible to experience some feedback problems. For example,
when resizing the column widths in a spreadsheet, Calc draws the initial vertical line, waits
until the mouse moved outside the hysteresis range, and then, before drawing the vertical
line in its new location, erases the old vertical line in the wrong place. This leaves two
vertical lines on the screen as garbage.

Fix: In UMacApp.TApplication.p, replace the fourth occurrence of:

previousPoint := theMouse;

With:

IF didMove THEN

previousPoint := theMouse;

2 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support August 1990

as After performing mouse tracking, TApplication calls your TCommand.DoIt method,
even if the user hasn’t moved outside the hysteresis range.

Fix: Add the following lines after TrackMouse := tracker;

IF NOT movedOnce THEN

BEGIN

TrackMouse := NIL;

tracker.Free;

END;

TCommand (including subclasses)

tL. TCommand.TrackMouse fails when SELF. fView is NIL and TrackPhase is
trackRelease. This is because there is an attempt to call a method of fView without
first checking if fView is NIL.

Fix: In TCommand.TrackMouse (file UMacApp.TCommand.p), replace:

IF (aTrackPhase = trackRelease) & (NOT fView.ContainsMouse(nextPoint)) THEN

TrackMouse := NIL

ELSE

TrackMouse := SELF;

END;

With:

IF (aTrackPhase = trackRelease) & ((fView = NIL)

| (NOT fView.ContainsMouse(nextPoint))) THEN

TrackMouse := NIL

ELSE

TrackMouse := SELF;

END;

If a failure occurs in TDocument .Revert, TRevertDocCommand.DolIt tries to
show the reverted document. This is the correct thing to do if the user canceled out of the
revert if a silent failure is signaled (this could happen in DiskFileChanged). However
if a real error occurred, you cannot leave the document open; you definitively must close it.
Otherwise the application may bomb in the next operation involving the document (e.g., the
next screen refresh).

We have to distinguish three classes of errors:

1) the user canceled out of the operation in CheckDiskFile,
2) areal error was discovered in CheckDiskFile,
3) areal error occurred during rebuilding the document in DoInitialState or

ReadFromFile.

In the first and second cases, the memory-resident version of the document has not been

changed when you reach HdlRevertCmd. In the third case, the document may be
severely damaged. Therefore, in the first two cases there is no need to call
ShowReverted (it doesn’t hurt either), while in the third case you must close the
document.

Case one is easy to recognize (error = 0), but for the second and third cases, error
<> 0. To distinguish between them, you can pull a trick: you know that the Revert menu

—_——— ee

#280: “Bugs In MacApp? Yes, But I Love It!” 3 of 37

Macintosh Technical Notes

item is only enabled if [Document . fChangeCount is greater than zero. Therefore,
you move SetChangeCount (0) in TDocument .Revert before any operation that
can clobber the document (i.e., before the call to FreeData). This way, you can
distinguish between the second and third cases in Hd1RevertCmd by checking
fChangeCount.

Fix: Change the failure handling procedure in TRevertDocCommand.DolIt (file
UMacApp.TDocument.p) to:

PROCEDURE HdlRevertCmd(error: OSErr; message: LONGINT);

BEGIN

{Check whether the document has already been clobbered }

IF fChangedDocument .GetChangeCount = 0 THEN

fChangedDocument.Close {remove the debris left by fChangedDocument}

END;

In TDocument .Revert, move the line

SetChangeCount (0);

before the line

FreeData;

3: It is potentially problematic having Page Setup as an undoable command, since the view
and printer driver context can change. An example of this is shown with the following
steps:

1) Launch any MacApp application.
2) Access the Page Setup command from the File menu.
3) Take notice of which printer driver is currently being used and make a

change to the dialog (i.e., switch to “landscape” printing), click on the OK
button.

4) Access the Chooser desk accessory and change to a different printer driver.
5) Now select Redo Page Setup Changes from the Edit menu, then select

Undo Page Setup Changes.
6) Open the Page Setup dialog from the File menu and notice that the

“landscape” printing icon is no longer highlighted.
7) Although the Page Setup dialog is unaffected by Undo and Redo, the

document itself is affected, as it prints out in landscape mode, while the
Page Setup dialog shows it is in non-landscape mode.

Solution: Apple does not yet have a complete solution to this. If it bothers you, you
could modify IPrintStyleChangeCommand to make page setup non-
undoable.

4 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support
August 1990

TControl

ft i. MacApp’s subclasses of TCont rol (defined in the file UDialog.inc1.p) don’t pass on

their itsDocument parameter to the INHERITED IRes method. This causes the

fDocument field to get initialized with NIL rather than the TDocument reference.

Solution: | You can override the IRes method of your own controls to do an

INHERITED IRes_ and then set the fDocument field to

itsDocument:

PROCEDURE TMyButton.IRes(itsDocument: TDocument;

itsSuperView: TView;

VAR itsParams: Ptr); OVERRIDE;

BEGIN

INHERITED IRes(itsDocument, itsSuperView, itsParams);

fDocument := itsDocument;

END;

Then register your class in your LYourApplication method so that all
Button references in your 'view' resources result in TMyButt ons being
created, rather than TBut tons:

RegisterStdType('TMyButton', kStdButton);

However, this solution does not work if you depend on these views
appearing in the document’s fViewList.

TControl:

INHERITED IRes(NIL, itsSuperView, itsParams) ;

(> Fix: Replace the calls to INHERITED IRes inthe IRes methods of subclasses of

With:

|
INHERITED IRes(itsDocument, itsSuperView, itsParams);

Zs Printing disabled controls, especially buttons, results in a gray pattern being printed over
the control. This is not a bug in MacApp, but rather a limitation of the LaserWriter. The
LaserWriter driver doesn’t respect all QuickDraw transfer modes, including the one used to
draw the grey text.

Solution: Not yet determined. It may involve imaging the button into an off-screen
bitmap, and then copying it to its destination.

{>

eee

#280: “Bugs In MacApp? Yes, But I Love It!” 5 of 37

Macintosh Technical Notes

TCtlMgr

ie TCt1Mgr.Draw has a WITH statement that’s too long. A field of £CMgrControl is set
after memory has moved, overwriting four bytes of memory. UW

Fix: In TCtlMgr.Draw (file UMacApp.TControls.p), replace:

WITH fCMgrControl** DO

BEGIN

savedOwner := contrlOwner;

contrlOwner := WindowPtr(thePort);

PenNormal; { NECESSARY? }

IF qNeedsROM128K | gConfiguration.hasROM128K THEN

DrawlControl(fCMgrControl)

ELSE

BEGIN

SetCMgrVisibility (FALSE) ; { Force ShowControl to redraw }

ShowControl (fCMgrControl);

END;

contrlOwner := savedOwner;

END;

With:

WITH fCMgrControl** DO

BEGIN

savedOwner := contrlOwner;

contrlOwner := WindowPtr(thePort) ;

END; { MEB moved up from below } :

PenNormal; {NECESSARY ? }

IF qNeedsROM128K | gConfiguration.hasROM128K THEN

DrawlControl (fCMgrControl)

ELSE

BEGIN

SetCMgrVisibility (FALSE) ; { Force ShowControl to redraw }

ShowControl(fCMgrControl);

END;

fCMgrControl**.contrlOwner := savedOwner; { MEB used to be in WITH }

TDeskScrap View

a5 If an external application puts both “PICT” and “TEXT” data in the desk scrap,
TDeskScrapView gets confused and tries to display the “PICT” data as text.

Fix: Reverse the test in TDeskScrapView.CheckScrapContents (file
UMacApp.TDeskScrapView.p) so that it looks for “PICT” first and then “TEXT”:

fHavePicture := LookForScrapType('PICT');

fHaveText := LookForScrapType('TEXT');

6 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support August 1990

TDialog View

Gn L. TDialogView calls DoChoice on a disabled button as the result of a key press. If one

disables the default button and presses Return, for example, the button’s DoChoice

method still gets called.

Fix: The following lines of code appear in TDialogView.DoCommandKey and in
TDialogView.DoKeyCommand (file UDialog.inc1.p):

IF cancelView.IsViewEnabled THEN

TControl (cancelView) .Flash;

TControl (cancelView) .DoChoice (cancelView, TControl (cancelView) .fDefChoice) ;

Replace them with:

IF cancelView.IsViewEnabled THEN

BEGIN

TControl(cancelView) .Flash;

TControl (cancelView) .DoChoice(cancelView,

TControl (cancelView) .fDefChoice) ;

END;

Additionally, in TDialogView.DoKeyCommand, replace:

IF defaultView.IsViewEnabled THEN

TControl (defaultView) .Flash;

TControl (defaultView) .DoChoice (defaultView, TControl (defaultView) .fDefChoice) ;

Replace them with:

IF defaultView.IsViewEnabled THEN

BEGIN

TControl(defaultView) .Flash;

TControl (defaultView) .DoChoice (defaultView,

TControl (defaultView) .fDefChoice) ;
END;

Solution: | Youcan do this as an OVERRIDE if you hesitate to change MacApp.

TDocument

Le TDocument . Save fails if you lock a file after opening it with read and write access and
then try to save. The file is closed and {Dat aRefNum and fRsrcRefNum contain their
old (and now invalid) values.

Solution: Not yet determined.

Zz. If GetFileInfo returns a result other than noErr, TDocument .DiskFileChanged

maps it to errFileChanged, because there is no check for (err = noErr) in the

ELSE IF branch. The resulting alert is misleading, as the file may also have been
renamed, deleted, or the file server may have gone offline.

a

ipl iia ons se

#280: “Bugs In MacApp? Yes, But I Love It!” 7 of 37

Macintosh Technical Notes

Fix: The error checking code in TDocument.DiskFi leChanged (file
UMacApp.TDocument.p) should look like:

err := GetFileInfo(fTitle**, fVolRefNum, pb);

IF (err = noErr) THEN

IF checkType & (pb.ioFlFndrinfo.fdType <> fFileType) THEN

err := errFTypeChanged

ELSE IF pb.ioFlMdDat <> fModDate THEN

err := errFileChanged;

DiskFileChanged := err;

It is not possible to use the Pascal built-in filing function Close from within a
TDocument method because the Object Pascal scoping rules always associate the name
Close with TDocument.Close.

Solution: _ Itis likely that Apple will change the name in the future. After all, there are
three distinct objects that implement a Close method, none of which have
any relation to another; something like that needs to be cleaned up. In the
meantime, you could make a global routine MyClose that would be a
wrapper for the Close routine.

TEditText

Is If the first or only TEdit Text in a dialog has auto-wrap turned on and is not initially
selected, tabbing to it after opening the window selects it, but the selection is not visible
until the window is refreshed. This does not occur if auto-wrap is turned off for that
TEditText.

Solution: Not yet determined.

TGridView

Li Attempting to select a TGridViewcell for which CanSelectCell1 returns FALSE
causes the current selection to be deselected.

Solution: Override TGridView.DoMouseCommand tocall IdentifyPoint.
If a valid cell is returned, call CanSelectCel11. If it returns TRUE, call
INHERITED DoMouseCommand. This inhibits all tracking if the user
initially clicks in a disabled cell.

Fix: Replace the following line in TCe11SelectCommand.TrackMouse (file
UGridView.inc1.p):

IF LONGINT(clickedCell) <> LONGINT(fPrevCell)

With:

IF (LONGINT(clickedCell) <> LONGINT(fPrevCell))

& fGridView.CanSelectCell(clickedCell)

Neither TGridView.IRes nor TGridView.IGridView follow standard initialization
protocol. They each attempt to create their supporting regions and objects before calling
their superclass’ initialization method, without having placed the object in a freeable state
first.

8 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

|

Developer Technical Support
August 1990

TIcon

1.

TList

Solution: (for IGridView): Override TGridView. IGridView as follows:

PROCEDURE TMyGridView.IGridView(a long list of parameters); OVERRIDE;

BEGIN

fSelections := NIL;

fHLRegion := NIL;

fTempSelections := NIL;

fColWidths := NIL;

fRowHeights := NIL;

INHERITED IGridView (xxx) ;

END;

Solution: (for IRes): In your TMyGridView.IRes method, insert the following

statements before calling INHERITED IRes:

fSelections := NIL;

fHLRegion := NIL;

fTempSelections := NIL;

fColWidths := NIL;

fRowHeights := NIL;

TIcon.SetIcon does not support switching between color and black and white icons.

Solution: Create your own subclass of TIcon, and override TIcon.SetIcon.

Use something like this:

PROCEDURE TMyIcon.SetIcon(theIcon: Handle;

redraw: BOOLEAN); OVERRIDE;

BEGIN

ReleaselIcon;

IF GetHandleSize(theIcon) <> 128 THEN

fPreferColor:= TRUE

ELSE

fPreferColor:= FALSE;

fDataHandle := theIcon;

IF redraw THEN

ForceRedraw;

END;

If you have a TList subclass with a String instance variable, it is not possible to use
the Pascal string built-in function Delete on it because the Object Pascal scoping rules
always associate the name Delete with TList .Delete.

Solution: Apple will change the name in the future. In the meantime, you could make
a global routine MyDelete that would be a wrapper for the string Delete
routine.

SS SSS

#280: “Bugs In MacApp? Yes, But I Love It!” 9 of 37

Macintosh Technical Notes

TNumberText

I. When the length of the text ina TNumberText instance is 0, Get Value returns 0, and «)
Validate returns kValidValue. The value is not checked against {Minimum or
£Maximum, so your application may be fed with a value it is not prepared to handle.

Fix: Ideas for solutions or fixes are outlined in the comment in
TNumberText . Validate (file UDialog.inc1.p).

TPopup

1. Calling TPopup.DrawPopupBox results in a bus error if the popup menu item has no
text (_ Get Item returns theItem = “”, which can happen, for example, if the menu
resource has no items in it), or if the popup’s menu rectangle is narrow: right - left <= 15.
This is because DrawPopupBox never takes into account popups that have no text.

Solution: — Make sure that the menu you install has at least one item in it, and make sure
that your popup’s width is least 16 pixels.

Fix: In TPopup.DrawPopupBox (file UDialog.inc1.p), replace:

IF SectRect (area, menuRect, colorRect) THEN

BEGIN

wid := (right - left) - (leftSlop + rightSlop);

With:

IF SectRect (area, menuRect, colorRect) & (theItem <> '') THEN (]

BEGIN

wid := Max(kMinWidth, (right - left) - (leftSlop + rightSlop));

Where kMinWidth could reasonably be any value from zero to eight.

z. If the menu background color is not white, TRopup .DrawPopupBox leaves a one-pixel
wide white line along the bottom right edge of the update area (try it with DemoDialogs by
partially covering the colored popup with a window and then uncovering it).

Fix: In TPopup.DrawPopupBox (file UDialog.incl.p), replace:

WITH colorRect DO

BEGIN

right := right - 1;

bottom := bottom - 1;

END;

With:

WITH colorRect DO

BEGIN

right := MIN(right, menuRect.right - 1);

bottom := MIN(bottom, menuRect.bottom - 1);

END;

10 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support August 1990

2
a

4.

2 =

TPopup.ReleasePopup should call DisposeMenu rather than

_ReleaseResource. Because TPopup. SetPopup calls DetachResource on

theMenu, fMenuHandle is no longer recognized as referring to a resource, and

_ReleaseResource fails.

Fix: In TPopup.ReleasePopup (file UDialog.inc1.p), replace:

IF fMenuHandle <> NIL THEN

BEGIN

HPurge (Handle (fMenuHandle));

ReleaseResource (Handle (fMenuHandle));

fMenuHandle := NIL;

END;

With:

IF fMenuHandle <> NIL THEN

BEGIN

DisposeMenu (fMenuHandle) ;

fMenuHandle := NIL;

END;

TPopup no longer calls DoChoice if the same item is reselected.

Fix: In TPopup.DoMouseCommand (file UDialog.inc1.p) is the following line:

IF (HiWord(result) <> 0) & (newChoice <> fCurrentItem) THEN

Remove the “& (newChoice <> fCurrent Item)” part.

TPopup .SetCurrent Item neither restores the port colors correctly nor uses the right
rectangle to obtain the menu colors for the popup box.

Fix: In TPopup.SetCurrent Item (file UDialog.incl.p), replace:

IF redraw & Focus & IsVisible THEN

BEGIN

GetQDExtent (menuRect) ;

GetMenuColors(menuRect, fMenuID, item, newFColor, newBkColor);

SetIfColor (newFColor) ; SetIfBkColor (newBkColor) ;

DrawPopupBox (menuRect) ;

END;

With:

IF redraw & Focus & IsVisible THEN

BEGIN

GetIfColor(oldFColor) ; GetIfBkColor(oldBkColor) ;

CalcMenuRect (menuRect) ;

GetMenuColors(menuRect, fMenuID, fCurrentitem,

newFColor, newBkColor) ;
SetIfColor (newFColor) ; SetIfBkColor(newBkColor) ;
DrawPopupBox (menuRect) ;

{ Reset colors to their original state }
SetIfColor(oldFColor); SetIfBkColor(oldBkColor);

END;

eee

#280: “Bugs In MacApp? Yes, But I Love It!” 11 of 37

Macintosh Technical Notes

TScroller

1. TScroller.RevealRect doesn’t call INHERITED RevealRect. This has
implications in situations where you have nested scrollers. If, for example, you run
DemoDialogs, select the first menu item, press the Tab key, then begin typing, the
TEditText item you are modifying is not scrolled into view. This is because while your
selection is revealed within the context of the TEdit Text, the TEdit Text item itself is
not scrolled into view.

Fix: Addan INHERITED RevealRect call to TScroller.RevealRect (file
UMacApp.TScroller.p):

PROCEDURE TScroller.RevealRect(...);

BEGIN

ScrollBy(delta.h, delta.v, redraw);

INHERITED RevealRect (rectToReveal, minToSee, redraw); { add this line }

END;

TStdPrintHandler

Ae An extra blank page is printed if TSt dPrintHandler.fFixedSizePages =
FALSE and fSizeDeterminer = sizeFillPages. This is because
TView.ComputeSize computes the view’s size as a multiple of the printable page size
for sizeFillPages, ignoring that the view need not use the full size of each page.

Solution: Always set both Boolean components of fF ixedSizePages to TRUE.
These are initialized from the last two parameters you pass to
IStdPrintHandler.

Solution: Use fSizeDeterminer = sizeVariable.

De Simply using the naked DIV operator for scaling theMargins in
TStdPrintHandler.CheckPrinter introduces rounding errors. These errors may
be disturbing if you need precise control over the margins used for printing.

Fix: Insert the following local procedure in TSt dcPrintHandler.CheckPrinter
(file UPrinting.inc1.p):

FUNCTION ScaleInteger(theValue, theMultiplier, theDivisor: Integer): Integer;

VAR

intermediate: Longint;

BEGIN

intermediate := IntMultiply(theValue, theMultiplier) ;

IF intermediate >= 0 THEN

theProduct := theProduct + Abs(theDivisor) div 2

ELSE

intermediate := intermediate - ABS(theDivisor) div 2;

ScaleInteger := intermediate DIV theDivisor;

END;

—— ee

12 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support
August 1990

In the implementation of TStdPrintHandler.CheckPrinter, replace the

lines:

SetRect (theMargins, IntMultiply(theMargins.left, h) DIV oldMarginRes.h,

With:

IntMultiply(theMargins.top, v) DIV oldMarginRes.v,

IntMultiply(theMargins.right, h) DIV oldMarginRes.h,

IntMultiply (theMargins.bottom, v) DIV oldMarginRes.v);

SetRect (theMargins,

ScaleInteger (theMargins.left, fMarginRes.h, oldMarginRes.h),

ScaleInteger(theMargins.top, fMarginRes.v, oldMarginRes.v),

ScaleInteger (theMargins.right, fMarginRes.h, oldMarginRes.h),

ScaleInteger(theMargins.bottom, fMarginRes.v, oldMarginRes.v));

De TStdPrintHandler.CheckPrinter calculates [{MarginRes incorrectly for scaled

printing. It does not take into account any scaling factors imposed by the user in the

_PrSt1Dialog dialog box.

Temporary Fix: Use the following until Apple can come up with something better.
Note that this fix relies on the undocumented fields
prStl.iPageV and prStl.iPageH. Additionally, it
implements a dubious technique that gets around the assumption that
any printer supporting landscape printing also supports
_PrGeneral, which is not always the case (e.g., AppleLink
LinkSaver). Therefore, this fix is considered temporary. You
should already have applied the fix to the second bug in the
TStdPrinthandler section.

Insert the following local procedure into
TStdPrintHandler.CheckPrinter (file UPrinting.incl.p):

PROCEDURE AdjustMarginRes;

VAR

getRotationBlock: TGetRotnBlk;

BEGIN

WITH getRotationBlock DO BEGIN

iOpCode := getRotnOp;

lReserved := 0;

hPrint := THPrint (fHPrint);

bXtra := 0;

END;

PrGeneral (@getRotationBlock) ;

IF (PrError <> noErr) | (getRotationBlock.iError <>

noErr) THEN BEGIN

WITH fPageAreas.thePaper DO

getRotationBlock.fLandscape := right - left >

bottom - top;

PrSetError(noErr); { clear print error - Printing

Manager won't do it }

END;

eee

#280: “Bugs In MacApp? Yes, But I Love It!” 13 of 37

Macintosh Technical Notes

WITH fPageAreas.thePaper, fMarginRes,
THPrint (fHPrint)** DO BEGIN

{SPUSH} {$H-} { shut up, dumb compiler! }
IF getRotationBlock.fLandscape THEN BEGIN
{ the undocumented fields prStl.iPageH seem

to unaffected by rotation, so we have to
rotate them }

fMarginRes.h := ScaleInteger(iPrPgFract,
right - left, prStl.iPageV);

fMarginRes.v := ScaleInteger(iPrPgFract,
bottom - top, prStl.iPageH);

END

ELSE BEGIN

fMarginRes.h := ScaleInteger(iPrPgFract,

right - left, prStl.iPageH);

fMarginRes.v := ScaleInteger(iPrPgFract,

bottom - top, prStl.iPageV) ;

END;

{$POP}

END; { WITH }

END;

In TStdPrintHandler.CheckPrinter, replace everything
after fPageAreas.thePaper := rPaper and up to, but not
including, the statement fPrinterDev := iDev; with the
following lines:

AdjustMarginRes;

WITH prinfo DO BEGIN

4. TStdPrintHandler.DoSetupMenus should not enable menus if MemSpaceIsLow.

Solution: Override TStdPrintHandler.DoSetupMenus with the following:

PROCEDURE TMyStdPrintHandler.DoSetupMenus; OVERRIDE;

VAR

okToEnable: Boolean;

BEGIN

INHERITED DoSetupMenus;

okToEnable := NOT MemSpacelIsLow;

IF gCouldPrint & (fView <> NIL) THEN

BEGIN

Enable(cPrint, okToEnable) ;

Enable(cPageSetup, okToEnable) ;

Enable(cPrintOne, okToEnable);

END;

EnableCheck (cShowBreaks, TRUE, fShowBreaks) ;

END;

14 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support
August 1990

TTEView

i, TTEPast eCommand . ITEPasteCommand strands an empty handle on the heap if there

is “TEXT” in the clipboard with no 'sty1' information.

Fix: Replace the following lines in TTEPasteCommand. ITEPasteCommand (file

UTEView.TTEPasteCommand.p):

IF newStyleLen > O THEN

BEGIN

fNewStyles := newStyles;

{ Difference between old and new styles }

fStylePad := newStyleLen - fStylePad;

END;

With:

IF newStyleLen > O THEN

BEGIN

fNewStyles := newStyles;

{ Difference between old and new styles }

fStylePad := newStyleLen - fStylePad;

END

ELSE

Handle(newStyles) := DisposeIfHandle(newStyles) ;

2: In TTEView.CalcRealHeight, the parameters to TEGetHeight are in the wrong
order.

Fix: In TTEView.CalcRealHeight (file UTEView.TTEView.p), replace:

theHeight := TEGetHeight (0, MAXINT, fHTE);

With:

theHeight := TEGetHeight (MAXINT, 0, fHTE);

ox In a TTEView with non-zero bottom inset, only part of the second line is displayed when
text wraps to a new line.

Solution: Always have a bottom inset of zero.

Fix: Modify TTEView.Resize (file UTEView.TTEView.p) to allow for the bottom
inset before doing the resize by inserting the following lines between oldSize
:= fSizeand INHERITED Resize:

IF (fInset.bottom <> 0) | (fSize.v <> height) THEN

BEGIN

fSize.v := fSize.v - fInset.bottom;

IF fSize.b = height THEN

fsize.v := fSize.v - 1;

END;

neem

#280: “Bugs In MacApp? Yes, But I Love It!” 15 of 37

Macintosh Technical Notes

4. TTEView. SynchView only updates the text if the line heights have changed. It calls
CalcRealHe ight, and if it has not changed, it doesn’t do anything. If a program
modifies the text directly, it must call ForceRedraw. For instance, say that you have a
class TMy TEView has the following routine:

PROCEDURE TMyTEView.TweekText;

VAR

myText : TextHandle;

BEGIN

myText := ExtractText;

{ do some munging of the text (e.g., search and replace) }

{ make TTEView display changed text }

RecalcText;

SynchView (kRedraw) ;

{ !!! We shouldn't have to force a complete redraw !!! }

ForceRedraw;

END;

Solution: Call ForceRedraw as above, until Apple has a solution. It could be that
removing the fLastHeight <> theHeight comparison in

SynchView does the trick, but it may also result in unnecessary updates
and flashing.

TView

1. TEvtHandler.DoCreateViews doesn’t work right if you build your view tree in the
“wrong” order (i.e., breadth-first order). If you declare them as a hierarchy of levels, like
this:

ViewA

ViewB

SubViewA-1

SubViewA-2

SubViewB-1

SubViewA-1-1

SubViewA-1-2

DoCreateViews cannot find SubViewA-1 when creating SubViewA-1-1.

Solution: Declare your views in this order (walking the tree) in the Rez file:

ViewA

SubViewA-1

SubViewA-1-1

SubViewA-1-2

SubViewA-2

ViewB

SubViewB-1

2 TView.Focus does not always work correctly in long coordinate situations. When
dealing with view systems that stay entirely within QuickDraw’s 16-bit coordinate plane,
focusing works correctly. However, when dealing with larger view systems,
TView.Focus does not always correctly switch over to MacApp’s 32-bit coordinate
system.

16 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support August 1990

Fix: In TView.Focus (file UMacApp.TView.p), replace:

IF fSize.vh[vhs] > kMaxCoord THEN

With:

IF (fSize.vh[vhs] > kMaxCoord) | (ABS(fLocation.vh[vhs]) > kMaxCoord)

| (ABS (gLongOffset.vh[vhs]) > kMaxCoord) THEN

Daring Fix: You can try taking out short coordinate focussing altogether. This solution
has not yet been fully tested, so there may be some side effects of which
Apple is unaware. In TView. Focus (file UMacApp.TView.p), replace:

FOR vhs := v TO h DO

IF fSize.vh[vhs] > kMaxCoord THEN

BEGIN

tempLongOffset := gLongOffset.vh[vhs] - fLocation.vh[vhs];

relOrigin.vh[vhs] := tempLongOffset MOD kMaxOriginFixup;

gLongOffset.vh[vhs] := tempLongOffset - relOrigin.vh[vhs];

END

ELSE

BEGIN

relOrigin.vh[vhs] := gLongOffset.vh[vhs] - fLocation.vh[vhs];

gLongOffset.vh[vhs] := 0;

END;

With:

FOR vhs := v TO h DO

BEGIN

tempLongOffset := gLongOffset.vh[vhs] - fLocation.vh[vhs];

relOrigin.vh[vhs] := tempLongOffset MOD kMaxOriginFixup;

gLongOffset.vh[vhs] := tempLongOffset - relOrigin.vh[vhs];

END;

3. TViewcalls InvalRect and _ValidRect directly. These are Window Manager calls
which assume that the current port (thePort) is a window. If thePort is not a window
and these calls are made, all sorts of nasty fireworks happen. This bug only appears when
a TView is placed in something other than a TWindow and the view calls
TView.InvalidRect, TView. InvalidRect, or TView.ValidVRect.

For example, when using a TGridView as a subview of a TMenu, IGridView results
in a call to TView. InvalidRect. Since TMenu carries its own GrafPort, the
InvalRect onthe TMenu GrafPort fails.

Fix: In the file UMacApp.TView.p, rewrite the methods TView. InvalidRect,
TView. InvalidVRect, and TView.ValidVRect as shown so they forward
up the superview hierarchy. Then add the methods TView. ValidateRect,
TWindow.InvalidRect, and TWindow.ValidateRect, also as shown.

These routines ensure that the Window Manager calls (_ InvalRect and
_ValidRect) are actually made only if the root view is a window.

With those changes in place, all calls to ValidRect in the rest of MacApp
should now be calls to TView.ValidateRect. The only methods this affects
are TSScrollbar.Activate and TDeskScrapView. Draw.

#280: “Bugs In MacApp? Yes, But I Love It!” 17 of 37

Macintosh Technical Notes

{$S MAViewRes}

PROCEDURE TView.InvalidRect(r: Rect);

BEGIN

{ Focusing is strictly _NOT_ required here. That way we can keep

transforming all the way out to the root view and not change the

focus along the way }

IF (fSuperView <> NIL) THEN

fSuperView. InvalidRect (r);

END;

{$S MAViewRes}

PROCEDURE TView.InvalidVRect (viewRect: VRect);

VAR
rs Rect;

BEGIN

IF Focus THEN

BEGIN

ViewToQDRect (viewRect, r);

InvalidRect (r);

END;

{$S MAViewRes}

PROCEDURE TView.ValidateRect (r: Rect);

BEGIN

{ Focusing is strictly _NOT_ required here. That way we can keep

transforming all the way out to the root view and not change the

focus along the way }

IF (fSuperView <> NIL) THEN

fSuperView.ValidateRect (r) ;

END;

{$S MAViewRes}

PROCEDURE TView.ValidVRect (viewRect: VRect) ;

VAR

rs Rect;

BEGIN

IF Focus THEN

BEGIN

ViewToQDRect (viewRect, r);

ValidateRect (r);

END;

END;

18 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support August 1990

{$S MAWindowRes}

PROCEDURE TWindow.InvalidRect (r: Rect); OVERRIDE;

VAR

oldPort: GrafPtr;

BEGIN

GetPort (oldPort) ;

SetPort (fWMgrWindow) ;

IF IsShown THEN

IF NOT EmptyRect(r) THEN:

InvalRect (r);

SetPort (oldPort) ;

END;

{$S MAWindowRes}

PROCEDURE TWindow.ValidateRect (r: Rect); OVERRIDE;

VAR

oidPort: GrafPtr;

BEGIN

GetPort (oldPort) ;

SetPort (fWMgrWindow) ;

IF IsShown THEN

IF NOT EmptyRect (r) THEN

ValidRect (r);

SetPort (oldPort) ;

END;

4. When the focus is invalidated during printing, MacApp is not able to restore it properly.
For example, you could move a subview during printing because you don’t know where
it’s supposed to go until you need it. When MacApp tries to refocus, the clip region is set
to an empty region, and nothing gets printed from that point on.

Solution: Not yet determined. It’s not clear whether MacApp should handle such odd
things as moving subviews during printing.

TWindow

Li. TWindow.IWindow incorrectly sets the fProcID field. This can affect the
performance of TWindow.SetResizeLimits and TWindow. Zoom (i.e., they break).

Fix: In TWindow. IWindow (file UMacApp.TWindow.p), replace the following lines:

fProcID := GetWRefCon(itsWMgrWindow) ;

SetWRefcon(itsWMgrWindow, LONGINT(SELF));

SSS

#280: “Bugs In MacApp? Yes, But I Love It!” 19 of 37

Macintosh Technical Notes

With:

IF TrapExists(_GetWVariant) THEN

fProcID := GetWVariant (fWmgrWindow)

ELSE

fProcID := BAND(SOF, BSR(LONGINT (WindowPeek (fWmgrWindow) *.windowDefProc),

24))7
SetWRefcon (itsWMgrWindow, LONGINT(SELF));

Of course, anyone not creating their windows and views from resource templates
should be horse-whipped anyway.

bs TWindow.Zoom grows the window two pixels wider and two pixels taller than it should.

Fix: In TWindow. Zoom (file UMacApp.TWindow.p), replace the following two lines :

zoomRect.right := zoomRect.left + width - fContDifference.h + 1;

zoomRect..bottom := zoomRect.top + height - fContDifference.v + 1;

With:

zoomRect.right := zoomRect.left + width - fContDifference.h - 1;

zoomRect.bottom := zoomRect.top + height - fContDifference.v - 1;

3% TWindow.Center can sometimes move large windows with title bars under the menu
bar.

Fix: In TWindow.Center (file UMacApp.TWindow.p), replace the following lines:

IF forDialog THEN

{ Put it in the top third of the screen }

top := ((screenSize.v - contentSize.v + fContRgnInset.v) DIV 3) + 20

ELSE

top := ((screenSize.v - contentSize.v + fContRgnInset.v) DIV 2) + 20;

With:

IF forDialog THEN

{ Put it in the top third of the screen }

top := ((screenSize.v - windowsize.v) DIV 3) { calculate spare area }

+ gMBarHeight { add menu bar }

{ calculate the right offset of content inside the window }

+ ((windowsize.v - contentsize.v + fContRgnInset.v) DIV 2);

ELSE

top := ((screenSize.v - windowsize.v) DIV 2) { calculate spare area }

+ gMBarHeight { add menu bar }

{ calculate the right offset of content inside the window }

+ ((windowsize.v - contentsize.v + fContRgnInset.v) DIV 2);

Assorted Problems Due to a New TView.Focus Definition

The next items address a class of problems related to the fact that TView.Focus is defined to
return TRUE if a drawing environment can be obtained (e.g.,a GrafPort). Thus it now returns
TRUE even if the view is invisible. The various problems are: 1) invisible controls in dialogs
accepting mouse-down events and doing things; 2) children of invisible controls being asked to
draw or handle a mouse-down event; 3) scroll bars of hidden scrollers appearing; 4) hidden scroll
bars of scrollers not appearing; and 5) calls to IsShown for an arbitrary view returning incorrect
results.

20 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support
August 1990

Ls TView.IsShown contains the following line:

IsShown := fShown; {22?? Shouldn’t we ask our superview? }

It turns out that the answer to this question is yes. There are many problems that occur in

MacApp that are caused by views who are themselves not hidden, but whose superviews

are. For instance, it is possible for a click to be registered on a view whose superview is

hidden. This can cause the previously hidden control to appear.

Fix: In TView.IsShown (file UMacApp.TView.p), replace the line above with the

following:

IF fSuperView <> NIL THEN

IsShown := fShown & fSuperView.IsShown { By definition a view can’t be

shown if its superview isn’t

shown }

ELSE

IsShown := fShown;

Pm Having TView. IsShown reflect the willingness of all its superviews to be shown causes
one problem in MacApp. When a TScroller creates its scroll bars, it sets the fShown
field of the TSScrol1Bar to the result of TScroller.IsShown. However, at the

time a scroller creates its scroll bars, the window they are in is invisible. Its IsShown

method returns FALSE, which is propagated down to the TScroller, causing
TScroller.CreateTemplateScrol1Bar to initialize TSScrollBar.fShown to
FALSE.

{» Fix: Cause the TSScroll1Bar to inherit the Shown field of its TScroller only.

In TScroller.CreateTemplateScrollBar (file UMacApp.TScroller.p),
replace:

anSScrollBar.fShown := IsShown;

With:

anSScrollBar.fShown := fShown;

2. There is no TCt 1Mgr . Show to control the setting of £CMgrControl**.contrlvVis.
Neglecting to do so results in certain silly things happening, like an activate event triggering
the drawing of your invisible scroll bars.

Fix: Override TView. Show with the following version of TCt 1Mgr . Show (file
UMacApp.TControls.p). Don’t forget to also update the declaration of TCt 1Mgr
in UMacApp.p:

PROCEDURE TCtlMgr.Show(state, redraw: BOOLEAN) ;

VAR

itsWindow: TWindow;

BEGIN

itsWindow := GetWindow;

SetCMgrVisibility(state & (itsWindow <> NIL) & itsWindow.fIsActive) ;
INHERITED Show(state, redraw);

r 6|(N END;

—_——SSeSSSSSSSSSSSSFSFSSSSSSSSSMMssFhesee

#280: “Bugs In MacApp? Yes, But I Love It!” 21 of 37

Macintosh Technical Notes —eaS eee

4, TControl.ContainsMouse n ; eeds to call TCt 1Mgr.IsShown. Otherwise, it’s possible for those controls to receive mouse clicks.

Fix: Use the following version of TCont i .teneat .

UMacApp.TControls.p):
rol.ContainsMouse (file

FUNCTION TControl.ContainsMouse(theMouse: VPoint): BOOLEAN; OVERRIDE;
VAR

aRect: Rect;

BEGIN

IF IsShown THEN

BEGIN

ControlArea (aRect) ;

ContainsMouse := PtInRect (VPtToPt (theMouse), aRect);

END

ELSE

ContainsMouse := FALSE;

END;

5. TView.Focus used to return FALSE if the view was invisible. It no longer does this,
and many routines in MacApp relying on this behavior now need to check this explicitly:

Fix: The following routines should be modified to check IsShown before calling
Focus. Note that the changes to TView.InvalidVRect,
TView. InvalidVRect, and TView.ValidRect need not be made if the
modifications in the third bug in the TView section have been made.

TView. IsViewEnabled (file UMacApp.TView.p)

IsViewEnabled := fViewEnabled & IsShown;

TGridView.HighlightCells (file UGridView.incl.p)

IF (fromHL <> toHL) & IsShown & Focus THEN

TCtlMgr.WhileFocused (file UMacApp.TControls.p)

TTEView.SynchView (file UTEView.TTEView.p)

IF redraw & IsShown & Focus THEN

TView.InvalidRect (see above comment) (file UMacApp.TView.p)

TView.InvalidVRect (see above comment) (file UMacApp.TView.p)

TView.ValidVRect (see above comment) (file UMacApp.TView.p)

TGridView. InvalidateSelection (file UGridView.incl.p)

TScroller.ScrollDraw (file UMacApp.TScroller.p)

IF IsShown & Focus THEN

TSScrollBar.Activate (file UMacApp.TControls.p)

add this check before WhileFocused:

IF IsShown THEN

6. With the changes from bug five in place, a problem appears when a TScroller is

resized. The scroller hides its scroll bars, resizes itself, adjusts its scroll bars, and shows

them again. AdjustScrollbars potentially asks a scroll bar to invalidate itself.

However, at that time, the scroll bar is invisible, thus its contents cannot possibly be

wrong, as they have yet to be drawn. It is the scroll bar itself that is wrong, and therefore

the contents of its superview (in that rectangle) that must be invalidated.

i _______ ae

22 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

August 1990
Developer Technical Su

Fix: To patch the bug, modify the final few lines of TScroller.Resize (file

UMacApp.TScroller.p):

FOR vhs := v TO h DO

IF sBarWasVisible[vhs] THEN

BEGIN

fScrollBars [vhs] .SetCMgrVisibility (TRUE) ;

fScrollBars[vhs].ForceRedraw; { this is new }

END;

This is not a real fix, this is only a patch. The final fix probably requires

modification to TView. Locate and TControl.Resize.

It is possible to select a disabled TEditText item by clicking on it, because

TEdit Text .HandleMouseDown calls DoChoice and selects the item without

checking to see if the TEdit Text object is disabled.

Fix: In the nested procedure TestMouse of TView.HandleMouseDown (file
UMacApp.T View.p) is the following line:

IF theSubView.ContainsMouse(subViewPt) THEN

Replace it with:

IF theSubView.IsViewEnabled & theSubView.ContainsMouse(subViewPt) THEN

Global Routines and Interfaces

aa i In GetPortTextStyle, theTextStyle should be a VAR parameter. The fact that it
isn’t should tell you how often MacApp itself calls it.

Fix: Modify the interface to Get Port Text St y1e in the files UMacAppUtilities.p and
UMacAppuUtilities.inc1.p.

DoRealInitToolBox should call FlushEvents (everyEvent-diskMask-
app4Mask) rather than FlushEvents (everyEvent-diskMask-app4Evt).

Fix: Change app4Evt toapp4Mask inthe FlushEvents call (file
UMacAppUtilities.inc1.p).

MacApp programs do not draw their menu bars if run on pre-System 6.0 systems. This
problem is because of a bug in InvalidateMenuBar, where a check made for a System
7.0 feature returns TRUE under System 4.2 when it should not.

Fix: Fixing the problem requires a slight change to MacApp. In the file
UMenuSetup.incl.p, there is a routine called InvalidateMenuBar. Change
the line that looks like the following:

IF TrapExists(_MAInvalMenuBar) THEN

to look like:

IF gConfiguration.systemVersion >= $0600 & TrapExists(MAInvalMenuBar) THEN

#280: “Bugs In MacApp? Yes, But I Love It!” 23 of 37

EI

Macintosh Technical Notes Apetntosh Technical Notes

4, TestRecoverHandle in the file UMacAppUtilities.incl.p is used in debug mode to
help test whether a handle is truly a handle. On 68000-class machines, HandleZone, which is called as part of the test, drops you into the MacApp debugger with an address qa
error if the longint being tested isn’t really a handle. This is not a problem on non-
68000 machines.

Fix: If you are developing your application on a Macintosh Plus or SE and want to
compile in debug mode, you need to remove the test for_RecoverHandle.

FUNCTION TestRecoverHandle(masterPointer: Ptr;

h: UNIV Handle): Boolean;

VAR

BEGIN

IF qNeedsMC68020 | qNeedsMC68030 | (gConfiguration.processor

<> env68000) THEN

BEGIN

<Old body of TestRecoverHandle>

ELSE

TestRecoverHandle := TRUE; {fff Can’t really test this fff}

END;

3: Sometimes the high byte of a handle is not zero (for example, NewEmpt yHandle can
return something like $404856d0). When this occurs, TestRecoverHand_1e in the file
UMacAppUtiities.inc1.p rejects the handle, because _RecoverHand1e returns a handle
with a zero high byte, and Test RecoverHand1le compares the entire handle.

Fix: Replace the assignment:

TestRecoverHandle := RecoverHandle(masterPointer) = Handle(h);

With:

TestRecoverHandle := StripLong(RecoverHandle(masterPointer)) =

StripLong (Handle(h));

6. WithApplicationResFileDo needs a failure handler. Since the method’s normal
behavior is to preserve the current resource file, in case of a failure it should do the same

thing. The problem is that if WithApplicat ionResFileDo contains a failure handler,
it must be moved to another unit; UMacAppUtilities cannot access UFailure
without introducing a circular reference.

Fix: Move WithApplicationResFileDo to the file UMenuSetup.incl.p and
change it to the following:

PROCEDURE WithApplicationResFileDo(PROCEDURE DoWithResFile) ;

VAR

fs: FaillInfo;

oldResFile: INTEGER;

PROCEDURE HdlFailure(error: OSErr; message: LONGINT);

BEGIN

UseResFile(oldResFile);

END; (]

24 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

|
|

Developer Technical Support August 1990

BEGIN

oldResFile := CurResFile;

CatchFailures(fi, HdlFailure);

UseResFile(gApplicationRefNum) ;

DoWithResFile;

Success (fi);

UseResFile(oldResFile);

END;

VisibleRect returns the intersection of the specified rectangle along with the bounding
boxes of the visRgn and clipRgn. When called during a window update, however, the
visRgn can be smaller than expected. This difference can cause VisibleRect to return
different sized rectangles when called inside or outside of an update event.

Fix: The final fix has not yet been determined. However, you may be able to kludge
things by overriding TWindow. Update in the file UMacApp.TWindow.p with
the following lines:

BEGIN

gUpdating := TRUE;

INHERITED Update;

gUpdating := FALSE;

END;

Then, in VisibleRect (file UMacApp.Globals.p), change:

IF NOT gPrinting THEN

SectRgn(gTempRgn, thePort*.visRgn, gTempRgn) ;

To:

IF NOT (gPrinting | gUpdating) THEN

SectRgn(gTempRgn, thePort*.visRgn, gTempRgn) ;

Finally, add gUpdat ing to the file UMacApp.p, and initialize it to FALSE in
InitUMacApp. Or you can just live dangerously and take out the SectRgn call
altogether.

Patching a trap with the routines in UPat ch can cause a crash under the Finder (when
MultiFinder is not present) if that trap is already patched by MacApp, because the
CleanUpMacApp routine incorrectly restores that trap to point at the MacApp patch,
rather than at the original routine.

Solution: Do not patch traps that MacApp patches (currently: ExitToShell,
_InitCursor, SetCursor, SetCCursor, GetNextEvent,
_EventAvail, StillDown, and WaitMouseUp).

— eee

#280: “Bugs In MacApp? Yes, But I Love It!” 25 of 37

Macintosh Technical Notes

Fix: Rewrite UnpatchTrap (file UPatch.incl.p) as follows, so it does the right thing
when unpatching traps that have “newer” patches:

PROCEDURE UnpatchTrap(VAR thePatch: TrapPatch) ;

VAR

aPatchPtr: TrapPatchPtr;

newerPatchPtr: TrapPatchPtr;

FUNCTION GetPreviousPatchPtr(thePatchPtr: TrapPatchPtr):

TrapPatchPtr;

{ Walks the patch list backwards to return the patch record

just prior to thePatchPtr* in the patch list }

VAR

tempPatchPtr: TrapPatchPtr;

BEGIN

tempPatchPtr := pPatchList;

WHILE (tempPatchPtr <> NIL) & (tempPatchPtr®.nextPatch <>

thePatchPtr) DO

tempPatchPtr := tempPatchPtr*.nextPatch;

GetPreviousPatchPtr := tempPatchPtr;

END;

FUNCTION GetNewerPatchPtr: TrapPatchPtr;

{ returns a newer patch record in the patch list which has

the same trapNum as thePatch }

BEGIN

aPatchPtr := GetPreviousPatchPtr (@thePatch) ;

WHILE (aPatchPtr <> NIL) & (aPatchPtr®*.trapNum <>

thePatch.trapNum) DO

aPatchPtr := GetPreviousPatchPtr (aPatchPtr) ;

GetNewerPatchPtr := aPatchPtr;

END;

BEGIN

{ If this trap has a newer patch than the patch we're removing,

then we have to take some extra special precautions. We have

to muck with that patch's oldTrapAddr to point to this patch

record's oldTrapAddr (for both the patch record and the

jumpPtr code). We can pretty well ignore the case of an

older patch on this same trap since the trap address in our

patch record will be correct. }

newerPatchPtr := GetNewerPatchPtr;

IF (newerPatchPtr = NIL) THEN

WITH thePatch DO

NSet TrapAddress(OldTrapAddr, trapNum,

Get TrapType (trapNum))

ELSE

BEGIN

{ set up newerPatchPtr patch record so that it points to

thePatch's OldTrapAddr }

newerPatchPtr*.oldTrapAddr := thePatch.oldTrapAddr;

Le

26 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support August 1990

{ set up newerPatchPtr*.jmpPtr so that it jumps to where

thePatch's code jumps to }

IF (newerPatchPtr*.jmpPtr <> NIL) THEN

BEGIN

IF LongIntPtr(newerPatchPtr%. jmpPtr)* = $2F2F0004 THEN

T1PBlockPtr (newerPatchPtr*. jmpPtr) *.OldTrapAddr :=

thePatch.oldTrapAddr

ELSE IF IntegerPtr(newerPatchPtr*.jmpPtr)* = $2F3C THEN

TPBlockPtr (newerPatchPtr*. jmpPtr) *.OldTrapAddr :=

thePatch.oldTrapAddr

ELSE

BEGIN

{$IFC qDebug}
Writeln('###In UnpatchTrap: can''t figure out '

"what kind of patch ', ORD(newerPatchPtr),

w fst")?

DebugStr('Can''t unpatch trap.');

{ SENDC}

END;.

END;

END;

{ Unlink the patch from the linked list of patches }

IF @thePatch = pPatchList THEN

pPatchList := thePatch.nextPatch

ELSE

BEGIN

aPatchPtr := pPatchList;

WHILE (aPatchPtr <> NIL) & (aPatchPtr*.nextPatch <>

@thePatch) DO

aPatchPtr := aPatchPtr*®.nextPatch;

{ Couldn't find thePatch, so don't try to unpatch it. }

IF aPatchPtr = NIL THEN

EXIT (UnpatchTrap) ;

aPatchPtr*.nextPatch := thePatch.nextPatch;

END;

{ If the patch allocated a block in the system heap,

deallocate it }

WITH thePatch DO

jmpPtr := DisposeIfPtr(jmpPtr) ;

END;

9. The value for kPriorityHigh in the file UMacApp.p is wrong. Currently, it is
initialized with the same value as kPriorityLow. Oops.

Fix: Modify the file UMacApp.p so that the value of kPriorityHigh is set to
kPriorityNormal-32, kPriorityHighest+32, or just plain 32.

10. IsClassIDMemberClass does not range check for negative class IDs. This could
result in some extremely rare cases where a handle appears to be an object when it really is
not.

Solution: In the file UObject.a, replace:

Cmp.W (AQ) ,DO # make sure class ID is in range

Bge.S isFALSE

Cmp.W (AO) ,D1 + make sure class ID is in range

Bge.S isFALSE

a ean ee ea es

#280: “Bugs In MacApp? Yes, But I Love It!” 27 of 37

Macintosh Technical Notes

It,

Ls

13.

14.

With:

Cmp.W (AO) ,DO ; make sure class ID is in range

Bge.S isFALSE

Tst .W DO + make sure class ID is non-negative

Blt.s isFALSE

Move .W DO, D2 ; make sure class ID is even

And #1,D2

Tst .W D2

Bnz.S isFALSE

Cmp.W (AO) ,D1 ; make sure class ID is in range

Bge.S isFALSE

Tst.wW D1 ; make sure class ID is non-negative

Blt.S isFALSE

Move .W D1,D2 ; make sure class ID is even

And #1,D2

Tst .W D2

Bnz.S isFALSE

Discipline signals a problem on a_Get 1NamedResource call when it tries to load
CODE ("GMain"). This segment is listedin 'seg!' and 'res! ', but it doesn’t exist.

Fix: This bug is ultra-benign, but can be fixed by removing the reference to GMain in
the file MacApp.r

The number of calls to RegisterStdType has increased from 17 to 25 since the
MacApp 2.089 release; however, the limit (kMaxSignatures, defined in the file
UMacApp.p) remains at 32. This difference means your application can only register
seven additional types instead of the 15 previously allowed.

Fix: Re-compiling MacApp with a limit of 40 should suffice for now. Future versions of
MacApp will implement a dynamic list so that no limits would be imposed.

In the file UMacAppUtilities.inc1.p, the routine LongerSide always returns the height of
the rectangle because of an incorrect expression.

Fix: Replace the following line:

IF (bottom - top) >= (left - right) THEN

With:

IF (bottom - top) >= (right - left) THEN

When compiling in non-debug mode IsHandlePurged is compiled as an INLINE
instead of a Pascal function. Unfortunately, this INLINE does not use the same Boolean

convention as the Pascal compiler. In Pascal, TRUE = $01 and FALSE = $00, but the
INLINE routines defines FALSE = $00 and TRUE SFF.

28 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support August 1990

Fix: In UMacAppUtilities.inc1.p, replace:

FUNCTION IsHandlePurged(h: UNIV Handle): BOOLEAN;

INLINE $205F, { MOVE.L (A7)+,A0 }

$4A90, { TST.L (AQ) }

$57D7; { SEQ (A7) }

With:

FUNCTION IsHandlePurged(h: UNIV Handle): BOOLEAN;

INLINE $205F, { MOVE.L (A7)+,A0 }

$4A90, { TST.L (AO) }

$57D7, { SEQ (A7) }

$4417; { NEG.B (A7)}

MABuild Bugs

1. MABuild does not support both AppName.r and AppName.rsrc files as part of a MacApp
project. Actually, the problem is a more general one: the file Build Rules and
Dependencies defines the default dependency “.rsrc f .r’. Therefore, if AnyFile.rsrc is
mentioned either in the file Basic Definitions or your own .MAMake file, Make produces a
command that compiles AnyFile.r into AnyFile.rsrc, or complains if AnyFile.r does not
exist.

Solution: Avoid the -rsrc suffix for files that are not compiled from .r files.

Fix: Globally replace “.rsrc” with “.r.o” in the files {MATools}Basic Definitions and
{MATools} Build Rules and Dependencies. This change causes Make to create
Anyfile.r.o files instead of AnyFile.rsrc files, removing the conflict and preserving
any .rsrc files that you may have created with ResEdit or ViewEdit. Be sure to
update your .MAMake file similarly.

2. MABuild doesn’t support spaces or multiple files in the OtherViewTypesSrc Make
variable, because the following line in the file Build Rules and Dependencies:

IF "{OtherViewTypesSrc}" != ""

gets expanded to something like:

IF ""Whatever was in SrcApp:TSizerViewType.r"" != ""

The double quotes on either end cancel each other out, and any pathname with spaces is
treated as separate items.

Fix: Everything should work fine if you change the default application dependency in
the file Build Rules and Dependencies to:

“{ObjApp} {AppName}" ff @

"{XAppRezSrc}" 9
"{BuildFlags}" @
{MacAppResources} @
{MacAppRIntf} @
"{OtherViewTypesSrc}" @ # Note the quotes on this line
{OtherRezFiles} 9
{OtherRsrcFiles}

eS

#280: “Bugs In MacApp? Yes, But I Love It!” 29 of 37

Macintosh Technical Notes

a MABuild doesn’t support more than one user library.

Solution: Not yet determined. Requires a change to MABuildTool.p.

4. Creating an application with qNeedsROM12 8K set to TRUE and running it on a 512KE
under System 3.2 causes it to bomb with an ID = 12 error, because the traps that MacApp
needs are not present. However, the application runs properly under System 3.4, as the
traps are implemented under that system.

Fix: Tell MacApp to use the set of glue routines that check for the presence of the needed
trap before it is called. In {MAPInterfaces}UPrinting.p, replace the following
lines:

{$IFC NOT qNeedsROM128K}

{$IFC UNDEFINED UsingPrinting} {$I Printing.p} {$ENDC}

{ $ELSEC}

{$IFC UNDEFINED UsingPrintTraps} {$I PrintTraps.p} {$ENDC}

{SENDC}

With:

{$IFC UNDEFINED UsingPrinting} {$I Printing.p} {$ENDC}

In {MALibraries} PrivateInterfaces:UPrinting.p, replace:

{SIFC NOT qNeedsROM128K}

Printing,

{SELSEC}

PrintTraps,

{$ENDC}

With:

Printing,

5. At the top of the file UMacAppUtilities.incl.p are the following compiler options:

{ SW+}
{$R-}

{$Init-}

{SOV-}

{$IFC qNames}

{$D+}

{ SENDC}

The intent here is that these routines should not have debugger probes (%_BP, %_EP,

% EX) inserted into them, allowing them to run at full speed. Unfortunately, if you

compile with something like MABuild -NoDebug -Trace, the debugger probes are

inserted.

Fix: Add {$D-} before {SIFC qNames}

6. The Commando dialog box for MABuild is out of date. For example, -NeedsSystem6

and -NoDebug are now the MABuild default and cannot be turned off through the

Commando dialog box.

30 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support
August 1990

Vy ‘The help button in the debug options dialog box in the MABuild Commando interface is

partially obscured.

4 “é e. ” ed aie The

8. The Commando dialog has a three-state button “Show Times’ i. that sets the flag

help text for this is “Have all tools show elapsed time. Actually, re -T tells only

MABuildTool to show elapsed time; to have all tools do this, you need the “-TT” flag.

9. There is a small problem in the file {MAPInterfaces} UTEView.p that causes your compiles

to be imperceptibly slower than you would expect. Several referencesto | TEView__at

the top of the file should really be | UTEView_, thus:

{$IFC UNDEFINED __UTEView_}
{$SETC __UTEView := FALSE}
{$ENDC}

{$IFC NOT __UTEView_)}
{$SETC _UTEView := TRUE}

10. In the file UViewCoords.h, #ifndef | UVIEWCOORDS __ should be #ifndef
__UViewCoords __.

Fix: Change the header file.

11. MacApp uses CPlusLib instead of CPlusLib881 when compiling for C++ and FPU
support.

Fix: In the file Basic Definitions, replace:

HEHE F HHS SEE EF

For MPW 3.0, 3.1

HEHFH HRs Hs ttt

31CPlusSupport = @
"(CLibraries}CRuntime.o" @

"(CLibraries}CInterface.o" @
"({CLibraries}CPlusLib.o" @

"(CLibraries}StdCLib.o" @
"({PLibraries}PasLib.o"

31CPlusNonFPUSANELib = @
"(CLibraries}CSANELib.o" @
"{PLibraries}SANElib.o" @
"(CLibraries}Math.o" 0
"{CLibraries}Complex.o"

31CPlusFPUSANELib = 0
"{CLibraries}CLib881.0" @
"(CLibraries}CSANELib881.0" 0
"{PLibraries}SANELib881.0" 2
"({CLibraries}Math881.0" 9

"{CLibraries}Complex881.0"

a

#280: “Bugs In MacApp? Yes, But I Love It!” 31 of 37

Macintosh Technical Notes

With:

HHFH Ht H sss the {
For MPW 3.0, 3.1 a,
FHFFFFH FEES SF

31CPlusSupport = @
"{CLibraries})CRuntime.o" @

"(CLibraries}CInterface.o" @
"(CLibraries}StdCLib.o" @ # removed CPlusLib.o
"{PLibraries}PasLib.o"

31CPlusNonFPUSANELib = @
"(CLibraries}CPlusLib.o" @ # add CPlusLib.o

"(CLibraries}CSANELib.o" @
"(PLibraries}SANElib.o" @
"({CLibraries}Math.o" @

"({CLibraries}Complex.o"

31CPlusFPUSANELib = @
"{CLibraries}CPlusLib881.0" 0 # add CPlusLib881.0

"{CLibraries}CLib881.0" @
"{CLibraries}CSANELib881.0" 0
"{PLibraries}SANELib881.0" @

"(CLibraries}Math881.0" @
"(CLibraries}Complex881.0"

12. “MABuild’s mechanism for handling C++ Load/Dump is sort of lame. Why not support
FPU and Load/Dump simultaneously? It’s not that hard to get working.”

Fix: Yeah, but it used to be. So there. MABuild is trying to work around a problem
that exists in CFront 3.1b3 and earlier. If you are using a later version, you can
remove the safety check. Go into the file MABuildTool.p, remove the following
lines, and rebuild MABuildTool. a)

{ C++ external symbol table files support }

IF fCPlusLoad & fNeedsFPU THEN

BEGIN

Echo('''###'' MABuild: Warning: CPlusLoad and NeedsFPU

are incompatible. Using NoCPlusLoad.');

fCPlusLoad := FALSE;

END;

Bugs Only In Debug Mode

These bugs occur only in debug versions of your program, and do not affect the final production
version.

lL. DisposelfHand1e fails if called with a valid, but purged, handle:

h := NewHandle (20);

IF h <> NIL THEN

BEGIN

EmptyHandle(h) ;

DisposIfHandle(h); {<--PBreak: 'handle is so bad, couldn’t get handle bits'}

END;

32 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support August 1990

Fix: In DisposeIfHand1le (file UMacAppUtilities), add:

IF IsHandlePurged(aHandle) THEN { h might have been purged }

BEGIN

DisposHandle (aHandle) ;

EXIT (DisposelfHandle) ;

END

Just before:

handleBits := GetHandleBits(aHandle) ;

This fix is not the cleanest, but it is the easiest.

Doctor, doctor. My application hangs if Print... is chosen while stopped in the debugger.

Solution: Don’t do that.

With a desk accessory open in the application heap (e.g., Option-Alarm Clock), you can
enter the MacApp debugger, but it does not accept any keystrokes.

Solution: — Click in the Debug Transcript window to jumpstart it.

If the performance tools are on, you must turn them off with “T’oggle before “E’nding or
“D”umping. Failure to do so leaves the performance tools active, although their data has
been disposed.

Solution: Always “T”’oggle the performance tools off before “E”nding or “D” umping.

Fix: Modify PerfCmd to turn off the performance tools when “E”nding or “D” umping.

TTranscriptView does not initialize fFont Info in CommonInit.

Solution: Call InstallTextStyle immediately after initializing.

TList .GetSameItemNo fails in debug if looking for NIL. With previous versions of
MacApp, it was perfectly acceptable to check for a NIL object in a list. Get Same ItemNo
would return zero, as expected. With MacApp 2.0, there is an explicit check in debug
mode that the object is valid, so passing NIL does not work.

Solution: Call Get Same It emNo with the following wrapper:

IF obj = NIL then

index := 0

ELSE

index := GetSameItemNo(ob})

Fix: Modify TList .GetSameItemNo (file TList.inc1.p) to make the same check.

If a failure occurs in [Application, the debugger incorrectly issues the following
warning:

“You’re leaving a routine without calling Success for a handler that will be
destroyed.”

ee

#280: “Bugs In MacApp? Yes, But I Love It!” 33 of 37

Macintosh Technical Notes

This message occurs because the routine MADebuggerMainEntry checks
gTopHandler to see if the FailInfo record it points to is below the stack. However,
this test doesn’t work properly if gTopHandler is NIL, as it is in IApplication.

Fix: Addacheck for (gTopHandler = NIL) inMADebuggerMainEntry (file
UDebug.inc1.p). Replace the line:

forgotSuccess := ((which = tEnd) | (which = tExit))

& (StripLong(LongIntPtr(pLink)%*) >= StripLong(gTopHandler));

With:

forgotSuccess := ((which = tEnd) | (which = tExit)) & (gTopHandler <> nil)

& (StripLong(LongIntPtr(pLink)%*) >= StripLong(gTopHandler));

MPW 3.2 Compatibility

This section describes problems that occur when trying to build MacApp 2.0 under MPW 3.2.
MacApp 2.0 was developed under MPW 3.0 and 3.1 and could not take into account changes
made to MPW 3.2.

Note: Even at the time of this writing, it is unclear which of the following items will be
compatibility problems. For example, item four is a problem with MPW 3.1a1, but
not with MPW 3.2b1. On the other hand, item three is a problem with MPW
3.2b1, but not with MPW 3.2a1. Apple will update the status of these items with
MPW 3.2 is final.

ie The file {MALibraries} PrivateInterfaces: UDebug.p needs symbol information from the file
Packages.p. Under MPW 3.1, this file was automatically included when the file
UDebug.p included the file Script.p in its USES statement. Under MPW 3.2, this is no
longer the case, and UDebug does not compile.

Fix: Add areference to Packages before Script in the file UDebug.p:

USES

<etc.>

Desk, DiskInit, ToolUtils, Retrace, Memory, Resources, FixMath, Packages,

Script, PasLibIntf, OSEvents, Traps, Perf, DisAsmLookUp, Notification;

2. The file UDebug.inc1.p contains the definition for the following procedure:

PROCEDURE JTOffProc(A5JTOffset: UNIV INTEGER;

VAR s: UNIV DisAsmStr80) ;

DisAsmStr80 is declared in the file {PInterfaces }DisAsmLookup.p under MPW 3.1. It
is no longer used under MPW 3.2.

Fix: Change DisAsmStr80 to Str255.

3. In the NMRec record defined in the files Notification.c and Notification.p, nmSIcon has

been changed to the infinitely clearer nmIcon.

Fix: In UDebug.incl.p, change the occurrence of nmSIcon to nmIcon.

34 of 37 #280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support August 1990

| 4. At the bottom of the file UDebug.a, there is a line that looks like the following:

i> Case#.S FIOINTERACTIVE, TIOFLUSH

TIOFLUSH is not supported under MPW 3.2a1, and the Assembler aborts with an error
when it gets to this line.

| Fix: Comment out or remove the reference to TIOFLUSH:

Case#.S FIOINTERACTIVE ;,TIOFLUSH

SADE Compatibility

1. In the SADEScripts folder is a file called StepMethod. This file contains the definition of a
| procedure called stepIntoMethod, which includes the following lines:
|

break % NEWMETHOD020.CacheOut
break % NEWMETHOD020.TableOut
go

unbreak % NEWMETHOD020.CacheOut

unbreak % NEWMETHOD020.TableOut

MacApp 2.0 no longer defines the symbol % NEWMETHOD020 and SADE is not able to
find it when you attempt to step into an overridden method.

Fix: Replace those lines with the following:

haar break % NEWMETHOD.CacheOut

break % NEWMETHOD.TableOut
go

unbreak % NEWMETHOD.CacheOut

unbreak % NEWMETHOD.TableOut

THINK Pascal Compatibility

L. In TApplication.InModalState and TApplication.InModalMenuState
(file UMacApp.TApplication.p), the function result is not initialized to FALSE causing
MacApp to think that desk accessories are in a modal state when compiled under THINK
Pascal™. This problem does not occur when compiling under MPW because MPW
allocates space for the function result with a CLR.W -(A7); THINK Pascal 3.01 does
not.

Fix: Add an OTHERWISE statement setting the function result to FALSE, or initialize the
function result to FALSE when you enter the procedure.

2 This isn’t really a bug, but you might incorporate the following: in the file
UMacAppUtilities.p, place a {SPUSH} {S$D-} in front the BlockSet routine and a
{$D+} after it. This change speeds up the execution of programs which are compiled with
the MacApp debugger when running under the THINK Pascal environment. (Doing this
may not be necessary if you incorporate the fix to problem #5 in the MABuild section.)

#280: “Bugs In MacApp? Yes, But I Love It!” 35 of 37

Macintosh Technical Notes

MacApp Samples Bugs

i. In the C++ version of DemoText, strings which normally appear in the About box show up

in the color picker, because kPrompt Strings ID is declared differently between the Rez

file and the C++ file.

In the file UlIconEdit.incl.p, the procedure TIconBitMap.Free does not call

INHERITED Free. It should call INHERITED Free or the space in the heap used for

the object never gets freed.

Instead of referring to @£ShowInvisibles, TTabTEView.Fields actually refers to

@ShowInvisibles.

Other

L.

36 of 37

The script {MATools}CleanupDeRezzed Views misses a situation where it needs to quote a

Shell variable. This problem causes the script to abort if the file you are processing

contains a space in it.

Fix: Replace the second line of the script:

2 tt) oe

With:

IF "{1}" ==

Due to bug in System Software 6.0.5, attempts to perform a_RecoverHandle ona

ROM resource fail with Virtual 2.0™ and greater than eight megabyte systems. With such a

configuration, the Macintosh’s ROM appears in the middle of MultiFinder’s zone. This

mapping confuses _RecoverHandle, so it attempts to do what it thinks is right by

setting the current zone to be MultiFinder’s zone, which is incorrect for ROM resources.

Consequently, RecoverHandle fails. Since MacApp calls RecoverHandle on

ROM resources when executing its Test RecoverHandle routine, MacApp applications

are affected.

This bug does not appear in earlier versions of the System. It is not yet clear whether or
not it will be fixed in subsequent versions.

Solution: | Connectix is aware of the problem and may release a version of Virtual that
solves it; however, this is really a System 6.0.5 problem, so the blame is on
Apple.

#280: “Bugs In MacApp? Yes, But I Love It!”

Developer Technical Support August 1990

Fix: If calls to TestRecoverHandle occurred only in debug mode, you could simply

turn off Virtual when testing your application (or, at least, make sure you don’t

have more than eight megabytes of virtual memory). However, IsObject, which
can be called even in non-debug mode, calls IsHandle, which calls
TestRecoverHandle. Therefore, you may want TestRecoverHandle to

call RecoverHand1le only in debug mode.

FUNCTION TestRecoverHandle(masterPointer: Ptr;

h: UNIV Handle): Boolean;

VAR

BEGIN

IF qDebug & (qNeedsMC68020 | qNeedsMC68030 | (gConfiguration.processor

<> env68000)) THEN

BEGIN

<Old body of TestRecoverHandle>

ELSE

TestRecoverHandle := TRUE; {fff Can’t really test this fff}

END;

THINK Pascal is a trademark of Symantec Corporation.
Virtual 2.0 is a trademark of Connectix Corporation.

SS

#280: “Bugs In MacApp? Yes, But I Love It!” 37 of 37

C)

A
Macintosh eS
Technical Notes ®

Developer Technical Support

#281: Multiple Inheritance and HandleObjects

Written by: Larry Rosenstein August 1990

This Technical Note answers a common question about MPW C++: “Why doesn’t

HandleObject support multiple inheritance?” It does this by giving a brief overview of how

multiple inheritance is implemented in MPW C++.

What Are HandleObjects Anyway?

MPW C++ contains several extensions to “standard C++” for supporting Macintosh programming.
One such extension is the built-in class HandleObject. An instance of any class descended
from HandleOb ject is allocated as a handle in the heap. You refer to one of these instances as
if it were a simple pointer, the compiler takes care of the extra dereference required because the
object is really a handle.

A HandleOb ject is useful in Macintosh programming for the same reason a handle is useful.
The use of handles helps prevent heap fragmentation. The nature of HandleObject imposes
some restrictions on how you can use it in a program, however.

First, since each instance is allocated as a handle, it follows that all instances must be allocated on
the heap. (“Native” C++ objects can be allocated on the stack or in the global space as well.)
oe: you always declare variables, parameters, etc. to be pointers to the class. For
example:

class TSample: public HandleObject {

public:

long fData;

de

TSample *aSampleInstance; // Legal
TSample anotherSample; // Results in a compile-time error

The error message the compiler generates in this case is “Can’t declare a handle/pascal object:
anotherSample.” At first this message might seem strange, because the last two lines in this code
seem to both declare objects. Actually, the first declaration is of a pointer to an object, not of the
object itself.

The second restriction is that you must follow the usual rules for manipulating handles. In
particular, you have to be careful about creating pointers to a HandleObject instance variable,
since the object might move if the heap is compacted. If you write

long *x = & (aSampleInstance -> fData);

ere

#281: Multiple Inheritance and HandleObjects 1 of 5

ESTE Om

Macintosh Technical Notes AMBcintosh Techical Notes

then x becomes invalid if the object moves. The solution in this case is to lock the object if there’s a possibility of the heap being compacted. Instances of HandleObject are allocated with a call to_NewHand1e, so youcan use_HLock and_HUnlock to lock and unlock the object. YU

The third restriction is that you cannot use multiple inheritance with a HandleObject. The reason behind this restriction 1s not evident, however. To understand the reason, you must look at
the implementation of multiple inheritance.

Implementing Multiple Inheritance

To understand how multiple inheritance is implemented, one needs a simple example. Suppose you
define two classes as follows:

class TBaseA {

public:

virtual void SetVarA(long newValue) ;

long fVarA;

};

class TBaseB {

public:

virtual void SetVarB(long newValue) ;

long £fVarB;

3

WY
If you were to look at instances of these classes (see Figure 1), you would find that in each case
the instance storage would contain four bytes for the C++ virtual table (vt able) and four bytes
for the instance variable. Any code that accesses the instance variable (for example
TBaseB: :SetVarB) would do so using a fixed offset from the start of the object. (In this
particular version of C++, this offset was 0; your offset may vary.)

Figure 1-Layout of TBaseA and TBaseB Instances

Now suppose you define another class:

class TDerived: public TBaseA, public TBaseB {

public:

virtual void SetDerivedVar(long newValue);

long fDerivedVar;

i EEE

2 of 5 #281: Multiple Inheritance and HandleObjects

A t 1990
Developer Technical Su sane

In this case, an instance of TDerived has the following layout:

Figure 2-Layout of TDerived Instance

This is what you would expect. TDerived inherits from both TBaseA and TBaseB, and
therefore instances of TDerived contain a part that is a TBaseA and a part that isa TBaseB. In
addition, the virtual table vtableDerived includes the tables for both TBaseA and
TDerived.

TDerived also inherits the methods defined in TBaseA and TBaseB. Suppose you wanted to
call the method Set VarB, using a TDerived object. The code for Set VarB is expecting to be
passed a pointer to a TBaseB object (all methods are passed a pointer to an appropriate object as
an implicit parameter), and refers to fVarB by a fixed offset from that pointer. Therefore, to call
Set VarB using a TDerived object, C++ passes a pointer to the middle of the object; specifically
it passes a pointer to the part of the object that represents a TBaseB.

This gives you a very basic idea of how C++ implements multiple inheritance. For more details,
read “Multiple Inheritance for C++” by Bjarne Stroustrup in Proceedings EUUG Spring 1987
Conference, Helsinki.

So What About HandleObjects?

The next question is how this implementation imposes a restriction on a HandleObject. The
answer is simple. Each method of a HandleObject class expects to be passed a handle to the
object, instead of a pointer. But when multiple inheritance is used, the compiler sometimes has to
pass a pointer to the middle of the object. It is not possible to create a valid handle that refers to the
middle of another handle. (Creating a fake handle is a compatibility risk; besides, the pointer into
the middle of the handle would be invalid if the handle is moved.)

Designing a new implementation of multiple inheritance that is compatible with a
HandleOb ject, as well as the rest of C++, is a big undertaking. For that reason, it is unlikely
that this restriction will disappear in the future. There are, however, two alternatives to consider:

Damn the Fragmentation, Full Speed Ahead

The main reason to use a HandleObject is to reduce the chance of fragmentation that would
result from using a non-relocatable block. In a few applications, however, the memory allocation
patterns are very predictable, and fragmentation might not be an issue. In those cases, you can use
“native” C++ classes. (Don’t use the argument that 8 Mb machines are common, and virtual
memory is here to stay so fragmentation isn’t an issue at all. Data always expands to fill the
available memory space, real or virtual.)

-—————————eeSSeSeeSSSSSSFSSSSSSSSSSMmmMHFheseeee

#281: Multiple Inheritance and HandleObjects 3 of 5

Macintosh Technical Notes See eS

If you adopt this approach, you should read the article “Usin j i ; » you g C++ Objects in a Handle-Based
World” by Andrew Shebanow in Issue 2 of de velo p, April 1990. This article describes how
you can use native C++ objects and minimize heap fragmentation, by overriding the way C++
normally allocates objects. The same techniques can be used to customize the way your program
allocates certain objects.

“Doctor, It Hurts When I Do That...”

The other alternative is to give up multiple inheritance. In most cases, this isn’t as difficult as it
sounds. The typical way you would do this is with a form of delegation. For example, you could
rewrite the class TDerived as:

class TSingleDerived: public TBaseA {

public:

virtual void SetDerivedVar (long newValue) ;

void SetBaseB(long newValue) ;

long fDerivedVar;

TBaseB fBaseBPart;

3

In this case TSingleDerived inherits only from TBaseA, but includes an instance of TBaseB
as an instance variable. It also implements the method Set BaseB to call the method by the same
name in the TBaseB class. (In effect, TSingleDerived delegates part of its implementation to
TBaseB.) The advantage of this approach is that it requires only single inheritance, yet you can
still reuse the implementation of TBaseB.

The disadvantages are that TSingleDerived is not a subtype of TBaseB, which means that an

instance of TSingleDerived cannot be used in a situation that requires a TBaseB. Also,

TSingleDerived has to define a method that corresponds to each method in TBaseB. (You

can, however, define these functions as inline and non-virtual, which eliminates any run-time

overhead.)

By The Way...

You should realize that the multiple inheritance implementation previously described costs some

extra space, compared to a simpler implementation that does not support multiple inheritance (e.g.,

the implementation used for a HandleObject). Each vtable is twice as large, and each

method call takes about 24 bytes, compared to 14. This is true even if you do not take advantage

of multiple inheritance. For this reason, MPW C++ also contains a built in class called

SingleOb ject, whose instances are allocated in the same way as normal Crs. instance, but

which only supports single inheritance. (By the way, the third class built into MPW C++,

PascalObject, uses Object Pascal’s run-time implementation, which takes the least amount of

space, but the most execution time.)

aE E EE EERE RENEE EEE

4 of 5 #281: Multiple Inheritance and HandleObjects

UO

Developer Technical Support August 1990

Conclusion

You cannot use a HandleObject with multiple inheritance, because of the way multiple
inheritance is implemented in MPW C++. Your alternatives are to give up one or the other. You
can either use native C++ objects and let the objects fall where they may, or give up multiple
inheritance and use a form of delegation.

Further Reference:
° MPW C++ Reference Manual
¢ “Using C++ Objects in a Handle-Based World,” Andrew Shebanow, d e ve lo p, Issue 2,

April 1990.
¢ “Multiple Inheritance for C++,” Bjarne Stroustrup, Proceedings EUUG Spring 1987

Conference, Helsinki.

SS

#281: Multiple Inheritance and HandleObjects 5 of 5

Macintosh 4

Technical Notes Lg

Developer Technical Support

#282: Smear Tactics

Written by: Dave Radcliffe & Carl Hewitt August 1990

This Technical Note discusses a feature of the current Macintosh hardware which will not be
supported in the future. Macintosh hardware developers and driver writers should be aware of this
limitation as it affects current and future products.

Current Macintosh hardware supports a feature of MC68020 and MC68030 processors which is
herein referred to as “byte smearing.” Future Macintosh platforms may not support this feature,
and if you have hardware or software dependent on this feature you need to revise it. Likewise
you should be aware of this limitation if you are developing new hardware or software.

Spreading the Bytes Around

MC68020 and MC68030 processors have a “feature” which causes the data for byte and word
transfers to be replicated (smeared) across all 32 data lines. An example illustrates the problem.

Consider the following code:

MOVE.L #$12345678,D0 ; Stuff some data

MOVE.B DO, $102 ; Write a byte of data

The data actually placed on the data bus, with and without byte smearing, is shown in Figure 1.

With Byte Smearing

CPU Bit 31 24 16 8 0

Byte Data
Byte Address $100 $101 $102 $103

Without Byte Smearing

CPU Bit 31 24 16 g

ByteData |_xx | xx_| $78 | xx _
Byte Address $100 $101 $102 $103

Figure 1-Effect of Byte Smearing

With byte smearing, the byte of data is replicated across all the byte lanes; without smearing, the
other bytes are undefined. A similar replication of data can occur with word transfers.

#282: Smear Tactics 1 of 2

Macintosh Technical Notes

As an example where this can cause trouble, suppose you have a NuBus™ card with a device
register which expects to be byte addressed at byte $102. With byte smearing it is actually possible
to get away with writing a byte to any address from $100 through $103; without byte smearing,
the card only sees the correct data when addressed at the correct byte $102.

Conclusion

The lack of “byte smearing” as a feature should not be a problem for most developers; after all,
why would anyone write to byte $100 when they really meant to write to byte $102? Well, sad to
say, at least one case of this happening has been uncovered, so if you have, either inadvertently or
by design, relied on this feature, you should revise your products to run on future Macintosh
platforms.

Further Reference:

* MC68020 User’s Manual, pp. 7-9
¢ MC68030 User’s Manual, pp. 7-9

NuBus is a trademark of Texas Instruments.

2 of 2 #282: Smear Tactics

Macintosh x

Technical Notes a

Developer Technical Support

#283: A/UX System Calls From Macintosh Software

Revised by: Anathan Srinivasan & Kent Sandvik January 1991 |
Written by: Rob M. Smith, B. W. Hendrickson & Dave Radcliffe August 1990

This Technical Note discusses how to make A/UX system calls from applications developed in the
Macintosh environment. This is useful to anyone porting an existing Macintosh driver or
application to work on A/UX as well.

Changes since August 1990: Added information about how to make use of fork () system
calls under MultiFinder, as well as how various A/UX system calls behave under the MultiFinder
emulation mode.

Introduction

A/UX 2.0 now runs a broad range of Macintosh applications. The A/UX Toolbox allows most
code developed for the Macintosh to run unmodified under A/UX. One exception is Macintosh
device drivers. Many developers are interested in also making their Macintosh peripherals
available to A/UX customers. If the peripheral requires a custom driver that accesses hardware,
the driver needs to be modified to run under A/UX.

Split Decision

The A/UX Toolbox runs in “user” space in A/UX. This is a virtual, protected memory space that
shares the system resources with all other processes running in “user” space. These processes are
not allowed to access hardware directly. Instead, they must make a request to the A/UX kernel
through a mechanism called a “system call” to deal with the hardware. The kernel, which runs in
“system space,” then returns data, status, etc. back to the caller. The system call is a well-defined
interface that gives Unix® systems some degree of application portability.

Since any custom driver code must maintain the Macintosh interface at the Toolbox and application
level, and Toolbox code cannot touch the hardware, you must split your driver into two pieces.
The high-level Macintosh interface portion stays in user space, and the low-level hardware
dependent, Unix-style interface becomes a Unix device driver in the kernel. So how do these two
pieces communicate? They have to talk to each other through the Unix system call interface.

The code comprising the kernel portion of your driver must be adapted to do things in a “Unix
way,” such as providing the standard routine interface required of all Unix drivers, be
multithreaded and reentrant, and not “hog” CPU time by doing “busy waits.” This Note does not
cover these issues, but the A/UX Device Drivers Kit (available through APDA) has example code
and documentation about the topic. There are also some good books available on writing Unix
drivers.

eee

#283: A/UX System Calls From Macintosh Software 1 of 14

Macintosh Technical Notes

Is This A/UX or What?

If you want your code to work in either environment without change, you first need to determine if
you are under A/UX at run time. The best way to do this is with the Gestalt trap using the
selector gestaltAUXVersion to determine if A/UX is the underlying operating system.
Shown below is a function which returns 0 if A/UX is not present, otherwise returns the major
A/UX version number (1, 2, etc.). This code relies on Gestalt glue code available in MPW
3.2 and later. 7

getAUXVersion.c

Copyright © 1990 Apple Computer, Inc.

This file contains routines to test if an application is running

on A/UX. If the Gestalt trap is available, it uses that, otherwise

it falls back to HWCfgFlags, which will work on all A/UX systems.
+ + * + HF HF HF /

#include <Types.h>

#include <GestaltEqu.h>

#define HWCfgFlags OxB22 /* Low memory global used to check if A/UX is running */

/*

* getAUXVersion -- Checks for the presence of A/UX by whatever means is appropriate.

* Returns the major version number of A/UX (i.e. 0 if A/UX is not present, 1 for

= any 1.x.x version 2 for any 2.x version, etc.
=

* This code should work for all past, present and future A/UX systems.

*/
short getAUXVersion ()

{
long auxversion;

short err;

short *flagptr;

/*

i! This code assumes the Gestalt glue checks for the presence of the Gestalt

* trap and does something intelligent if the trap is unavailable, i.e.

* return unknown selector.

df

auxversion = 0;

err = Gestalt (gestaltAUXVersion, &auxversion);

{*
:

* If gestaltUnknownErr or gestaltUndefSelectorErr was returned, then either

3 we weren't running on A/UX, or the Gestalt trap is unavailable so use

= HWCfgFlags instead.

* All other errors are ignored (implies A/UX not present).

*/

if (err == gestaltUnknownErr || err == gestaltUndefSelectorErr) {

flagptr = (short *) HWCfgFlags; /* Use HWCfgFlags */

if (*flagptr & (1 << 9))

auxversion = 0x100; /* Do Have A/UX, so assume version 1.x.x */

}
/*

* Now right shift auxversion by 8 bits to get major version number

xy
auxversion >>= 8;

return ((short) auxversion);

I

2 of 14 #283: A/UX System Calls From Macintosh Software

Developer Technical Support
January 1991

A/UX Code, Under MPW?

The main system calls used to access kernel driver routines are open(), close Q ,read(),

write (),and ioct1(). Of use to applications is the routine creat () which is included here

as well. The A/UX system call mechanism isatrap #0 with the system call selector code in

register DO. The arguments are on the stack in the normal C calling convention, last argument

pushed first.

Note that different trap calls under A/UX have different procedures concerning the use of registers

and stack frames.In this Tech Note we are not trying to document each possible case, so we limit

the examples to show how the registers and stack frame are used! with the open (),close(),

read(),write(),fork() and ioct1() A/UX system calls. In the case of other A/UX

system calls you have to disassemble code compiled under the A/UX environment in order to find

out how the parameters are passed, and how the stack frames are set.

Since MPW does not contain any A/UX libraries and doesn’t know about Unix system calls, you

need to use some assembly-language glue code around the trap. Following is glue code for the
common A/UX routines listed above. You can extend your A/UX system call library by adding
additional routines with additional system call selectors. This glue code relies on the similarity
between A/UX C calling conventions and MPW C calling conventions, as well as the similarity in
the sizes of parameters (int variables are four bytes in both systems). When these routines are
entered the stack frame is already correctly set up for the trap #0; if you are using other
languages or development systems, you may need to extend the glue to rearrange parameters on the
stack to match A/UX C calling conventions.

The error code from the call is returned in DO. In the Unix environment, this error code is
normally placed in the errno global variable and D0 is set to -1 before return to the caller. Since
global variables are very bad for Macintosh device drivers, this glue code relies on a special A/UX
trap called AUXDispatch which can return a pointer to an A/UX errno global variable. The C
functions SetAUXErrno() and GetAUXErrno() are used to set and retrieve this value. The
_AUXDispatch trap is defined in an A/UX include file /usr/include/mac/aux.h and you need this
file to compile the C code. For more information about the AUXDispatch trap, consult the A/UX
Toolbox: Macintosh ROM Interface manual. Lastly, all function names have been preceded by the
prefix “AUX” to distinguish them from their MPW C library counterparts (e.g., the A/UX
read() function is named AUXRead () here).

AUXIO.a -- Glue for A/UX I/O system calls

Copyright © 1990 Apple Computer, Inc.

All rights reserved.

This module contains C callable routines to execute A/UX system (trap 0)
calls. The parameters to these routines is exactly as they are described
in the A/UX man(2) documentation. This means all char * parameters are
NULL terminated C strings, not Pascal strings. They all presume that A/UX
is in fact running. Certain death will result otherwise. ee a Pe on

CASE ON * For C

INCLUDE 'SysEqu.a!

IMPORT SetAUXErrno

- Here are all the routines and their C calling conventions:
i long AUXCreat (char *path, long mode);

EXPORT AUXCreat

; long AUXOpen (char *path, long oflag, long mode);
EXPORT AUXOpen

; long AUXClose (int fildes);

-_-_—— oo eeeeeSSSSSSSSSSFSSSSSSSSSSSSSSSSSSSSSSsSS

#283: A/UX System Calls From Macintosh Software 3 of 14

Macintosh Technical Notes

EXPORT AUXClose
; long AUXRead (long fildes, char *buf, long nbytes)

EXPORT AUXRead

; long AUXWrite (long fildes, char *buf, long nbytes) VY |
EXPORT AUXWrite

. long AUXIoctl (long fildes, long request, long arg)
EXPORT AUXIoctl

: Some local entry points

ENTRY auxerr

ENTRY auxcommon

ENTRY auxexit

AUXCreat PROC

move.1 #$8,D0 7; creat function selector

bra.b auxcommon ; Join common code

AUXOpen PROC EXPORT

move.1 #$5,D0 7 open function selector

bra.b auxcommon + Join common code

AUXClose PROC EXPORT

move.1 #$6,D0 ; close function selector

bra.b auxcommon ; Join common code

AUXRead PROC EXPORT

move.1 #$3,D0 + read function selector

bra.b auxcommon ; Join common code

AUXWrite PROC EXPORT

move.1 #$4,D0 ; write function selector

bra.b auxcommon ; Join common code

AUXIoctl PROC EXPORT

move.1 #$36,D0 ; ioctl function selector

bra.b auxcommon ; Join common code

Trivia of the month. 3 The flow of the

H here because of a strange interaction

,

code is a little weird

between the assembler

and the linker. Logically, auxcommon should go here, but what

7 happens in that case is the assembler generates a byte branch

; instruction for the previous instruction, but then the linker

- cheerfully fills in the byte offset, which if auxcommon were

; the next instruction would be zero.

the bra.b to get interpreted as a bra.w and of course the code

At runtime, this causes

; flies off into never-never land. So we stick in some convenient

; intervening code to ensure the offset is never zero.

auxerr PROC ENTRY

move.1 DO, = (SP) ; Push error code

jsr SetAUXErrno ; Set errno

add.w #$4,SP ; Remove parameter

move.1 #SFFFFFFFF, DO ; Set -1 for return value

bra.b auxexit ; Outta here

auxcommon PROC ENTRY

trap #$0 ; trap 0

bec.b auxexit ; CC, no error

bra.b auxerr ; Do common error handling

auxexit PROC ENTRY

rts

ENDPROC
|

END

The second argument to the AUXIoct 1 call needs some special attention. The A/UX header file

/usr/include/sys/ioctl.h describes the format of request. These four bytes hold several fields |

describing the data format. Normally, macros defined in the ioctl.h header file take care of packing)

$I

4 of 14 #283: A/UX System Calls From Macintosh Software

Developer Technical Support January 1991

these fields. Make sure you use the same format when you construct your request argument.
r» Just use the example commands in the /usr/include/sys/*ioctl.h files as a reference.

Following are the C functions to properly get and set the A/UX errno global variable:

AUXErrno.c

Copyright © 1990 Apple Computer, Inc.

All rights reserved,

This file contains routines to properly get and set the standard Unix global

errno from within an Macintosh application. It uses the AUXDispatch trap

to get a pointer to the address to be set.
+ + F F HF HF HF /

#include <aux.h>

void SetAUXErrno (err)

long err;

{

long *errnoptr;

if (!getAUXVersion ())

return; /* No A/UX, do nothing */

errnoptr = 0;

AUXDispatch (AUX_GET_ERRNO, (char *) &errnoptr);
/*

* If errnoptr is still NIL, AUXDispatch failed so do nothing

*/
faa if (errnoptr)

*errnoptr = err;
return;

}

long GetAUXErrno ()

{
long *errnoptr;

if (!getAUXVersion ())

return (0); /* No A/UX, return noerror */

errnoptr = 0;

AUXDispatch (AUX_GET_ERRNO, (char *) &errnoptr);
/*

* If errnoptr is still NIL, we're not under A/UX, or AUXDispatch failed
* so do nothing

ia A

if (errnoptr)

| return (*errnoptr);

else

return (0);

#283: A/UX System Calls From Macintosh Software 5 of 14

Macintosh Technical Notes

Use of the fork() call under A/UX MultiFinder emulation

The following advice concerns the use of the A/UX fork () system call under the MultiFinder
emulation mode. Under A/UX the kernel does not separate the data region of the parent process for
the child after a fork () call. If we do a simple fork we have suddenly two MultiFinder processes
running, and they both will share the same resources. The MultiFinder memory space is set up as
shared memory, and since the child in UNIX inherits all shared memory segments from the parent
across the fork, both the parent process and the child process will be using the same stack. This
will lead to chaos if the child pushes something to the stack while the parent removes the data, or
vice versa. The child should have a separate stack until we have done an exec (), then the child
process has it’s own memory world.

So what we need to do is to set up a separate data area for the child's process stack use. The child
process will get its own data area by allocating enough stack space by the parent before the
fork (), and passing this space to the fork () system call using a special fork () call, which
is explained later.

The fork() system call copies the current stack frame of the parent onto the new stack space,
resets the stack pointer to point to the new stack in the child, and then issues the trap to jump into
the Unix kernel to continue to set up the new process structures. This enables the child to access

information from the stack in the same manner as any other process. Details to keep in mind while

using this mechanism are :

a) Allocate memory for the stack which is guaranteed not to be freed until after the child process

has completed its exec.

b) Pass the address of the high memory end of the allocated memory for the stack to fork () , not

the low memory address.

c) The address to be passed as the caller-environment argument is computed differently depending

on whether the calling routine has a Pascal or a C stack frame. The examples given later show how

the calculation is done.

d) The calling routine needs to be very careful about what the child does before exec () or

exit (). Pointers and structures accessed via the stack will point to the parent's copy, since only

the local/current frame has been copied.

In particular allocation of large arrays should be done only after ensuring that the space allocated

for the child stack is sufficiently large to copy the entire stack frame. This is important because

arrays could be allocated on the stack, and there could exist array sizes which cause the current

stack frame size to exceed that of the allocated child stack space. This will result in only part of the

current stack frame being copied over onto the child. In such cases seemingly normal accesses

from the child will end up being in the wrong area and cause strange behavior (the screen is locked

up, bus errors are frequent etc.).

Using malloc() and free() to allocated space for such large buffers on the heap will

eliminate this problem. However one needs to be aware that though the space is allocated on the

heap, the space is accessed via a pointer which is on the current stack frame. This means that

accesses from the child to the space in question will result in accesses to the parent's copy.

e) The parent must clean up of the allocated space for the interim stack for the child after the child

has exit:ed.

i

6 of 14 #283: A/UX System Calls From Macintosh Software

1
Developer Technical Support January 199

The following picture illustrates how the stack parameter passing is done with a Pascal stack and a

C stack:

High Memory

&Child stack &Child stack

= aaa ea

a — x12
ps xe
pd
| fake X

Low Memory

Pascal Call Stack C Call Stack

n = sizeof(Ret. value)
X is determined thus; X is determined thus:
X = &r + sizeof(r) + X = &fake
sizeof(Ret. value)

The design issue of returning to the caller from fork () (as opposed to providing a fork () -
exec () combination which does not return from the fork but goes ahead and execs the required
program as well) should be favored after looking into the problem carefully. Providing a separate
fork () has advantages in the form of letting the user set up communication channels between the
parent and child before exec () , or allowing the user to set up the appropriate environment before
exec(). The problems has to do with the possibility of the not-so-wary programmer using the
feature improperly and leaving two Macintosh environments running simultaneously, which will
lead to chaos very quickly. Thus use of fork () from within an application must be done with
extreme caution.

Given below is an example of the use of AUXFork (), a special fork () implementation. This
example also shows how to set up the A/UX environment.

#define STACKBYTES 2048 /* size in bytes */
#define STACKSIZE STACKBYTES/sizeof (long)
unsigned long *childstack;

pascal long AUXDispatch(selector,p)

short selector;

char *p;

extern OxABF9;

#define AUX_GET ENVIRON 11 /* get pointer to environ */

eee

#283: A/UX System Calls From Macintosh Software 7 of 14

Macintosh Technical Notes

char **auxenviron;

extern int AUXFork(), AUXExecl(),AUXWait(), AUX exit();

int system(s, fake)

char *s;

int fake;

{

int status, pid, w;

register int (*istat)(), (*qstat)(), (*cstat) ();

int GetAUXErrno();

long aux_errno;

childstack = (unsigned long *) (NewPtr (STACKBYTES));

/* copy the environment */

AUXDispatch (AUX_GET_ ENVIRON, (char *) &auxenviron) ;

if ((pid = AUXFork (&childstack [STACKSIZE],&fake)) == 0) {

(void) AUXExecl("/bin/sh", "sh", "-c", s, 0);

(void) AUX_exit (127);

}

else {

if (pid < 0) {

DisposPtr((char *)childstack) ; /* Fork failed */

return (-1);

}
else {

w = auxwait (&status);

DisposPtr((char *)childstack) ;

return((w == -1)? w: status);

}

In the above example, the parent sets up the space for the child stack, gets a pointer to the

environment to be passed to exec (), and calls AUXFork (). A dummy variable ‘fake’ is passed

as a parameter to system() to enable AUXFork () to copy the current stack frame on to the child

stack. After the child exits, the parent cleans up the space allocated to the child stack. AUXWait ()

is used to block the parent until the child exits or terminates. The parent has to wait for the child to

exit or terminate for this scheme to work properly within MultiFinder, If the child does not exit or

terminate, the Macintosh environment is blocked and may lose a number of events and signals

necessary to maintain its state. Thus use of fork makes sense only if we are sure that the child exits

or terminates without taking too much time to execute.

The following example shows how to write AUXFork ():

AUXFork.a -- Glue for A/UX fork call

Copyright © 1990-91 Apple Computer, Inc.

All rights reserved.

This module contains C callable routines to execute A/UX fork

calls. This function presumes that A/UX is in fact running.

Certain death will result otherwise. ee ee ee ee ee Ty

INCLUDE 'Traps.a'

CASE OBJECT

A

8 of 14 #283: A/UX System Calls From Macintosh Software

pe ppo
ary 1991

Developer Technical Support
January 199

| EXPORT AUXFork

C) AUXFork routine

pid = AUXFork(new_top_sp, caller_env)

. new top sp: This is one past the highest address that is

iy - in the new stack area.

; caller env: This is an address on the current stack that is

one past the highest address in the stack frame

of the calling routine.

: return values -

Fi in parent: pid == -1 failure

; pid == child success

; in child: pid ==

: To call auxfork -

; Allocate memory for the child's stack which is guaranteed not to

. be freed until after the child process has completed its exec. Remember

; to pass the end of that memory region to auxfork, not the beginning. The

: address to be passed as the caller_env argument is computed differently

. depending on whether the calling routine has a pascal or C stack frame.

; Note that the calling routine needs to be very careful about what

. the child does before exec or exit. Only the local frame has been copied

; and only the frame pointer has been fixed up. For example, if the calling

: routine has an array on the stack and uses a pointer to it for efficiency

then the child's pointer will point at the parent's copy, not the child's.

Also, if the parent must be careful not to delete or change anything the

,

;

A child may be using. Caveat emptor!

®
,

: How to compute the caller_env argument -

,

; Pascal: compute ((char*)&leftmost_argument) + sizeof (leftmost_argument)

, + sizeof(function return value, if any) and pass that.

; e.g. pascal Boolean system(short r, long s, long c)

auxfork (&6new_stack[LENGTH OF STACK], (&r + sizeof(shor) + sizeof (Boolean)))

Gs add a fake rightmost_argument and pass the address of that.

; e.g. int system(short r, long s, long c, long fake)
: auxfork (&new_stack[LENGTH OF STACK], & fake)

AUXFork PROC

; make a copy of the stack frame

move.l 4(a7),a0 *; just past end of new stack
move.l 8(a7),dl * just past end of caller environment
move.l dl,d0o ; length = end of caller
sub.l a7,d0 ? «8s. = Current stack
sub.1l d0,a0 7 new stack -= length of old
move.l a0,d0O ; Save the stack base for after copy
move.l a7,al + don't want interrupts to trash stack

C) @2 move.w (al)+, (a0) +

cmp.1 al1,dil
; word aligned (it is a stack!)

+ done?
bhi.s @2 7... nah, keep copying

eee

#283: A/UX System Calls From Macintosh Software 9 of 14

Macintosh Technical Notes

move.1 d0,a0 i s+. yep, save new stack pointer |

7 now, do the fork

move.l 2,D0

trap #0

Dl == 0 in parent process, D1 == 1 in child process.
; DO == child pid in parent, DO == parent pid in child.
bec.b @0 ; did we fork?

move.1 #-1,D0 ; ... nah, failure

@1 rts

@0 tst.b Dil ; who am i now?

beq.b @1 } ... parent, get out of here

; ... child, so fudge registers

move.1l aé6,dl ; offset of fp = fp

sub.l a7,dl - «ee = Old stack

move.l a0,a7 ; set up new stack pointer

move.l a0,a6é ; new frame pointer = sp

add.l dl,a6é . + offset of fp

elr a (a6) ; the fp points to never-never land

lea do_exit,al ; and a guaranteed exit

move.l al,4(aé6é) ; becomes the return address

move.1l #0,D0 ; the child returns

rts

do_exit move.1 1,D0

trap #0

ENDP

END

Issues with using A/UX system calls in the MultiFinder environment

General :

The following comments describe how various A/UX system calls behave under the MultiFinder

environment:

Blocking / Sleeping system calls :

Many of the system calls can result in situations which cause the calling process to go to sleep

awaiting an event which wakes it up .For instance opening a pipe from process and writing to the

pipe will result in the write waiting until another process opens the pipe for reading. Such

situations should be avoided when using the system calls from within a Macintosh application.

Depending on the priority at which the sleep occurs, the application can cause the entire Macintosh

environment to hang (when the sleep is non interruptible), or the system call returns with error

number indicating an interrupted system call. This will happen because the blocked process is

sleeping at a priority from which it can be woken up by signals used to implement VBL's or other

Macintosh aspects - and which is almost always bound to happen. One way to get around this

problem is by using options which prevents the blocking and spin in a loop polling the result from

the system call, until we are guaranteed to have a situation wherein the system call will not block.

However, polling in this manner should be done only for very short intervals, and when we are

sure that the polling will end in success in a short time. If this is not the case, then the application

a

10 of 14 #283: A/UX System Calls From Macintosh Software

Developer Technical Support January 1991

doing the polling will be stuck in the polling loop without giving up the CPU for other applications
(which is extremely unfriendly MultiFinder behavior).
Caution About Blocking On Read Calls

Be aware that reads from drivers may block the calling application until some data arrives. Since
the complete MultiFinder environment exists as a single process under A/UX, you do not want a
pending read to block for an extended period of time. This problem is not unique to A/UX—the
same thing also happens under the Macintosh OS. Ina serial driver, for example, the application
should check to see if any characters have been received and are waiting to be read before issuing
the read call. The read() should then request only that many characters. This is implemented
differently under A/UX than under the Macintosh OS. The available character count is determined
by doing an ioct1() system call to the device in question. The terminal ioct 1 () commands to
do this are listed in the A/UX manuals under “termio” in section 7. The FIONREAD ioct1()
command returns the number of characters waiting to be read from the A/UX serial driver. This
can cause problems when using the IOP-based serial driver on the Macintosh IIfx; for more
information on this topic, refer to Technical Note #284, IOP-Based Serial Differences Under
A/UX.

sbrk and brk:

There is no consistent way for an application to use sbrk () and brk () properly and ensure that
other applications within the MultiFinder partition are aware of the new sbrk () and brk () limits
and behave appropriately. Thus it doesn't make sense to use these A/UX system calls. sbrk ()
and brk () are mostly used to get additional data space, and this can already be achieved by using
either NewPtr () /NewHandle() ormalloc().

setuid / setgid / setreuid / setregid / nice/ setgroups / setcompat / setsid / setpgid
/ plock/ ulimit/ phys:

These A/UX system calls have the same problem as above - i.e. we don't want to modify any
process related A/UX structures/information which in turn affects all the applications running
under the MultiFinder partition.

sethostid / sethostname / setdomainname / sysacct / reboot / powerdown /
nfs_getfh / adjtime:

It is not recommended to affect system wide structures/data with user processes (allowed only for
super user).

signal / ssig / sigvec / sigblock / sigsetmask / sigpause / sigstack / sigpending /
sigcleanup :

Synchronization with signals and related calls have the same problem as earlier stated, but with
additional complexities. While not providing signals would eliminate the problem of maintaining
signals on a per-application basis within MultiFinder, a subset of the signals functionality has to be
provided to enable applications to deal properly with certain system calls. Otherwise these calls
may result in the signals being raised to indicate errors or other status information. (e.g the
SIGPIPE signal is raised if a process sends data on a broken stream set up via the socket system
call.). Signals necessary to resolve the situations mentioned earlier should be supported, but all
other signals should return without accomplishing anything.

Most of the signal functionality can be accessed via the special AUXDispatch trap.

#283: A/UX System Calls From Macintosh Software 11 of 14

Macintosh Technical Notes

Pause/ alarm/ kill/ setitimer:

If only a subset of the functionality of signals is going to be provided it does not make much sense

to make use of these calls.

Use of pipes :

Blocking on reading an empty pipe and blocking on writing more than PIPE_MAX bytes of data

should not cause the Mac environment to hang (PIPE_MAX is defined in A/UX to 8192). These

situations can be avoided in the following ways:

a) Ensure that all writes greater than PIPE_MAX bytes are broken up into smaller chunks (this may

involve a bit of book-keeping and access to additional buffer space.).

b) Use the fcnt1() A/UX system call to set that appropriate file descriptors returned by pipe ()

to use the O_NDELAY flags (or the _NONBLOCK semantics provided by POSIX). This guarantees

that both the above cases of blocking are avoided. However, both read() and write () returns

with a count of 0 which is indistinguishable from an end-of-file indication. This, along with

judicious use of the polling strategy to avoid blocking mentioned above, can be used to prevent a

lot of potential blocking situations.

In general use of named pipes is much simpler in a Macintosh application. This because named

pipes gives the programmer the possibility to use standard Macintosh File I/O for inter-application

communication. Use of regular pipes to set up communications between a parent process and

related child/grandchild processes has to be done with great care. The pipe descriptors have to be

set up appropriately for communication, before doing the exec (), but after the fork ().

Improper usage may result in two separate MultiFinder processes running - which results in very

quick deterioration of the system environment.

The requirement of cleaning up the interim child stack used during a fork () imposes the

restriction of the parent (MultiFinder) having to wait for the child to exit. This means that all

communication involving pipes between related processes must not block, and moreover must

complete relatively quickly.

Messages:

Message operations should ensure that they do not cause the calling process to block. In the case

that they result in blocking, the operations invariably fail and return an error number specifying an

interrupted system call. The caveats mentioned about blocking hold true in situations where

messages could block.

Semaphores:

Semaphores on AT&T SysV based Unix systems are fairly complicated. With the addition of

further restrictions imposed by the limitations of MultiFinder running under A/UX, semaphore

usage from within a Macintosh application should be attempted with utmost care. By the very

nature of the operation of semaphores, sleeping/blocking situations are bound to arise. Usage of

the

i

12 of 14 #283: A/UX System Calls From Macintosh Software

Developer Technical Support January 1991

IPC_NOWAIT flag prevents sleeping/blocking. Thus it's possible to implement a conditional
semaphore, whereby the MultiFinder process does not sleep on behalf of the application using
semaphores (when it cannot do the required atomic action).

As with its usage from a regular Unix process, care should be taken to avoid situations leading to a
deadlock or situations where deadlocks could happen. For instance this is true in the case where
one process locks a semaphore and then exits without resetting the semaphore. Other processes
will find the semaphore locked even though the process which had done the locking is no longer
around. To avoid such problems the SEM_UNDO flag should be used with semaphore operations.
Here again the application developer needs to be aware of the problems associated with blocking
which is mentioned above.

Use of lockf:

The lockf () system call can be used if it is done judiciously. Using lockf() with the mode
set to F_TLOCK is recommended; this will return with an error if a lock already exists for the
region of interest to be locked.

Flock :

A request to lock (flock () system call) an object that is already locked will cause the caller to
block until the lock is acquired, unless LOCK_NB (nonblocking lock) is used which results in
nonblocking semantics to be applied.

Networking :

a) accept () : This call will result in the caller blocking until a connection is present if no pending
connections are present on the queue, and the socket in question is not marked as non-blocking,
This situation needs to be avoided.

b) recv () /recvfrom () /recvmsg() : These calls would result in the call blocking until a
message arrives if no messages are available at the socket, unless the socket is marked
nonblocking.

c) select () : Timeout should not be 0 - this would result in blocking indefinitely.

d) send() /sendto() /sendmsg() : These calls will block if no message is available at the
socket to hold the message to be transmitted, unless the socket has been placed in the nonblocking
mode.

€) socket (): Use of set sockopt () to set options on the socket connection should be done
carefully. Situations which could result in the indefinite blocking should be avoided (for eg. setting
SO_LINGER when the socket is opened in the reliable delivery mode would result in blocking
when the socket is closed, until the socket decides that it is unable to deliver the information).

nfssve / async_daemon:

These system calls cannot be called directly from the Macintosh world because these calls never
return. To use these calls we need to first fork () a new process and then exec () a program
containing this call as the child process. Additional mechanism in the form of a nonblocking wait
for the parent (perhaps wait 3 ()) needs to also be ensured.

#283: A/UX System Calls From Macintosh Software 13 of 14

Macintosh Technical Notes

ioctl :

The ioct1() A/UX system call is provided to enable programs running on Unix to access all the

peculiarities of specific devices in cases where the standard I/O library lacks the necessary

capabilities. Applications or programs which need to do this require device specific knowledge

relevant to A/UX. The recommended way to use ioct1() is to write a pure Unix program, a

toolbox (hybrid) program, or a small glue code snippet inside the Macintosh binary application

using the ioct.1() system call to accomplish A/UX specific functionality.

Conclusion

The routines presented here show basic techniques for accessing A/UX system services. By

properly using these and other system calls, you can extend your Macintosh device drivers and

applications beyond the limits of the Macintosh OS without having to ship a special version of your

application for A/UX.

Further Reference:
° A/UX Device Drivers Kit, APDA

A/UX Programmer's Reference, Section 2.
Writing A Unix Device Driver, Egan & Teixeira, Wiley.

The Design of the UNIX Operating System, Bach, Prentice-Hall

Technical Note #284, IOP-Based Serial Differences Under A/UX

Unix is a registered trademark of UNIX Development Laboratories, Inc.

oe

14 of 14 #283: A/UX System Calls From Macintosh Software

C)

Macintosh -

Technical Notes .

Developer Technical Support

#284: IOP-Based Serial Differences Under A/UX

Written by: Rick Auricchio August 1990

This Technical Note discusses use of the Macintosh IIfx IOP-based serial driver under A/UX,
especially under certain error conditions which cause it to perform differently than documented in
termio(7). (The SCC driver, used on non-IOP machines, conforms to termio(7) in all

cases.) References to “the driver” herein refer to the IOP-based serial driver, seriop.c.

Bad Character Bits Are Not Passed to an Application

Because the IOP does not return the bits of a character which is received with a parity error, the
A/UX driver always returns NUL to an application. Applications which use PARMRK mode to
recover a character with a parity error always think the character was a NUL .

Break Always Returns a NUL to an Application

Because the IOP always returns a NUL character when a break occurs, the A/UX driver passes it
along to an application. There is no way for the driver to determine that the NUL is superfluous.
Other break processing is unaffected. Programs which use IGNBRK mode receive the unexpected
NUL in the data stream.

Multiple Errors in a “Chunk” of Characters Are Not Reported

The IOP only reports parity and framing errors on the first such occurrence in its internal buffer.
The A/UX driver always reads characters in “chunks” from the IOP; therefore, only the first error

is reported and subsequent errors go unnoticed. For example, assume an application sets PARMRK
mode, expects to read a 10-byte packet (call it “ABCDEFGHIJ”), and four parity errors occur
during transmission of the packet. (The received data is “ABxDExxHxJ,” where the x characters
are parity errors). The IOP returns six valid data characters, marking only the first bad character
(“ABxDEHJ”). The subsequent errors go unreported, simply causing missing characters. The
A/UX driver then marks the bad character (marking it as NUL as previously described), and
returns “ABmmxDEHJ” (where mm are the Oxff 0x00 marker bytes) to the application.

This situation causes two problems:

¢ Since only nine bytes, and not 10, are returned to the application, it is possible for
the application’s read to block permanently. This would occur if the application
simply issued a 10-byte read request.

* The application has no way of knowing that several characters were dropped.

Since the timing of the A/UX driver’s “chunk reads” and the arrival of data can vary, there is no
way to predict or prevent the occurrence of this problem.

a a

#284: IOP-Based Serial Differences Under A/UX 1 of 2

Macintosh Technical Notes

The Current “DMA Hang” IOP Code Patch is Incomplete

The existing IOP code has been patched, both under the Macintosh OS and A/UX, to code around
a bug in its DMA logic. Should any errant characters be received during servicing of a DMA
operation, the IOP silently discards them, never reporting any error. This can cause unreported
dropping of characters. Since this situation is timing-dependent, there is no way to predict or
prevent the occurrence of this problem.

IIfx Serial Switch cdev

The IIfx Serial Switch cdev does not, itself, work under A/UX. If users need to enable
“Compatibility” mode, they should do so first under the Macintosh OS. A/UX, upon booting,
honors the switch setting in parameter RAM. Refer to Technical Note #271, Macintosh IIfx: The
Inside Story for more details on the IIfx Serial Switch cdev.

Further Reference:
° A/UX System Administrator's Reference
¢ Technical Note #271, Macintosh IIfx: The Inside Story

i

2 of 2 #284: IOP-Based Serial Differences Under A/UX

Macintosh ma
Technical Notes ®

Developer Technical Support

#285: Coping With VM and Memory Mappings

Revised by: Craig Prouse April 1991
Written by: | Craig Prouse February 1991

The purpose of this Note is twofold. First, it describes in detail how to use the GetPhysical
routine. This routine is critical to the support of alternate bus masters on certain machines without
Virtual Memory (VM) and all machines with VM. Included is an ancillary discussion of several
closely-related VM routines. Second, it reiterates a number of issues important to VM
compatibility and elucidates some of the deeper VM issues of which specialized developers should
be aware. Compatibility issues are especially important for developers of SCSI drivers, NuBus™
master hardware, and code which runs at interrupt time.
Changes since February 1991: This update incorporates new issues which have come up
during System 7.0 beta testing, and it also attempts to clarify some issues which have proven to be
particularly troublesome or widely misunderstood.

V—_—_—_—_—_—eeereroro"::: kKRrl—————————

Everybody Must Get Physical

If you are developing NuBus expansion cards with bus mastership or direct memory access
(DMA) capabilities, and if you have ever done development or compatibility testing with Apple’s
recent machines, like the Macintosh IIci and Macintosh IIsi, you have undoubtedly noticed some
strange behavior. You might tell the card to dump data into a buffer at $00300000 and the data
instead appears at $006B0000. “‘What’s happening here?” you must ask yourself.

Well, there’s a new game in town—it’s called a discontiguous physical address space.
What that means in simple terms is that there is potentially a big hole in memory. If you have eight
megabytes installed in a Macintosh IlIci, for instance, that memory appears to the CPU and to
NuBus in two separate 4 MB ranges: [$00000000-$003FFFFF] and [$04000000 — $043FFFFF].
Everything from the end of Bank A to the beginning of Bank B is essentially empty. Bank B
memory does not start until at least $04000000.

To compensate for this, the operating system uses the memory management unit (MMU) to map all
the physical memory (what the hardware sees) into a single contiguous logical address space
(what all Macintosh code sees). The logical address space looks exactly like the memory map
you’ve known for years. The translation is completely transparent to software. If you’re an
applications developer and you read the low-memory global at $10C, you don’t care that the
address that the processor actually looks at is $0400010C. When the processor originally put a
value in that spot, it went through the same translation. Everything is relative and you always get
just what you’d expect.

The sole exception is for software which runs on the Macintosh but communicates addresses to
NuBus master hardware. Say, for instance, that you have developed a video frame grabber which
dumps an image into a handle you’ve allocated for that purpose. When you call NewHandle
with an argument of frameSize, you get back a logical address. If you use a 68030, or a 68020
with a 68851 PMMU, to store data into that handle, the MMU performs an address translation and
eee

#285: Coping With VM and Memory Mappings 1 of 11

Macintosh Technical Notes rll a eee

places data into a corresponding physical address. NuBus hardware, however, does not use the
MMU’s address mapping tables. If your driver passes along a logical address from the Memory
Manager, the frame grabber does not know to translate it (indeed it cannot), and the logical address
is interpreted as a physical address. External hardware may dump a beautiful captured image well
outside your carefully allocated handle and perhaps right across the top of MacsBug and other
similarly important things. Bugs like this are extremely difficult to isolate unless you understand
their behavior and anticipate them.

The point is, now you must be sure to always convert logical addresses to corresponding physical
addresses before passing them to any alternate bus master. A new function to support this is
Get Physical, which is documented in Jnside Macintosh, Volume VI. “Great,” you say, once

you’ve read the documentation. “But Get Physical is a System Software 7.0 feature and a
Virtual Memory feature to boot. What do I do for System 6.0.x or if I’m not running VM?”

I’m glad you asked, because VM and the memory architecture of the Macintosh IIci are related
topics. GetPhysical, a routine required by the IIci, is one of a suite of functions dispatched by
a trap called MemoryDispatch ($A05C), which is the same trap used by the major VM calls.

Because some machines require Get Physical even without VM, those machines have a limited

form of MemoryDispatch implemented in ROM.

You can call GetPhysical under System 6.0.x or under System 7.0 even when VM is not

running—all you must do first is check to see that the MemoryDispatch trap is implemented.

If this trap is implemented, it is there for a reason, and you should use it. Although

GetPhysical is present only for certain machines without VM, it is present and required for all

machines running VM. If you update your code to be compatible with the IIci and IIsi in the 6.0.x

world, you are already doing part of what is required to be compatible with Virtual Memory and

System Software 7.0.

Holding and Locking Memory Versus Locking Handles

Virtual Memory introduces two new concepts—holding and locking a range of virtual memory.

These are not to be confused with locking a handle. Locking a handle prevents the handle from

changing its logical address during Memory Manager operations. Holding and locking virtual

memory affects how VM deals with arbitrary ranges of memory during paging operations.

Holding and locking memory (as opposed to a handle) are VM functions exclusively and are

accomplished with four new _MemoryDispatch routines: HoldMemory and LockMemory,

and the corresponding routines to undo these operations, UnholdMemory and UnlockMemory.

Pay special attention any time you hold or lock a range of memory that you subsequently unhold or

unlock the same range. Every single call to HoldMemory or LockMemory must be balanced by

a corresponding UnholdMemory or UnlockMemory because the operating system supports

multiple levels of locking and holding, much like it supports multiple levels of cursor obscuration

with ShowCursor and HideCursor.

Holding a range of memory guarantees that the data in that range is actually somewhere in physical

Macintosh RAM and that no paging activity is necessary to load it. This is critical for tasks which

run at interrupt time, since paging activity should not be initiated at interrupt time. VM is not

guaranteed to be reentrant, and because interrupts may occur in the middle of paging, any data

accessed by an interrupt handler should reside in a held block of memory. Only hold memory

which legitimately needs to be held though, because any memory which is held becomes ineligible

for paging. This reduces the space VM has to work with and may significantly impact system

performance. Some interrupt-time tasks are deferred by VM until paging is safe, so memory they

touch does not always have to be held. These tasks are called out below, in the section

“Compatibility With Other Device Drivers and Interrupt-Level Code.”

a ———

2 of 11 #285: Coping With VM and Memory Mappings

|

Developer Technical Support February 1991

Locking a range of memory is more severe than holding it. This not only forces the range to be

held resident in physical RAM, but also prevents its logical address from moving with respect to its

physical address. This is important for drivers which initiate DMA transactions, because there

must be a known, static relationship between logical and physical addresses for the duration of

such an operation. Part of the behavior of LockMemory is to make the associated memory non-

cachable which is important for DMA transfers.

Warning: Apple cannot make the point too strongly that memory should only be held

or locked when absolutely necessary, and only as long as necessary. It is

worth restating that the impact on performance can be significant or even

fatal in severe cases. It is a crime against the machine to hold or lock
memory unnecessarily. Failure to unhold or unlock memory previously
held or locked is most heinous.

In non-VM environments, there is no page swapping activity. This is similar to all of memory
being locked, except that caching is still enabled. Truly locked memory is neither cached nor
paged. If you are running System Software 7.0 with VM, you must explicitly lock a range of
memory with LockMemory before calling GetPhysical. You may only call GetPhysical
on a locked block of virtual memory, or you get an error, since, among other reasons, any paging
activity could invalidate the results of aGet Physical call. Although it is not necessary to call
LockMemory before Get Physical if VM is not running, LockMemory may still be used for
its favorable effect of disabling caching. This Note includes a code template (located at the end)
which illustrates a “way rad” method to implement driver calls to a generic NuBus master card. It
doesn’t even have to know if VM is running. Hardware and drivers should be designed to support
this method for maximum VM friendliness.

There is one more VM routine of interest, LockMemoryContiguous, which is provided to
assist developers whose DMA hardware is not capable of transferring blocks of arbitrary size or
for some other reason cannot use a generalized algorithm such as the one provided. Apple can
only warn developers that LockMemoryCont iguous is potentially an expensive operation in
terms of performance and is one very likely to fail since contiguous physical memory may be
difficult, if not impossible, to find. LockMemoryCont iguous is not particularly useful, unless
VM is running, should a range of memory happen to cross a physical discontinuity like that found
on a Macintosh IIci. No hardware or software product should require VM in order to run.
LockMemoryContiguous might be useful for determining whether a range of logical memory
is actually physically contiguous, although Get Physical can do the same thing without actually
locking the memory.

Apple’s primary recommendation regarding LockMemoryCont iguous is to avoid its use if at
all possible. If you must use LockMemoryCont iguous, Apple recommends that you allocate
your buffer as early as possible (preferably at startup) and lock it down contiguously at that time.
VM is an entropic system, meaning its pages tend to become shuffled over time, so it’s easiest to
find contiguous memory early in a session.

When to Call?

HoldMemory

* Before taking control of the SCSI bus.
¢ Before accessing memory at interrupt time.
* To keep critical ranges of memory resident for performance reasons.

eee

#285: Coping With VM and Memory Mappings 3 of 11

Macintosh Technical Notes

LockMemory

¢ Rarely. (Always UnlockMemory as soon as possible.)
* Before calling GetPhysical.
¢ Before initiating a DMA transfer.

LockMemoryContiguous

¢ Never, if you can help it. (If necessary, do so as early as possible—see text above).

When Not to Call?

HoldMemory

* To keep large ranges of memory resident for performance reasons.

LockMemory

* Before dereferencing a handle. (LockMemory should not be confused with _HLock.)

¢ When you really mean HoldMemory.

What Form Of Address To Pass?

All_MemoryDispatch routines described above work as expected in either 24-bit mode or 32-

bit mode. In 24-bit mode, for instance, master pointer flags or other garbage bits in the high-order

eight bits are ignored and taken to be zero. When switching between 24-bit and 32-bit modes,

remember to use_StripAddress as outlined in Technical Note #213, _StripAddress: The

Untold Story.

Special Considerations

The Get Physical call in ROM and system software currently supports only logical RAM. This

excludes the ROM, I/O, and NuBus spaces from the set of addresses Get Physical knows how

to translate. Unfortunately, machines like the Macintosh IIci and Macintosh IIsi use the MMU to

map a small amount of physical memory into NuBus space so that it looks like a regular video

card. Ideally one might like to use Get Physical to get the actual RAM address of the video

buffer (to provide DMA support for certain multimedia products and graphics accelerators), but the

current ROM implementation of Get Physical returns a paramErr (-50) in response to logical

NuBus addresses.

Because its ROM is derived from that of the Macintosh IIci, the Macintosh LC may appear to have

_MemoryDispatch implemented. This doesn’t make sense, however, because the LC has no

MMU. Although System Software 7.0 patches MemoryDispatch in this case to make it

unimplemented, PrimaryInit code and SCSI drivers which run before system patches are installed

could be affected. Code running at this time should qualify the existence of MemoryDispatch

with the existence of an MMU, using Gestalt.

In order to solve both of these problems as cleanly as possible, the MPW libraries contain an

enhanced version of Get Physical with greater flexibility than the ROM version.” Although the

* At this writing, the enhanced Get Physical code has not yet been incorporated into beta versions of the System

7.0 interface libraries. This code will be made available at the earliest opportunity and this Note will be revised to

indicate its availability. If you need Get Physical to operate on RAM-based video buffers or you need to call

NN

4 of 11 #285: Coping With VM and Memory Mappings

Developer Technical Support February 1991

enhanced version is the same as the ROM version in most cases, it provides extra validation checks
to guarantee stability before system patches are installed, and it applies alternate mechanisms to
determine the physical address of a RAM-based video buffer. You should therefore call
GetPhysical where it is indicated, even for address spaces where the ROM version is known to
return an error. The glue code may pick up the slack or a future ROM might not return an error.
In any case, your code should always be prepared to cope with any of the Get Physical error
results documented in /nside Macintosh. Remember always to call LockMemory before calling
GetPhysical, and UnlockMemory as soon as possible afterwards.

VM Compatibility

Compatibility With Accelerator Upgrades

The burden of compatibility has long been on the shoulders of accelerator manufacturers. VM may
present some additional compatibility challenges for these manufacturers.

Virtual Memory requires services which are not present in the ROMs of 68000-based machines, so
VM is not supported by the Macintosh SE, even one with a 68030 accelerator. The same is true of
the Macintosh Plus, the Macintosh Classic, and the Macintosh Portable. There is no guarantee that
these older machines will ever be able to support VM. For practical reasons, Apple has chosen not
to implement VM in a wholly ROM-independent manner. In the foreseeable future, only machines
in which Apple intended to include memory management units can support Virtual Memory.
Machines never intended to include an MMU do not have all the ROM code required by VM.

Virtual Memory depends on low-memory globals to indicate the presence of a memory
management unit at a very early stage of the boot process. In some cases, the low-memory globals
are not properly set by the boot code in ROM if the hardware features of an accelerator are
significantly different from those of the stock Macintosh. The most likely problems are exhibited
by 68000 Macintoshes, 68020 Macintoshes with 68030 accelerators, and Macintoshes with 68040
accelerators. There is third-party virtual memory software which provides much of the VM
functionality of System Software 7.0, and which is also compatible with accelerator products. In
some cases this software may be bundled with the accelerator.

Apple is not saying that VM does not work with any accelerator, but rather that the System 7.0
implementation of Virtual Memory in general does not support accelerators. Some accelerator
products may work or may be modified to work. Apple simply does not guarantee that any
particular accelerator product works with VM.

Compatibility With Removable Media

Obviously it would be a disaster if a user ejected the cartridge containing his backing store (paged
out memory) and handed it to a coworker to take home. This would be much worse than giving
away a floppy, to be faced with the “Please insert the disk...” alert. Someone would actually have
part of the computer’s memory in his briefcase—try to type Command-period and get out of that
one. To guard against this possibility, ejectable media are not permitted to host the VM backing
store. Users of removable cartridge drives are not wholly excluded, however. The driver
software for such a drive may impose software interlocks to prevent ejection and indicate in the
drive queue that the cartridge is nonejectable. VM accepts any sufficiently large, block oriented
device as long as it is not ejectable.

a

GetPhysical as part of a PrimaryInit or SCSI driver initialization, you should be certain to take defensive
measures against the special cases described above.
eee

#285: Coping With VM and Memory Mappings 5 of 11

|
|

Macintosh Technical Notes

Compatibility With SCSI Code

Virtual Memory introduces new requirements for some SCSI hard disk drivers. Users of Apple
hard disks may need to update their drivers with a System Software 7.0-compatible Apple HD SC
Setup application. Third-party hard disk drivers may also need to be updated. It is up to these
third parties to determine what enhancements, if any, are required for their drivers and to provide
updates to their customers if necessary.

For SCSI disk driver developers, one requirement for VM compatibility may be summarized as
follows (special thanks to Andy Gong for the detailed analysis):

On System 6.0.x and earlier, all calls to the SCSI disk driver came from the file
system. This being true, and the file system being single-threaded, only one SCSI
disk driver would be called at any one time. Virtual Memory changes this scenario
because it makes calls to the driver directly, avoiding the file system. This implies
the possibility of SCSI drivers being reentered.

For a SCSI driver to function correctly in the VM environment, the driver must
have complete driver data separation at least on a drive-by-drive basis. Such
separation makes the driver reentrant on a drive-by-drive basis. If the driver
supports multiple HFS partitions on the same physical drive, the driver must be
oy reentrant if any of the HFS partitions are to be used for the VM backing
ile.

All this means is that a driver which controls multiple drives or partitions must maintain separate

driver variables to reference each drive or partition. Otherwise, the state of a transaction to one

drive may be lost when the driver is reentered to service another drive. There is no problem with

reentrancy for drivers which control only a single drive or partition.

In many cases of SCSI code incompatibility, reentrancy is not the problem. This affects only the

small number of SCSI disk drivers which are designed to control multiple drives or partitions from

a single driver. A more common problem is caused by a page fault while the SCSI bus is busy.

Since VM depends on the SCSI bus to handle a page fault, a page fault is forbidden to happen

while the SCSI bus is busy. Code which uses the SCSI Manager needs in general to ensure that all

its code, buffers, and data structures (including TIBs) are held in real memory before taking

control of the bus.

In the normal course of events, the system heap is held in real memory. Other critical structures are

held for you automatically, like any range of memory passed to a Device Manager Read or

Write call in ioBuffer and ioReqCount. So if your SCSI code is written as a device

driver, and the buffer’s address and length are passed in the normal driver fashion, and if your

driver code and data structures are located in the system heap, you should be fully VM-compatible

already (as long as you only operate on one drive per driver).

If your SCSI code is not a standard Device Manager driver or if you reference buffers as

csParamsto Controlor Status calls, you'll need to do some extra work. Also, Apple

does not guarantee that the system heap will always be held for ever and ever, so if you come to

revise your driver you should seriously consider holding explicitly everything you touch while you

own the SCSI bus and everything you might knowingly touch at interrupt time; and of course you

should correspondingly unhold all these structures upon releasing the bus. Be a good citizen.

In addition to the requirement for reentrancy across drives served by a single driver, the driver for

a disk used as a backing store must load at the earliest possible opportunity. Drivers which defer

installation until INIT time are too late to be used by VM.

I

6 of 11 #285: Coping With VM and Memory Mappings

Developer Technical Support February 1991

Compatibility With Other Device Drivers and Interrupt-Level Code

The primary concern for device drivers is that they commonly run at interrupt time and it is
absolutely essential that interrupt-level code does not cause a page fault. To avoid this, drivers
should make certain that any data structures they keep or reference at interrupt time are held in
physical memory as described earlier. Locking the structures is typically not necessary except in
cases where alternate bus master hardware accesses those structures as well.

To improve performance and compatibility with existing software and drivers, the first release of
System Software 7.0 always holds the entire system heap in physical memory. No special
measures need be taken if your driver and its associated data structures are all installed in the
system heap. If your driver uses memory statically allocated above BufPtr, it may need to
explicitly hold the appropriate ranges of memory to avoid paging at interrupt time. Please be aware
that future versions of the Macintosh System Software may not hold all of the system heap
automatically and it is a good habit to hold explicitly memory you know you access at interrupt
time.

The Device Manager deals with Read and Write calls for you, and ensures that the buffers
specified for such calls are safe. However, if a buffer is passed asa csParamto Status or
_Control calls, the Device Manager cannot do anything about it. Buffers referenced this way
must be held explicitly if they are to be accessed by interrupt-level code.

Certain code types are always deferred until times when paging is safe, and as such don’t have to
be concerned about whether memory they touch is guaranteed to be held. Those code types
include Device Manager I/O completion routines, Time Manager tasks, VBL tasks, and slot VBL
tasks. The trade-off is in real-time performance. Clearly, since these tasks may be deferred, there
is an increased possibility of latency which may be unacceptable for some pseudo-real-time
applications. (The Macintosh has never supported true real-time processing.) An arbitrary
function which might cause a page fault at interrupt time can be deferred explicitly by calling it via
the trap DeferUserFn.

The DeferUserFn trap is asynchronous in nature, so subsequent code may be executed before
the deferred function completes. If the results of a deferred function are vital to the code which
follows, the deferred function needs to signal the calling code when it completes.

Apple Desktop Bus I/O requests are deferred until a time when paging is safe unless VM is certain
that all code and associated data structures are located in the system heap. This is required because
the ADB Manager normally processes incoming data at interrupt time and there is a potential for
page faults if the service routine code or other data structures are not held in real memory. The
only problem with this strategy is reduced performance for specialized ADB drivers which require
most of the ADB bandwidth and don’t live in the system heap. Nonetheless, it’s worth
mentioning.

One final note of interest pertains to a longstanding anomaly in the Device Manager. As it turns
out, when you make an asynchronous Open or_ Close call to a device driver, any completion
routine you supply is never called. Since Virtual Memory patches _Open and _ Close, and
generates an entry for the completion routine in the user function queue, the implication is that the
user functions are never executed and the queue may simply fill up. There is little reason to call
Openor Close asynchronously with a completion routine (it never would have amounted to
anything anyway), so the workaround is simple: don’t do it.

#285: Coping With VM and Memory Mappings 7 of 11

Macintosh Technical Notes

Compatibility With the BufPtr Method of Static Allocation

Inside Macintosh, Volume IV describes, on page 257, a method of static allocation for resident
drivers or other data structures. This method has been very popular with a number of developers.
The main thing for developers to remember about this method in conjunction with VM is that
memory allocated in this way is not held in physical memory by default. It must be explicitly held,
unlike memory in the system heap which the operating system automatically holds, at least in the
first release of System Software 7.0.

When allocating memory above BufPtr, always use the equation defined in Inside Macintosh.
The actual configuration of memory at boot time is much more complicated than the illustration
indicates, especially with System Software 7.0 and VM. The System 7.0 boot code passes a
specially-conditioned version of MemTop to system extensions, which guarantees that the equation
has valid results. For this reason, do not use MemTop to determine the actual memory size of the

machine; use Gestalt instead. You may use MemTop to determine RAM size only if
_Gestalt is not implemented, and then only at INIT time. (Apple continues to point out that
good application software should not need to know this information except under extremely rare
circumstances.)

Due to the way memory is organized with VM in 24-bit addressing, you may not be able to achieve
nearly as much memory above BufPtr as you would think possible for a given virtual memory
size. This is due to the possibility of VM fragmentation, which is discussed later. Without VM,
the available space above BufPtr is generally somewhat less than half the amount of memory
installed in the machine. With 24-bit VM, the available space may be significantly less, and is
probably far less than one half of the virtual memory size. The “conditioning” of the MemTop
variable takes this into account.

Compatibility With 32-Bit Addressing

To make the most valuable use of Virtual Memory, 32-bit addressing is extremely important.
Needless to say, it is critical that all developers test their applications, drivers, and all other types of
code extensively under System 7.0 while running 32-bit addressing—both with and without VM.

Four megabit SIMMs are becoming less and less expensive, and the day is not far off when
machines with at least 16 MB will be common. Correct behavior with 32-bit addressing is critical
to the acceptance of both System 7.0 and developer applications. It is not acceptable to ask users
to reboot with 24-bit addressing in order to use your hardware or software. For a few classes of
applications it may be necessary to turn VM off in order to run efficiently, but VM should not
prevent an application from running at all. Be sure to include a 'SIZE' resource in your
application. It should proclaim your 32-bit compatibility to the world, not to mention the Finder.

User Tips and Helpful Hints for Living With VM

Apple suggests that Virtual Memory runs more efficiently with at least four megabytes of physical
RAM. Although System Software 7.0 runs on two-megabyte systems, using VM on such a
system may result in unacceptable paging performance and hard disk thrashing. After holding the
system heap and other RAM which must remain resident, there is simply not enough room left for
efficient paging. Fortunately, with the recommended four or five megabytes, most users should be
able to run arbitrarily large virtual memory environments, with little or no annoyance from paging
delays and limited primarily by the sacrifice in disk space.

Virtual Memory trades virtual RAM size for some degree of performance. VM users should be

aware that VM is not always a viable alternative to physical RAM. For example, an application

which makes heavy use of an entire 8 MB partition for image processing may execute very

8 of 11 #285: Coping With VM and Memory Mappings

Developer Technical Support February 1991

sluggishly on a machine with only 4 MB of real RAM. (The benefit of VM in this case that such

an application runs at all on a machine with limited RAM.) On the other hand, the same machine

may concurrently run six or seven different megabyte-plus applications with little or no appreciable

performance degradation except when switching among them. (This is where VM really shines.)

Performance is determined by virtual RAM size versus physical RAM size with the memory access

dynamics of each application thrown in as a wild card. Each VM user will find a combination of

settings which he or she finds most comfortable.

A Special Note Regarding 24-Bit VM

Some machines in the installed base are capable of running VM, but do not have 32-bit clean

ROMs and must run with 24-bit addressing. What this means to users who want to run VM is that

they can only take advantage of 14 MB of virtual memory. That’s all there is room for in a 24-bit

address map. More likely the limit is 12 or 13 MB because every installed NuBus card eliminates

1 MB of virtual RAM address space. (The way VM increases RAM size with 24-bit addressing

is—more or less—by making each unused NuBus slot look like a 1 MB RAM card and making

ROM and each installed NuBus card look like a nonrelocatable 1 MB application partition.)

You can be a real friend to the Process Manager (formerly known as MultiFinder) by taking care in
which slots you install NuBus expansion cards: ROM always occupies one megabyte at $800000,
limiting the largest contiguous block of virtual memory to somewhat less than eight megabytes.
The balance may be in a contiguous block as large as four or five megabytes unless it is fragmented
by a poor selection of slots for expansion cards. Best results are achieved by placing all expansion
cards in consecutive slots at either end of the bus—this has the effect of collecting all the
immovable one megabyte rocks into a single pile where one is less likely to trip over them.
Haphazard placement of NuBus cards may generate a number of one or two megabyte islands
interspersed throughout the upper portion of the virtual memory space, and that does not help to
run more applications or to manipulate larger objects.

In machines with fewer than six NuBus slots, recall that one “end” of the bus is actually in the
middle of the slot address space. In a Macintosh IIcx, slots are numbered $9 through $B.
Expansion cards should be installed from the lowest-numbered slot up (contiguous with the ROM)
to avoid fragmentation. In a Macintosh IIci, slots are numbered $C through $E. This poses a
greater problem. Due to the RAM-based video in virtual slot $B, it is nearly impossible to avoid
some degree of fragmentation when using the built-in video option. When not using this option,
installing NuBus cards from the highest-numbered slot down (at the end of memory) is the best
course. Fortunately, the IIci ROM supports 32-bit addressing. In 32-bit addressing VM, none of
this discussion applies. Virtual Memory and NuBus do not share space in the 32-bit address map.

A Template for GetPhysical Usage

A great deal of the justification for this code may be inferred from the code itself and the comments
within. The basic rules are all covered in the previous text, but the simmered-down algorithm sans
error handling is this:

See if there is _MemoryDispatch;
If there is MemoryDispatch:

LockMemory the interesting range of memory;
If the memory is locked:

Loop:

Call Get Physical on memory;
Loop:

eee

#285: Coping With VM and Memory Mappings 9 of 11

Macintosh Technical Notes

___Process a physical block;
_ _Until all physical blocks have been processed;

Until all memory is translated;
UnlockMemory the interestin f : See y g range of memory;

— Process the block of memory the way you used to;
nd.

PROGRAM GetPhysicalUsage;

USES Types, Traps,Memory,

Utilities; { see DTS sample code for TrapAvailable }

{In beta versions of the 7.0 interfaces, also use VMCalls, now in Memory. }

CONST

kTestHandleSize = $100000;

VAR

aHandle : Handle;

aPtr : Por;

aHandleSize: LongInt;

hasGetPhysical: Boolean;

lockOK : Boolean;

vmErr : OSErr;

table : LogicalToPhysicalTable;

physicalEntryCount: LongInt;

index : Integer;

PROCEDURE SendDMACmd(addr: Ptr; count: LongInt);

BEGIN

{ this is where you would probably make a driver call to }

{ initiate DMA from a NuBus master or similar hardware }

END;

BEGIN

aHandle := NewHandle(kTestHandleSize);

IF aHandle <> NIL THEN BEGIN

MoveHHi (aHandle) ;

HLock (aHandle) ;

aPtr := aHandle”’;

aHandleSize := GetHandleSize(aHandle);

hasGetPhysical := TrapAvailable(_MemoryDispatch) ;

{ if GetPhysical is available it should always be used }

{ without it, DMA fails on IIci and many later machines }

IF hasGetPhysical THEN BEGIN

{ must lock range before calling GetPhysical }

{ Call LockMemoryContiguous instead of LockMemory if a single physical }

{ block is required, but beware! This is inefficient and failure-prone! }

vmErr := LockMemory {Contiguous} (aPtr,aHandleSize) ;

lockOK := (vmErr = noErr);

IF NOT lockOK THEN BEGIN

{ handle LockMemory error indicated by vmErr }

END;

IF lockOK THEN BEGIN

table.logical.address := aPtr;

table.logical.count := aHandleSize;

vmErr := noErr;

WHILE (vmErr = noErr) & (table.logical.count <> 0) DO BEGIN

physicalEntryCount := SizeOf(table) DIV SizeOf (MemoryBlock) - 1;

{ this makes it easier to change "table" to include more }

a

10 of 11 #285: Coping With VM and Memory Mappings

Developer Technical Support
February 1991

{ MemoryBlocks -- defaultPhysicalEntryCount is a suggestion }

vmErr 3= Get Physical (table, physicalEntryCount) ;

{ GetPhysical returns in physicalEntryCount the number }

{ of physical entries actually used in the address table }

IF vmErr = noErr THEN BEGIN

FOR index := 0 TO (physicalEntryCount - 1) DO

WITH table DO

SendDMACmd (physical [index] .address, physical [index] .count) ;

END

ELSE BEGIN

{ handle GetPhysical error indicated by vmErr }

{ loop will terminate unless vmErr is negated }

END;

END;

{ always unlock any range you lock! }

IF Boolean (UnlockMemory(aPtr,aHandleSize)) THEN; { ignore UnlockMemory err }

END;

END

ELSE

{ no GetPhysical, life is bliss }

{ remember how easy this used to be before GetPhysical? }

SendDMACmd (aPtr, aHandleSize) ;

END;

END.

Further Reference:
¢ Inside Macintosh, Volume I], Memory Manager
¢ Inside Macintosh, Volume IV, Initialization Resources
¢ Inside Macintosh, Volume VI, Compatibility Guidelines
¢ Inside Macintosh, Volume V1, Memory Management
* Technical Note #213, StripAddress: The Untold Story
¢ Technical Note #261, Cache As Cache Can

NuBus is a trademark of Texas Instruments
THINK is a trademark of Symantec Corporation

eee

#285: Coping With VM and Memory Mappings 11 of 11

4 Macintosh @
Technical Notes :

Developer Technical Support

#286: The Serial General-Purpose Input (GPi)

Written by: Craig Prouse February 1991

This Technical Note discusses the latest supported methods for reading, validating, and
configuring the GPi serial input across all members of the Macintosh family.

GPi is a software-configurable serial input present on some machines. It is located at pin 7 on the
DIN-8 serial connectors, and connects to the DCD input of the Z8530 Serial Communications
Controller (SCC). Because DCD is monopolized by the mouse on the Macintosh Plus, GPi is not
implemented on that machine. Other machines which do not support GPi include the Macintosh
Classic and Macintosh LC. On these machines, pins 7 of the DIN-8 serial connectors are not
connected.

Reading GPi (The Easy Part)

A number of developers currently make use of the GPi input on the serial ports of the Macintosh
SE, Macintosh II, and Portable families. It’s a handy feature and DTS regularly receives the
question of how to read this input. The code required is actually quite simple, assuming all the
proper hardware support is in place. As stated previously, some Macintosh models do not support
GPi. For those machines which do support GPi and for which the SCC chip is directly accessible,
the following code reads the state of GPi.

movea (SCCRd) .w, a0 + best place to get address of SCC RRO
move.b aCtl(a0),d0 # modem port--use bCtl for printer port
btst #3,d0 + GPi comes in DCD input--bit 3 of SCC RRO
beq @GPi0d

GPil :

GPid

This is currently the only way to determine the state of the GPi serial input. There is no support
for this signal in the Serial Driver. If the SCC is not directly accessible, then neither is GPi. To
determine if the SCC is accessible, check with Gestalt. If an SCC exists but is not accessible,
_Gestalt claims that there is no SCC.

Validating and Configuring GPi (A Little Bit Harder)

To aid application developers in determining whether a machine supports GPi,a_ Gestalt
selector is available in System 6.0.7 and later. This selector is fully documented in Inside
Macintosh, Volume VI, and specifies (a) whether GPi is supported on port A, (b) whether GPi is
ee on port B, and (c) whether GPi may be used as a clock input for synchronous modems
on port A.

There is another new call which developers can use to configure GPiA as an external clock.
Previously, developers had to manipulate a bit in VIA1 to enable or disable external clocking on
this pin. Unfortunately, there has always been some ambiguity about the sense of this bit (the SE

EES

#286: The Serial General-Purpose Input (GPi) 1 of 3

Macintosh Technical Notes

uses the opposite sense of the Macintosh II) and the VIA bit is not present at all on the Macintosh
Ilfx—see Technical Note #271, Macintosh IIfx: The Inside Story. The friendly way to configure
GPiA uses _HwPriv selector 7, as documented in that Technical Note.

MPW has never defined a high-level calling interface to this particular trap macro, and no glue has
ever been available for Pascal and C programmers. Until this is remedied, the following inline
glue fills in quite nicely:

FUNCTION SwapSerialClock (clock, portID: Integer) : Integer;

INLINE $205F, $7007, $A198, $6B02, $3008, $3E80;

pascal short SwapSerialClock (short clock, short portID) =

{

Ox205F, 0x7007, OxA198, Ox6BO02, 0x3008, Ox3E80

}

For the normal 3.672 MHz internal serial clock, pass $0000 in the clock parameter. For
external clocking provided at the GPiA pin, pass $0001 in the clock parameter. Other clock
sources are theoretically possible, so use only one of these two values.

Only one value is currently supported for the port ID parameter, and that is the Serial Driver
enumerated constant sPortA. If necessary, this constant must be casted to type short or

coerced to type Integer, according to the terminology of your development language.

If an error results, SwapSerialClock returns a negative number, otherwise it returns the
previous GPiA configuration which is a non-negative number. This makes it convenient to save
and restore the original state.

SwapSerialClock works with system software back to 6.0.5, although it does not achieve the
desired results on the Macintosh IIfx. In fact, it may crash. This is a problem which is addressed
in System Software 7.0. All the features described in this Note are technically new features for
System 7.0, but Apple encourages developers to employ them if necessary (and available) in
6.0.x-compatible applications and suggest to their customers to use the latest available system
software to obtain maximum benefit from these types of applications.

The following code fragment shows how to use these new features without explicitly depending
upon specific system software versions. It assumes only that the Gestalt trap is implemented
or emulated by MPW glue (which is already available). It is not necessarily possible to trap the
error of calling SwapSerialClock ona Macintosh IIfx with pre-7.0 software. It is best to
avoid executing this code at all on such a configuration or else risk a system crash.

PROGRAM SerialClock;

USES Types, GestaltEqu, Serial;

CONST

internalClock = 0; { convenient constants for SwapSerialClock }

externalClock = 1;

VAR

gestErr : OSErr;

hasGPiAClk : Boolean;

oldClockMode: Integer;

result : LongInt;

FUNCTION SwapSerialClock(clock,portID: Integer): Integer;

INLINE $205F,$7007,$A198,$6B02,$3008,$3E80;

{ this could be supported in a future version of MPW }

2 of 3 #286: The Serial General-Purpose Input (GPi)

Developer Technical Support February 1991

BEGIN

gestErr := Gestalt (gestaltSerialAttr,result) ;

IF gestErr = noErr THEN BEGIN

hasGPiAClk := (band(result,bsl(1,gestaltHasGPIaToDCDa)) <> 0);

IF hasGPiAClk THEN BEGIN

{ SwapSerialClock is supported if gestaltHasGPIaToDCDa is supported }

{ it may experience difficulties with Mac IIfx and pre-7.0 systems... }

oldClockMode := SwapSerialClock (internalClock, Integer (sPortA));

IF oldClockMode < O THEN BEGIN

{ handle case of error setting the clock mode }

END;
END

ELSE BEGIN

{ handle case where there is no GPiA clock support }

END;

END

ELSE BEGIN

{ handle case where Gestalt doesn't know about serial attributes }

{ this usually means assume no support, or ask for later system... }

END;

END.

Further Reference:
e Inside Macintosh, Volume III, The Macintosh Hardware
* Inside Macintosh, Volume VI, Compatibility Guidelines
* Guide to the Macintosh Family Hardware, Serial I/O Ports
* Technical Note #129, _Gestalt & _SysEnvirons—A Never Ending Story
* Technical Note #271, Macintosh IIfx: The Inside Story
* Technical Manual: Z8530 SCC Serial Communications Controller (contact Zilog or AMD)

eee

#286: The Serial General-Purpose Input (GPi) 3 of 3

4 Macintosh 4
Technical Notes a‘

Developer Technical Support

#287: Hey Buddy, Can You Spare A Block?

Written by: Philip D. L. Koch, Jim Reekes, & Kenny Tung February 1991

This Technical Note discusses a new feature of the System Software 7.0 Disk Initialization
Package—bad block sparing.

Warning: _ Software that accesses blocks directly from the disk or makes assumptions
about the physical blocks of a device is, has always been, and will always
be, a compatibility risk. The format of the file directory is changing in
System Software 7.0 and additional changes being made to the Disk
Initialization Package will cause such software to fail.

Introduction

The Disk Initialization Package that is being shipped with System Software 7.0 contains a new
feature, bad block sparing. This new feature is done without modification to any disk drivers
and is independent of the device’s geometry. When the system finds bad blocks, it removes them
from the free storage pool so that the file system does not use them. This feature does not affect
any applications which use the normal HFS file system; the only expected impact of this feature is
for those applications which perform disk reads from or writes to the disk directly, like scavenger,
recovery, and floppy disk utilities.

The new feature of the new Disk Initialization Package maps any bad blocks found on any HFS
volume. This feature is valuable considering the number of blocks that are on a 800K or 1440K
floppy disk. If a single block is bad, the previous Disk Initialization Package would return an error
and the system would reject the entire disk. The new Disk Initialization Package may attempt to
map any bad block found on a non-Sony drive, but the probability is low that a newly formatted
SCSI drive has a bad block. If it were to have bad block remaining after its low-level format, then
there’s something wrong with the disk and it’s most likely a hardware problem. It is possible for a
volume to have encountered a bad block during normal use. These can be mapped out by going to
the Finder and choosing Erase Disk... from the Special menu, calling _DIBadMount, or calling
_DIZero. Calling DIFormat or_DIVerify does not call upon the sparing algorithm.

Note: When a user chooses Erase Disk... from the Special menu, the Finder calls
_DIBadMount with the error code in the evtMessage set tonoErr. This
causes the sequence of Disk Initialize dialogs to appear. Applications can call
DIBadMount to reformat a disk and ensure that bad blocks are spared. This is
abe Soe in the Disk Initialization Package chapter of Jnside Macintosh,
olume VI.

The sequence of events after calling DIBadMount is as follows. _DIBadMount issues a call
to the disk driver to perform the low-level format of the disk. This is a _Control call with
csCode = formatCc. Once the driver returns its result, _DIBadMount attempts to verify the

ae ae ee ee ee ee eee
#287: Hey Buddy, Can You Spare A Block? 10f4

Macintosh Technical Notes a

blocks on the disk. This becomes a_Cont ro] call to the driver with csCode = veri FYCE,
If the driver returns an error, then DIBadMount begins scanning the disk for bad blocks and
mapping them out. Afterwards, a directory is created and the volume information is written to the
disk. This completes the process of _DIBadMount.

The Disk Initialization Package does not perform the low-level formatting that is required by a
SCSI device or any other non-Sony drive. Generally SCSI drivers ignore these csCode values
mentioned above and return noErr. In retuming noErr, DIBadMount performs no bad
block sparing. Thus, it isn’t likely that sparing is used by DIBadMount ona non-Sony disk.
Such sparing is performed by the utility software supplied with the disk. Issuing the SCSI
Format command causes the drive controller to perform the low-level format and sparing of any
bad blocks in hardware. This is handled by the SCSI formatter software included with the hard
disk product. If any bad blocks are suspected on a SCSI device, it is recommended that users
format the disk with the supplied SCSI utility. Finally, good SCSI drivers map bad blocks
dynamically so that any bad block encountered during normal use is removed.

If an application calls_DIFormat directly, the Disk Initialization Packages performs no bad block
sparing. If the disk does contain bad blocks, the disk cannot be used. DIVerify is used to
verify if the disk contains any bad blocks. This disk may be used if these bad blocks are mapped
out. To do this, the application has to use either _DIBadMount or_DIZero.

The Algorithm

Disks that are error-free are initialized exactly as before. Only when the driver’s verify routine fails
during DIBadMount orif DIZero encounters bad blocks is the sparing algorithm invoked.
Sparing proceeds by making a second pass over the disk, writing and then reading back a test
pattern. Testing is done a single track at a time, as a compromise between speed and wasted space.
(Since it is impossible to determine the geometry of a SCSI drive, all disks larger than the Floppy
Disk High Density (FDHD) are tested at an assumed track size equal to the FDHD.) If there are
any errors or retries during a test, the sectors are deemed bad.

If more than 25% of the disk is found to contain bad blocks, if the I/O errors appear to be due to
hardware failure rather than media failure, or if certain critical sectors are bad (see below), then the
initialization fails as it would have without sparing. Otherwise, the blank HFS volume structure is
written to the disk. Because the sectors touched during this operation are included in the “critical”
list, no changes to the code which initializes the logical volume structure are required. After the
volume structure has been written, the Disk Initialization Package:

1. Removes the bad spots from the volume bitmap of available free storage.

2. Creates file extent descriptors for the bad spots and inserts them into the volume
extent B*-tree so that the free-space scavenging that takes place at volume mount
and by Disk First Aid do not attempt to reintroduce the bad spots into the free
storage pool. A reserved file ID (5) is used for these extents.

3. Sets a flag (hexadecimal 0200) in the HFS volume header attributes to provide a
canonic and simple way for applications to determine whether or not the disk has
been spared. The bad extents are described in the B*-tree with reserved file ID=5.

4. For 800K floppies only, the number of allocation blocks is reduced by one (from
1594 to 1593). This change is done to prevent previous Finders from doing disk-
to-disk copies physically (sector-by-sector), which would fail trying to copy the
bad blocks. The Finder does physical copies only on 1594 block disks as an
optimized method of disk copying.

cpa ia ape

2 of 4 #287: Hey Buddy, Can You Spare A Block?

(hp

1991
Developer Technical Support February

iti isk) i blocks, the The critical sectors (those that must be good even on a spared disk) include the boot ;

HFS master directory and spare master directory, the volume bitmap, and the initial extents for the

two HFS B*-trees. In practice, this means that the first 50 sectors and the second to the last sector

of a 1440K FDHD disk must be good. ;

As described later in this Note, the most error-prone region of a floppy disk seems to be the inner

tracks on side one (the bottom side), which, unfortunately, is where HFS keeps the alternate copy

of the Master Directory Block (MDB). The normal sparing logic rejects an entire track if any sector
on it is bad, but to improve the algorithm’s effectiveness, the algorithm has a special case for the
alternate MDB. Even if there is an error somewhere in the alternate MDB’s track, the algorithm
does not reject the disk if the sector it is on is useable. This means that with n sectors per track,
only about 1/n of the disks with damaged inner tracks are rejected by the sparing algorithm. On
FDHD disks n=18, so about 95% of the damaged disks can be initialized, assuming only one
sector on the track is bad.

Experience Has Shown

In the few weeks after the new Disk Initialization Package was written, Apple had the opportunity
to test it against roughly one hundred disks (both 800K and 1440K) that could not be formatted
with the standard Disk Initialization Package, or that had developed errors since being formatted.
Most of these were successfully spared using the new Disk Initialization Package.

Engineers noticed a trend in the small sample tested: errors on both 800K and 1440K disks are not
uniformly distributed across the media. By far the most common place for errors to occur is on
side one tracks 75-79, with the second most common place being tracks 0-3. Interior errors seem
to be rare. One explanation for the high proportion of errors on side one tracks 75-79 might be that
Apple now parks the heads over that area before ejecting a disk, so when a disk is inserted the
heads come down there, possibly touching and scraping the media. Side one is probably more
vulnerable both because the diameter of a given track is smaller on that side and because the head
faces up and therefore easily collects dust.

The Compatibility Risks

Applications that manipulate disks through the HFS documented routines (by far the vast majority
of applications) see no difference using spared disks. The only user-visible difference is that the
Disk Initialization dialog box shows an additional message (“Re-Verifying disk...”) while sparin g
an imperfect disk, and a spared disk has slightly less free space than an error-free disk. The
identified risks associated with sparing are due to the following:

1. Applications that directly manipulate the HFS volume structure (in particular the
extent B*-tree, volume bitmap, or the volume attributes field) need to be changed to
respect the bad spot extents. In particular, this includes disk utilities such as Disk
First Aid, that repair and reorganize HFS volumes. Note that these same
applications also need to be revised to correctly handle System Software 7.0
aliases. Apple has a version of Disk First Aid that supports both sparing and
aliases, and it ships as part of System Software 7.0.

2. Applications that physically access disks, sector by sector, do not work if the disk
contains a sector that has been spared. The best, and possibly only, examples of
this class of application are the disk duplicating utilities.

Eee

#287: Hey Buddy, Can You Spare A Block? 3 of 4

Macintosh Technical Notes

Conclusion

Unfortunately, the first and last tracks (the ones most likely to be bad) are also the very tracks that
are critical to the HFS layout and which, therefore, must be error-free. As a result, the sparing
algorithm is not as effective as it might be. To minimize this problem in the future, Apple intends
to change the parking space to which the Sony drivers move the heads before ejecting a disk, this
time from cylinder 79 to cylinder 40. Cylinder 40 is probably a slightly better choice, as the media
is more flexible at this point since it is farther from the rigid metal hub, yet it is far enough away
from the outer edge to avoid the problems experiences with cylinder 0. More importantly, though,
cylinder 40 does not cover any sectors that are critical to HFS.

The decision not to create a directory entry for the bad spot file has both advantages and
disadvantages. The major advantage is that logical operations such as directory enumerations and
file-by-file disk copies are completely unaware of the bad spots. Since Finder disk copies are file-
by-file, this is important. The major disadvantage is that Disk First Aid and other third-party disk
utilities do need to be upgraded to recognize and avoid the bad spots, even though they are not part
of a file. The required changes, which are very simple, have been incorporated into the System
Software 7.0 version of Disk First Aid.

Another, completely independent way to deal with imperfect media is at the driver and controller
level. If the driver reserved a few cylinders for revectoring bad tracks, it could present the
appearance of error-free media to its clients, including HFS and the Disk Initialization Package.
Most, if not all, hard disk drives already do this. This is a very attractive solution, because no
changes to higher-level software are required since the traditional Macintosh model of error-free
media is preserved. However, it is a much more difficult task to modify the several existing floppy
disk drivers (such as the 6502-based IIfx driver) than it was to enhance the Disk Initialization
Package. Also, there are major compatibility problems involved with driver-level solutions since
old drivers would not be able to correctly handle revectored tracks. Fortunately, this is not an
mutually-exclusive decision: the disk initialization algorithm described here does not prevent later
improvements to the drivers.

It should be noted that sparing in Disk Initialization Package does not address problems that occur
after a disk has been formatted. This class of dynamic errors is much harder to deal with, since
neither the Macintosh OS file system nor its clients are set up to handle such I/O errors gracefully,
if at all. On the other hand, many operating systems apparently spare only during initial
formatting. Media errors encountered during an I/O operation are handled by the driver code.

Further Reference:
¢ Inside Macintosh, Volume Ul, Disk Initialization Package
¢ MPW SonyEqu.a interface files

ee a ee ee ae ee

4 of 4 #287: Hey Buddy, Can You Spare A Block?

Macintosh Ss
Technical Notes a

Developer Technical Support

#288: NuBus Block Transfer Mode sResource Entries

Written by: Guillermo Ortiz February 1991

This Technical Note describes the sResource entries needed in a declaration ROM to inform

NuBus™ masters when a board is capable of receiving or sending block transfers.

Introduction

In addition to normal long word transfers, the NuBus specification defines a number of block
transfer transactions. In block mode transfers, the system arbitrates for the bus a single time and
then performs a group of consecutive long word transfers before releasing the bus. The reduction
in bus arbitration time can result in considerable gains in performance.

Currently, Macintoshes do not support block transfers to or from NuBus cards; however, in the
future, this might change. In addition, present NuBus cards can act as bus masters and initiate
card-to-card block transfers (e.g., 8°24 GC Card to 8°24 Display Card). The problem is that the
master needs to determine what block transfer capabilities a slave has (and future systems may
want to ascertain the same). This Note describes the mechanism that is to be used for NuBus cards
to register their block transfer capability.

This Note uses video boards as an example, but hardware developers should note that the same
principle applies to other types of NuBus boards (e.g., memory expansion, data acquisition, etc.).
Apple recommends reviewing the NuBus specification to clarify details about master transfers,
locked transfers, and block transfer sizes.

Give Or Take?

There are two long word sResource entries which define the block transfer capabilities of the
board or mode. The first describes general block transfer information and the second
describes the maximum number of transactions for locked transfers (if the board
supports them). If the entries specifying block transfer information are omitted, the master should
assume that the target board does not support block transfers and should not test for this capability
when the entries are not present. It is highly encouraged that new boards being developed do
include this information since future system software will most probably only use these entries to
decide if a board supports block transfers or not since any method of directly testing the board to
identify its capability is liable to cause data loss or weird behavior, including system crashes.

The second word is not necessary if the board or mode does not support locked transfers.

The NuBus specifications establish that when a slave board that does not support block transfers
Teceives such a request, it should terminate the first transfer with / ACK; boards that do not support
block transfers and do not implement an early /ACK block termination must have the sResource
block transfer information present with all the slave transfer size bits set to zero.

-_—_—_—— eee

#288: NuBus Block Transfer Mode sResource Entries 1 of 4

Macintosh Technical Notes

The format of the general block transfer information is a long word whose structure is as follows:

Master Word Slave Word

Transfer Size Transfer Size

Locked Transfer

Is Master Is Slave

Figure 1-General Block Transfer Information Long Word Format

The fields have the following meaning:

Field Meanin
Is Master 1 if board can initiate transactions (ORing of

Master Transfer Size bits)
Is Slave 1 if board can accept transactions (ORing of

Slave Transfer Size bits)
Transfer Size Each bit indicates the number of long words

per block transfer; bit set to 1 if the size is
supported

Locked Transfer 1 if board can initiate locked transfers
Format Reserved

Table 1-Descriptions Of General Block Information Fields

The Maximum Locked Transfer Count is a long word.

Maximum Transaction Size

Figure 2—Maximum Number Of Transactions Long Word Format

How Do You Define Them; Where Do They Go?

The block transfer capability long words are kept in a card’s declaration ROM. You can use
OSLstEntry (OffSet List Entry) macros to describe both block transfer capability long words.
The macro takes two arguments: the ID byte and a label designating the destination and uses them
to create a long word entry. The macro puts the first argument, the ID, as is, into the high byte,
and, with the second argument, calculates the 24-bit signed offset value to the destination label,
putting it into the next three bytes.

2 of 4 #288: NuBus Block Transfer Mode sResource Entries

Developer Technical Support February 1991

If the card can support all block transfers in all of the operation modes that it supports, the block
transfer capability entries are kept in one centralized place—the board sResource list. For
example, this is the way it is done on the Apple 8¢24 GC Display Card. When the board
sResource is used to store the entries, use these ID values for the general block transfer
information and maximum locked transfer count long words:

#20 = $14
#21 = $15

sBlockTransferInfo

sMaxLockedTransferCount

The following code fragment illustrates a board sResource case implementation:

_sRsrc_Board

OSLstEntry sRsrc_ Type, BoardType

OSLstEntry sRsrc_Name, BoardName

OSLstEntry sBlockTransferInfo, BTInfo

OSLstEntry sMaxBlockTransferCount, BTMaxCnt

DatLstEntry BoardId, BoardId

OSLstEntry PrimaryInit, sPInitRec

OSLstEntry VendorInfo, VendorInfo
OSLstEntry SecondaryInit, sSInitRec

OSLstEntry sRsrcVidNames, sVidNameDir

DatLstEntry EndOfList,0

_BTInfo
DC.L allBlockTransfers

_BTMaxCnt

DC.L maxLockedTransferCount

where, for example, all1BlockTransfers = $COOF800F and maxLockedTransferCount
= maximum transaction size. It is important to note that this value depends on the capabilities of
the board under consideration as indicated in the illustrations.

If the card only supports block transfer in some modes (specifically, screen depths in the case of
video boards), the information is placed in the sResource entries corresponding to those modes
(e.g., video sResource parameter lists) that support block transfers. This is the way it is done
on the Apple 824 Display Card, since it does not support block transfers in the 24-bpp mode or
any convoluted interlaced mode.

The Apple sResource ID numbers for this case are:

mBlockTransferInfo = #5 = $5
mMaxLockedTransferCount #6 = $6

The following code fragment illustrates one video parameter list within one sResource:

_EZ4u

OSLstEntry mVidParams, Parms
DatLstEntry mPageCnt, Pages

DatLstEntry mDevType, ClutType

OSLstEntry mBlockTransferInfo, BTInfo
DatLstEntry EndOfList,0

_BTInfo

DC.L allSlaveBlockSizes

where allSlaveBlockSizes = $0000800F. Note that the maximum block transfer count does
not need to be specified for slave devices, and for this reason it is not used in the example.

#288: NuBus Block Transfer Mode sResource Entries 30f4

Macintosh Technical Notes

Conclusion

Cards that support block transfers must use these sResource entries in their declaration ROMs to
allow other NuBus boards to utilize this capability thus improving compatibility and performance.

Further Reference:
¢ Designing Cards and Drivers for the Macintosh Family, Second Edition
¢ JEEE Standard for a Simple 32-Bit Backplane Bus: NuBus

NuBus is a trademark of Texas Instruments

4 of 4 : #288: NuBus Block Transfer Mode sResource Entries

4 Macintosh é
Technical Notes 3

Developer Technical Support

#289: Deaccelerated CopyBits & 8°24 GC QuickDraw

Written by: Guillermo A. Ortiz January 1991

This Technical Note discusses conditions that may cause _CopyBits to slow down when
QuickDraw acceleration is on via the Apple 8°24 GC Display Card.

Introduction

When a drawing call is issued, GC IPC (Interprocess Communication) takes control of the call and
passes it to GC QuickDraw. After the normal port set up (which involves caching the port
parameters if this is the first drawing call after the port was set), GC QuickDraw returns control to
the application through the IPC and performs, in parallel, the drawing to its own monitor as well as
any other monitors that may be affected by the operation. The application then continues its
execution, probably issuing more drawing calls that get executed in the same asynchronous
manner.

The result of this mode of operation is improved performance, since the application gets control
back immediately after issuing the call and the GC QuickDraw moves video data to its own video
buffer as well as that of other cards in a more rapid manner by using block transfers and without
requiring any action by the main processor.

_CopyBits Conforms To The Same Scheme, Except...

CopyBits conforms to the same operational scheme, but there are some instances in which GC
uickDraw cannot perform the call in parallel; in this cases it is even possible to suffer a

performance loss, since the whole call may have to be completed before control is given back to the
application and GC QuickDraw has to make calls and access data across the NuBus™.

The situations that compromise GC QuickDraw parallel operation are as follows:

¢ When the destination device has a SearchProc installed and the source color
environment is different from the destination environment.

QuickDraw calls a SearchProc whenever the source and destination have
different depths and when two indexed pixel maps have different color tables, even
though their depths may be identical. When GC acceleration is enabled, these
conditions cause the following two types of behavior, dependent upon the source
pixel map:

eee

#289: Deaccelerated _CopyBits & 8°24 GC QuickDraw - 1 of 2

Macintosh Technical Notes a

¢ If the source is an indexed pixel map, then GC QuickDraw executes
the part of the setup that involves calling the SearchProc, returns
control to the main processor, then completes the call in parallel.
The act of calling the SearchProc before returning control makes
the call slower than when no SearchProc is involved, since
parallel operation does not occur throughout the whole call.

* If the source is a direct RGB pixel map, then GC QuickDraw has to
call the SearchProc for every pixel that is drawn, and the
application does not regain control until after the call to CopyBits
has been completed. 7

* When the source or destination is offscreen and not created using a GWor1d.

GC QuickDraw has no way to detect when an application is going to manipulate a
pixel map it has created in memory, so if it has to draw to or copy from such a
PixMap, GC QuickDraw has to complete the operation before returning control to
the application.

This behavior is contrary to the case when using a GWorld for offscreen
environments, since in the case of a GWor1d, GC QuickDraw is alerted by the call
to_GetPixBaseAddr that the application is getting ready to directly change the
pixels. This is the reason why it is so important that applications call
_GetPixBaseAddr every time they are about to manipulate a GWorld pixel
map directly.

¢ When the source PixMap has a color table that uses indexes that refer to a palette.

QuickDraw now allows a color table to have indexes that point to entries in the
palette associated with the destination window; when bit 14 in the ct Flags field is
set, the value fields in the color table are treated as palette entries. When such a
PixMap is the source for_CopyBits, then GC QuickDraw has to make a
number of calls to the Palette Manager as part of the setup before returning control
and completing the call.

This case is similar to that of a indexed pixel map when a SearchProc is
involved; therefore, it only implies a partial loss of parallelism; it is good to keep in
mind that this case can only occur when the source PixMap is indexed.

Further Reference:
¢ Inside Macintosh, Volumes V & VI, Color QuickDraw

develop, “Macintosh Display Card 8°24 GC: The Naked Truth,” July 1990.
Technical Note #275, 32-Bit QuickDraw: Version 1.2 Features
Developer Notes for the Macintosh Display Cards 4*8, 8°24 and 8¢24 GC (APDA,
MO8STLL/A)

eee

NuBus is a trademark of Texas Instruments.

2 of 2 #289: Deaccelerated _CopyBits & 8°24 GC QuickDraw

ff ™

4
Macintosh &

Technical Notes m

Developer Technical Support

#290: Custom WDEF and wDraw

Written by: Vincent Lo February 1991

This Technical Note explains why custom window definition functions may not respond to a
wDraw message from the system (if you follow the documentation in /nside Macintosh).

Problem & Solution:

Inside Macintosh, Volume I-299, documents the declaration of the window definition function
(WDEF) as follows:

FUNCTION MyWindow(varCode: INTEGER; theWindow: WindowPtr; message:

INTEGER; param: LONGINT) : LONGINT;

On the first examination of the parameters, one may assume param always contains a long value;
however, when the system is calling the WDEF with message = wDraw, it only stores a short
value in param without clearing the high-order word of param. If the high-order word contains
any value other than zero, the content of param is different from what the WDEF expects.

For the custom WDFEF to work correctly, it should use only the low-order word of param when
message = wDraw.

Note: This problem exists in all systems up to and including System Software 7.0. The
suggested fix is valid for all of these systems.

eee

#290: Custom WDEF and wDraw 1 of 1

4
Macintosh é

Technical Notes °

Developer Technical Support

#291: CMOS On Macintosh LC PDS

Written by: Paul Baker & Rich Collyer February 1991

This Technical Note provides PDS card developers with some important information about making

PDS cards for the Macintosh LC.

Due to the way the Macintosh LC was designed, Apple strongly recommends that all PDS cards be
developed with CMOS parts.

Why?

Apple recommends using CMOS parts because of the way the timing works inside the V8 ASIC.
When a CPU access to VIA1 takes place at exactly the same time as a VRAM transfer cycle, the
LS245 buffers between the memory bus and the processor bus are disabled three clocks before the
end of the CPU cycle. Since all the parts on the bus are CMOS, even though the bus is not driven,
it does not return wrong data because bus capacitance keeps the bus in the correct state.

If an expansion card is added to the system, and that expansion card uses a TTL buffer, the load
caused by the TTL part can cause the bus to discharge, resulting in wrong read data. If expansion
cards are built using CMOS buffers or CMOS ASICs, then these problems are avoided and all are
happy.

Solution

Therefore, all expansion cards for the Macintosh LC should have CMOS drivers on the high byte
of the data bus. This can be done either by using a CMOS buffer, such as a 74ACT245, or by
driving the bus directly from a CMOS gate array. Since this only shows up when the CPU is
accessing VIA1 at the same time as a video refresh happens, it does not show up frequently. For
this reason, it would be a good idea to test any system with a new I/O card by writing a tight loop
that reads VIA1 and verifies correct data over a several second period. This would ensure that the
data bus is not being discharged by the expansion card.

_— eee

#291: CMOS On Macintosh LC PDS lof 1

4

@.

Developer Technical Support

Macintosh
Technical Notes

#292: Bus Error Handlers

Revised by: Colleen K. Delgadillo May 1992

Written by: | Wayne Meretsky and Rich Collyer February 1991

This Technical Note discusses bus errors and how applications and drivers should deal with them.

Changes since February 1991: Discussion of why declaration ROMs are necessary in

NuBus™ design. This discussion is important for those who are considering using a workaround
instead of declaration ROMs. Also added are some hints that you should be aware of if you are
planning to write a bus error handler for the 040.

Introduction

Bus errors occur within Macintosh systems under a variety of circumstances: virtual memory page
faults, NuBus transfer acknowledgment other than complete (error, time-out, try-again-later),
SCSI blind transfer handshaking, and so on. At present, Apple has not documented a single model
for handling bus errors, and as a result, system software, applications, and device drivers use
various techniques that do not always work together and therefore compromise system integrity.
The following is the second revision of a definitive statement on bus errors and bus error handling.

What Is a Bus Error?

A bus error is an event that forces termination of a bus cycle. In some cases the processor takes no
programmer-visible actions, as may happen if a prefetching bus cycle results in a bus error but the
prefetched data is not executed, or as may happen during a cache fill burst. Typically, the
termination of a bus cycle by a bus error does result in the processor taking programmer-visible
actions. These actions, collectively called Bus Error Exception Processing, include termination of
the instruction that caused the bus error, creation of an exception stack frame on the appropriate
system stack, and transfer of control to the bus error handler designated by the current bus error
vector. Bus Error Exception Processing does not include the execution of the bus error handler.

The cause of bus errors is different on different members of the M68000 family. On all members
up to and including the MC68020, the only cause of bus errors is assertion of the /BERR signal
(note that the assertion of /BERR and /HALT indicates a bus retry operation, not a bus error). On
the MC68030, bus errors can be caused by either the assertion of the /BERR signal or by the
internal MMU during address translation. The MC68040 is similar to the MC68030, except that the
term bus error has been replaced with the term access error, and the signal /BERR has been
replaced with the signal /TEA (this Note uses pre-MC68040 terminology).

eee

#292: Bus Error Handlers 1 of 6

Macintosh Technical Notes

What Is a Bus Error Handler?

A bus error handler is the exception handler for the bus error exception and is designated by offset
$08 in the Exception Vector Table. The bus error handler is responsible for the recovery from the
conditions that led to the bus error. Depending on the cause of the bus error, recovery may be
either simple or extremely complex. In the case of a page fault, the recovery process entails loading
the desired page into physical memory and updating the MMU Page Tables. In the case of a
NuBus try-again-later acknowledgment, the recovery process is to simply retry the bus cycle that
caused the bus error.

From the processor’s perspective, there is, at any one time, only a single handler for all bus error
exceptions. That handler is the one designated by offset $08 in the Exception Vector Table.

From the system programmer’s perspective, there are many pieces of software that work in unison
and form the bus error handler. Each of these individual pieces exists in an ad hoc linked list called
the Bus Error Handler Chain and must follow certain installation, removal, and invocation rules to
ensure proper system behavior.

How Does the Bus Error Handler Chain Work?

The bus error handler chain is rooted in location $00000008. This location contains a 32-bit pointer
to the first handler. Each handler is responsible for maintaining the links in the chain. Invocation of
the bus error handler chain works in different ways depending on the absence or presence of
virtual memory (VM).

If VM is present, the processor’s VBR (vector base register) points to a special Exception Vector
Table which must never be modified. When a bus error occurs, the VM bus error handler is
invoked and determines whether or not the bus error is a page fault. If the bus error is a page fault,
VM takes the appropriate actions. If the bus error is not a page fault, VM invokes the first entry in
the bus error handler chain.

In non-VM systems, the VBR points directly to location $00000000; therefore, the first entry in the
bus error handler chain is invoked directly by the bus error exception processing performed by the
processor.

In either case, the techniques for installing and removing an entry in the chain are identical. The
only difference is that when VM is running it gets first crack at all bus errors.

What Is the Model for When Bus Errors Occur

... And Who Handles Them?

The only bus errors that are expected during execution of application or Toolbox code are caused
by virtual memory page faults (if VM is running). As a general rule applications and the Toolbox

should not be directly accessing hardware that can cause bus errors. There may be cases when

hardware diagnostic applications need to install a bus error handler, but these should be very rare

and they should follow the same guidelines that drivers must follow. The reason for this is that

MultiFinder does not switch the bus error vector, so during a minor switch there is no way to

know if the correct vector is in place. Applications should not install handlers into the bus error

handler chain because the Process Manager does not context switch entries in the chain during its

application-level context switches.

Wg ——

2 of 6 #292: Bus Error Handlers

Developer Technical Support May 1992

Certain parts of the operating system expect bus errors under infrequent and well-controlled

circumstances. Each of these managers installs its handler in the bus error handler chain before the

instructions that may cause bus errors and removes the handler after these instructions. The

managers that currently handle bus errors are as follows:

° The Memory Manager handles some of the bus errors that could arise if it is
passed corrupt handles or pointers.

° The SCSI Manager expects and handles bus errors relating to the Blind Transfer
handshake on machines that implement that mechanism.

° The Slot Manager expects and handles bus errors during its accesses to
configuration ROMs, because accesses to empty or nonexistent NuBus slots
generate bus errors.

The only nonsystem software that should attempt to handle bus errors are NuBus device drivers.
Typically, the only bus errors that happen during driver execution are those related to the device.
Because device drivers, DCEs, and heap space allocated by drivers are all supposed to be in the
system heap (which cannot be paged), no page fault bus errors should occur. I/O buffers that are
passed to drivers through normal Device Manger entry points cannot be paged BEFORE the Device
Manager hands the call off to the device driver. Drivers that access other memory in their caller’s
address space at interrupt level must cooperate with VM to ensure that those pages cannot be paged
prior to receiving any interrupt that may access them. Page faults are not allowed during device
driver interrupt handlers.

Adding Code to and Removing Code From the System Bus Error
Handler

The technique for a NuBus device driver to install code in the bus error handler chain is fairly
simple. Location $00000008 in the logical address space points to the first entry in the bus error
handler chain. The installer must save the current contents of location $00000008 and place the
address of its handler into location $00000008. To remove its code from the bus error handler
chain, a NuBus device driver should simply replace the old value that was saved from location
$00000008 during bus error handler installation.

When to Install Code to the System Bus Error Handler

A NuBus device driver should install a bus error handler around certain instructions or groups of
instructions that access the NuBus device and could generate bus errors. The handler should be
installed only when executing code that is part of the device driver. It is acceptable to enclose fairly
large loops with a single install and remove operation rather than have an install and remove
operation within the loop. It is not acceptable to install a handler when the driver is opened and
remove it when the driver is closed.

What Should a NuBus Device Driver’s Bus Error Handler Do?

First a word of caution regarding bus error handlers in general. The Exception Stack Frames
generated by different M68000 family members under a given condition are quite different.
Furthermore, the recovery mechanisms implemented by the handler must be fully aware of the
limitations of the processor’s RTE policy. For example, the MC68000 is not capable of finishing
an instruction that was terminated by a bus error; the MC68010, MC68020, and MC68030 finish
the instruction by resuming its execution at the point of termination; and the MC68040 can only

eee

#292: Bus Error Handlers 3 of 6

Macintosh Technical Notes

finish some instructions by restarting their execution. One must therefore be sure that their bus
error handler can handle any error that may occur on the '040. Techniques for writing bus error
handlers are not contained in this Note, which discusses only how to register your handler with the
system and how to pass along bus errors to other handlers in the chain.

The bus error handler must first ensure that the bus error is one that the bus error handler expects.
To do this it must inspect the Exception Stack Frame pushed onto the system stack by the
processor, for example by examining the PC or the Data Cycle Fault Address in the Exception
Stack Frame. Extra caution must be used when examining the PC value because the PC in the
Exception Stack Frame is not always the PC of the instruction that caused the bus error. This is
true for the '030 and on the '040 the PC in the Exception Stack Frame will almost never be the PC
for the instruction that caused the bus error. Due to caching on the '040, the instruction that caused
the error may have been sitting in the cache for a long time before it was executed. This makes it
hard to a cd tell where the error originated. (This type of exception is called a name imprecise
exception.

If the bus error is one that is expected by the bus error handler, it should cure the problem and
unwind. This can be done in any number of ways that are appropriate for the given driver and
device. On one end of the spectrum, the bus error handler may simply use an RTE instruction to
cause the bus cycle to be rerun whereas in other cases it may completely remove the Exception
Stack Frame from the stack and jump to some other point in the driver. Exiting a handler by doing
an RTE is not a good idea on the ‘040. You cannot ask the processor to rerun the faulted bus
cycle on the '040 as you can on the '030. Due to pipelining, you may end up jumpling to a point
in the driver where you were are not supposed to be.

If the bus error is one that is not expected by the bus error handler, then the course of action
depends on whether the bus error happened during execution of an interrupt handler or
noninterrupt-level code.

The noninterrupt-level bus error handling scheme requires that each driver’s bus error handler pass
the bus error exception along to its predecessor if it does not handle the bus error. This is
accomplished by restoring the machine to the exact state at the time the driver’s handler was
invoked and by jumping to the handler address that was in location $00000008 at the time the
handler was installed. The last handler in the chain is the system’s handler that generates a system
error from an unhandled bus error.

Interrupt-level bus error handling is rather different. These handlers should not chain to their
predecessor because noninterrupt-level bus error handlers may be context sensitive and possibly

nonreentrant. If a bus error happens at interrupt level in a given NuBus device driver’s interrupt

handler and that driver cannot handle the bus error, then the driver should call_SysErr and cause
the machine to crash. If a NuBus device driver’s interrupt handler causes a bus error and has not

installed a handler in the system chain, the results are unpredictable and that driver is in error.

Why Should I Have Declaration ROMs?

As explained earlier, certain parts of the operating system expect bus errors under infrequent and

well-controlled circumstances. One manager that currently handles bus errors is the Slot Manager.

The Slot Manager installs its handler in the bus error handler chain before the instructions, which

may cause bus errors, and removes the handler after these instructions. It expects and handles bus

errors during its accesses to declaration ROMs (also known as configuration ROMs), because

accesses to empty or nonexistent NuBus slots generate bus errors. The declaration ROM is an area

on a NuBus expansion card that contains firmware that identifies the card and its functions, and

allows the card to communicate with the computer through Slot Manager routines. However,

a

4 of 6 #292: Bus Error Handlers

Developer Technical Support May 1992

communication with the Slot Manager is possible only if you configure your card’s declaration

ROM firmware properly.

To individuals who are contemplating using a workaround instead of declaration ROMs in their

NuBus design: Don’t do this! First of all, your design will not conform to the Macintosh

implementation of the NuBus specifications. Second, it is very difficult to create a workaround for

handling bus errors since you will need to be able to handle any error that may be returned to you.

Lastly, bus error handlers will change in future versions of the Macintosh Operating System.

When this happens, a design without declaration ROMs will very likely become incompatible with

all Macintosh systems running the new software.

Creating a Workaround for Dealing With Bus Error Handlers

It can be very difficult to create a workaround for dealing with the bus error handler for all
machines, especially for systems that contain a 68040. One particular point about the ’040 is that
when you receive a bus error, any writebacks that you may receive will now be pending. Due to
the 040 pipeline and caches, when you receive a bus error there may be other writes waiting to be
completed that are unrelated to the faulted one. These writes are called writebacks since they
typically are cached in the data cache and may correspond logically to various instructions prior to
the faulted instruction. It is very important that the bus error handler be able to take care of this.
For an example of how MacsBug handles bus errors for the ’030, there is a code snippet available
on the Developer Essentials CD Series disc. There is no code available to describe how MacsBug
handles ’040 bus errors. The 040 is a much more complex machine. MacsBug handles bus errors
in a completely cursory fashion, so it never gets into the complexities on the ’040. Its only job is to
display the first error that occurred, based on the stack frame’s PC. Subsequent bus errors in the
frame will likely cause a crash (that is, a hung machine).

Because we are unable to provide sample code to demonstrate how MacsBug handles bus errors on
the °040, we have decided to go through all the complexities involved in creating a bus error
handler for an 040 machine. You will see why it is a sane idea to include declaration ROMs in a
NuBus design.

Getting a bus error handler installed is no real problem, but writing one to handle all CPUs is
difficult. The ’040 is particularly difficult since the handler must be able to resolve up to three
pending writes that may be in progress at the time the bus error is acknowledged. This imposes
many constraints on writing a bus error handler. If you have an init or a cdev, you can install a bus
error handler when you call the board to do whatever it does. (You should always remove the
handler, and not leave it installed, since that is likely to conflict with VM and the rest of the
System.) You cannot ask the processor to rerun the faulted bus cycle, as you can on the '030.
Your handler must repair the fault, emulate the access, and perform all writebacks. Performing the
writebacks can be quite complex depending on the type. Firstly, the access address may be either
physical or logical. This is dependent on VM. If you are running VM you will need to translate
the physical address to its logical addresses. Secondly, the access data may be either memory
aligned or register aligned. And lastly, performing a writeback may itself cause another bus error
which will require that your bus error handler be reentrant so that a fault from a writeback can be
handled. After handling the writebacks you will need to alter alter the PC so that you can properly
return and go on to the next instruction. The only problem here is how to find where the PC should
be reset to. The PC in the exception frame is for the instruction that was in progress at the time of
the fault, that is typically several instructions past the actual faulting instruction. Therefore there is
no way to restart the PC in a reasonable spot, since you cannot tell from the stack frame where the
instruction starts (in every case). Remember, you get bus errors in the middle of instructions that
can be many words long, and in the ’040 case, you can actually get bus errors for things for which

_ oo eeeeSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSeseeseee

#292: Bus Error Handlers 5 of 6

Macintosh Technical Notes

you do not have a PC. Such a case is presumably rare, but if you do not handle it you will geta
further crash. It is possible to put in some heuristic method, but that will fail occasionally.

As you can see, it would be very difficult to create a workaround for dealing with the bus error
handler for the 040. The best thing to do is avoid the need for a handler by including declaration
ROMs in your NuBus design.

Debugging Hints for Writing a Bus Error Handler for the °040

If you have read the above information and still insist on writing your own bus error handler, the
following are some final debugging hints that will help you out.

If you want to have first crack at bus errors, be sure to turn VM off. A ’020, ’030, and ’040
machine has a VBR that points to the exception vectors and it is always active. On processor reset,
the VBR is initialized to $0000 0000. The Macintosh Operating System will leave the VBR at $0. It
may be changed by VM, debuggers, or any system code that wants to set up its own exception
vector table at some other address. If VM is present, the VBR points to a special Exception Vector
Table. When a bus error occurs, the VM bus error handler is invoked. (This is described in greater
detail earlier in this Note.) The 68000, on the other hand, has no VBR. All of its exception vectors
are always located at address $0.

Second, most of the problems we have seen have been cache related. The fundamental difference
between the 040 and the ’030 is the ’040 caches. An instruction cache exists that may read in your
code and cause it to run much faster than you intended it to. Therefore, if you are going to be using
time-dependent code, be sure to turn the instruction cache off (using the Memory cdev or the

_HwPriv trap).

Lastly, when you’re having a hard time finding what is going wrong, you may want to use a RAM

stuffing routine that takes pertinent numbers and puts them away for you to view later. This would

be the best way to see whether your bus error handler is working correctly (for example, to see

whether the VBR is pointing to the correct spot in the exception vector table, and so on).

Further Reference:
¢ MC68030 User's Manual
¢ MC68040 User’s Manual

NuBus™ is a trademark of Texas Instruments.

I

6 of 6
#292: Bus Error Handlers

4
Macintosh &

Technical Notes -

Developer Technical Support

#293: Most Excellent CD Notes

Written by: James Beninghaus February 1991

This Technical Note discusses issues concerning the use of the AppleCD SC drive, the Apple CD-
ROM device driver, and the Foreign File Access software extension.

Multiple CD-ROM Drives

Your application can get access to the driver by calling the Device Manager routine
_OpenDriver:

osErr = OpenDriver("\p.AppleCD", &ioRefNum) ;

OpenDriver returns the driver reference number for the AppleCD SC drive with the lowest
SCSI bus number, and this is okay if you are going to control only one AppleCD SC drive. If you
want to control or access more than one drive, you must compute the driver reference number
yourself. You can use the following formula to compute SCSI driver reference numbers:

(32) & SCSI ID). = J

The following code demonstrates how to open any AppleCD SC drive connected to a Macintosh.
OpencCb takes a logical CD drive number, not a SCSI ID, as the input parameter CDDrive. A
logical CD drive number of one refers to the AppleCD SC drive with the lowest SCSI ID
connected to the Macintosh.

typedef struct WholIsThereRec {

ParamBlockHeader

short ioRefNum;

short csCode;

struct {

Byte fill;

Byte SCSIMask;

} csParam;

} WhoIsThereRec;

OSErr OpenCD (Byte CDDrive, short *ioRefNum) {

auto OSErr osErr;

auto short ioRefNumTemp;
auto short CDDriveCount;
auto short SCSIID;

auto WhoIsThereRec *pb;

pb = (WhoIsThereRec *) NewPtrClear (sizeof (*pb));
osErr = MemError();
if (0 != pb && noErr == osErr) {

osErr = OpenDriver("\p.AppleCD", &ioRefNumTemp) ;
if (noErr == osErr) {

eee

#293: Most Excellent CD Notes 1 of 4

III TD II OO

Macintosh Technical Notes a

(*pb) .ioRefNum = ioRefNumTemp;
(*pb) .csCode = csWhoIsThere;
osErr = PBStatus ((ParmBlkPtr) pb, false);
if (noErr == osErr) {

CDDriveCount = 0;
WI for (SCSIID = 0; SCSIID < 7; ++SCSIID) {

if (BitTst (& (*pb) .csParam.SCSIMask, 7-SCSIID)) {
++CDDriveCount;
if (CDDrive == CDDriveCount) {

xioRefNum = -(32 + SCSIID) - 1;
DisposPtr((Ptr) pb);
return noErr;

}

}
osErr = paramErr;

}

}
DisposPtr((Ptr) pb);

}

return osErr;

Device Manager Routines and Parameter Blocks

The Apple CD-ROM driver does not conform to the design criteria of the Device Manager, so do
not use high-level Device Manager calls, because they do not work. Mistakenly, status calls are
used to change control settings of the device, and control calls are used to get status information of
the drive. The high-level Cont rol and Status calls do not anticipate this implementation and
simply do not work; instead, use the low-level PBControl and PBStatus calls for all access
to the drive. ~ i.

Zero parameter blocks before using them. The unused bytes of the parameter blocks must be set to
zero before you can use the parameter block in_PBControl or_PBStatus calls to the driver.
Failure to zero the blocks results in the Device Manager calls returning an unexpected ioResult
of paramErr (-50).

Binary Coded Decimal

The AppleCD SC driver communicates track numbers and absolute-minutes-seconds-frame
addresses in what is known as Binary Coded Decimal (BCD) format. In BCD, every four bits are
used to represent one decimal digit. When working with the AppleCD SC, the BCD values are
only up to two digits in length, “99” tops. Table 1 illustrates some possible values and their
representation in 2’s compliment and Binary Coded Decimal form.

BCD Value 2’s Compliment
Hex Binary Hex Binary
0x01 00000001 1 0x01 00000001
0x09 00001001 9 0x09 00001001
0x10 00010000 10 Ox0A 00001010
0x80 10000000 80 0x50 01010000
0x99 10011001 99 0x63 01100011

Table 1-BCD and 2? Compliment Value Comparison

2 of 4 #293: Most Excellent CD Notes

pe ppo February 1991 Developer Technical Support

? : f the digit in the To convert from a 2’s Compliment number to a BCD number, take the value o igit i

ten’s place, store it in the fefinost four bits of a byte, then add to it the value of the digit in the

one’s place.

Byte Decimal2BCD(Byte n) {

return ((n / 10) << 4) + (n % 10);

}

Converting from BCD to decimal requires multiplying the value in the leftmost four bits by 10 and
adding the value of rightmost four bits to the result.

Byte BCD2Decimal (Byte n) {

return ((n >> 4) * 10) + (n & OxOf);

}

Block Addresses

Physical blocks on a Compact Disc are defined as being 2K bytes in size. Since the Macintosh
operating system likes to work in 512-byte blocks, it sets the logical block size to 512 bytes. If
you assume 2K blocks when using block addresses, you get into trouble. If you are going to
access the drive using logical block addressing, either change the block size back to 2K or be sure
the formula you use in conversion from an absolute-minutes-seconds-frames address to a logical-
block address takes this difference into account.

Foreign File Access And The 'sysz' Resource

Large capacity ISO and High Sierra format discs can overload the default memory limits of Apple’s
current external file system software, Foreign File Access. (This is not a problem for HFS-
formatted CD-ROM discs, since the File Manager deals directly with native volumes, bypassing
the Foreign File Access software.)

Since unused memory reserved by Foreign File Access at INIT time cannot be reclaimed, Apple
limited the amount of memory that is available to Foreign File Access. The Foreign File Access
file contains a 'sysz' resource that reserves 71, 680 bytes in the system heap. If the 'sysz' is
too small discs do not mount, but if it is too big it wastes precious memory. Using the default
'sysz' value, Foreign File Access cannot handle a CD-ROM with an extremely large number of
files and directories. In addition, with multiple AppleCD SC drives connected, Foreign File
Access may run out of memory if multiple ISO or High Sierra CD-ROM discs are mounted.

= ba
Apple CD-ROM Foreign File Aces

Audio CD Access High Sierra File Access ISO 9660 File Access

Figure 1-Apple CD-ROM Driver and Foreign File Access Software

Using ResEdit, you can experiment by changing the 'sysz' resource to find the optimal value for .
your disc’s requirements. To avoid wasting valuable space in the System heap, increase this value

#293: Most Excellent CD Notes
3 of 4

Macintosh Technical Notes eee

incrementally until your disc mounts (after you reboot, of course). Asking your users to understand ResEdit or perform this operation is asking a bit much, so following is code upon which you could base a simple application to change the 'sysz' value automatically for them. Remember that this application would need to be shipped separately (i.e., it is not accessible from the CD-ROM if the CD-ROM cannot be mounted).

This code assumes the creator and file type of the Foreign File Access file to be ufox and INIT respectively. It prompts the user to locate Foreign File Access using the Standard File Package
routine SFGetFile. This example does not allow the ' sysz' value to be made smaller than Apple’s default setting.

Note: You should not assume that Foreign File Access can be found in the System Folder;
the Foreign File Access software resides in the Extensions folder when running
System Software 7.0. Give the user the opportunity to find the file using a
standard file dialog box.

char *prompt = "Find 'Foreign File Access'";
Pascal Boolean FilterProc(HParmBlkPtr paramBlk) {
return 'ufox' == (*paramBlk) .fileParam.ioFlFndrinfo.fdCreator ? false : true;
}

OSErr Modify sysz(long size) {
auto OSErr osErr;

auto SFReply reply;

auto Point where;

auto OSType type;

auto short resRefNum;

auto long =*9yn2;

osErr = noErr;

SetPt(é&where, 100, 100);

type = 'INIT';

SFGetFile(where, prompt, FilterProc, 1, &type, nil, &reply);

if (reply.good) {

resRefNum = OpenRFPerm(reply.fName, reply.vRefNum, fsRdWrPerm);

osErr = ResError();

if (-1 != resRefNum) {

sysz = (long **) GetlResource('sysz', 0);

osErr = ResError();

if (nil != sysz) {

if (0x00011800 < size) {

**sysz = size;

ChangedResource((Handle) sysz);

osErr = ResError();

}

}

CloseResFile(resRefNum) ;

}
}
return osErr;

Mixing Data and Audio

Any time the System, Finder, an application, or another code resource (e.g., XCMDs) accesses a
disc, any sound being played from the disc is interrupted.

Further Reference: ad
e AppleCD SC Developers Guide, Revised Edition

4 of 4 #293: Most Excellent CD Notes

a Macintosh 4
Technical Notes S.

Developer Technical Support

#294: Me And My pldle Proc (or how to let users know
what’s going on during print time...)

Written by: Pete “Luke” Alexander April 1991

This Technical Note discusses how to defensively program a pldle procedure to work with the
majority of print drivers in existence today, and how to install it at print time.

Introduction

When using a pldle procedure at print time, there are a few things that one should remember to be
compatible with the printer drivers that are available today. This Technical Note discusses
installing a pIdle procedure at the right time and the things to remember when writing one.

Installing The pIdle Proc

Let's start by installing the pIdle procedure at the right time. You must install your pIdle procedure
into the print record before calling PrOpenDoc. If you do not install your plIdle procedure before
your call to PrOpenDoc, the printer driver does not give the application's pIdle procedure any
time. The following code fragments demonstrate installing the pIdle procedure in the right place:

MPW Pascal
<< more print loop would appear above, see Tech Note #161 for details >>

{** Install a pointer to your pIdle proc into your print record. **}

PrintingStatusDialog := GetNewDialog(257, NIL, POINTER(-1));
thePrRecHdl**.prJob.pIdleProc := @checkMyPrintDialogButton;

thePrPort := PrOpenDoc(thePrRecHdl, NIL, NIL);

<< more print loop would follow below, see Tech Note #161 for details >>

MPW C
<< more print loop would appear above, see Tech Note #161 for details >>

/** Install a pointer to your pIdle proc into your print record, **/

PrintingStatusDialog = GetNewDialog(257, nil, (WindowPtr) -1);
(**thePrRecHd1l) .prJob.pIdleProc = checkMyPrintDialogButton;

thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);

<< more print loop would follow below, see Tech Note #161 for details >>

eee

#294: Me And My pldle Proc (or how to let users know what’s going on during print time...) 1 of 3

Macintosh Technical Notes

For a complete printing loop that handles errors at print time and makes all of the right calls to the
Printing Manager, refer to Technical Note #161, A Print Loop That Cares...

Things To Remember About pIdle Procedures

It is extremely important to design and code your pldle procedure as defensively as possible,

thereby making sure that it works with as many printer drivers as possible. This section details a

few things to remember when creating pIdle procedures.

Saving And Restoring The Current Port

It is extremely important to save the printer driver’s GrafPort, upon entry to your pldle

procedure and restore it upon exit. Why? If you do not, the printer driver would draw into the

GrafPort of your dialog box instead of it's GrafPort , which will cause some bad results. To

save the printer’s GrafPort, you should call__GetPort when entering your procedure. Before

you exit your procedure, you would call_SetPort to set the port from your dialog box back to

the printer driver’s GrafPort (i.e., the one you saved with _GetPort).

Saving And Restoring The Printer Driver’s Resources

If the application changes the resource chain within it's pIdle procedure, you want to save and

restore the printer driver’s resource chain. Why? Some printer drivers assume that their resource

chain does not change, but this may not be true when the driver calls the pldle procedure installed

by the application at print time. To accomplish this task, call_CurResFile, saving the ID of the

printer driver’s resource file at the beginning of your pldle procedure. When you exit from your

pldle procedure, restore the resource chain back to the printer driver’s resource chain with a call to

_UseResFile.

At this point, you might be wondering what might change the resource chain. If you called

_OpenResFile or _UseResFile (anything that would change the value of the low memory global

TopMapHdl) within the application's pldle procedure, the chain would be changed. If you are not

changing the resource chain, these calls would not be needed.

Handling Errors From Within A pIdle Procedure

You should avoid calling PrError within your pldle procedure; errors that occur while it is

executing are usually temporary, and serve only as internal flags for communication within the

printer driver—they are not intended for the application. If you absolutely must call PrError

within your idle procedure, and an error occurs, never abort printing within the idle procedure

itself. Wait until the last called printing procedure returns, then check to see if the error still

remains. Attempting to abort printing within an idle procedure is a guarantee of certain death.

Canceling Or Pausing The Printing Process

If you install a procedure for handling requests to cancel printing, with an option to pause the

printing process, beware of timeout problems when printing to the LaserWriter. Communication

between the Macintosh and the LaserWriter must be maintained to prevent a job or a wait timeout.

If there is not any communication for a period of time (over two minutes), the printer times out and

the print job terminates due to a wait timeout. Or, if the print job requires more than three minutes

to print, the print job terminates due to a job timeout. Since, there is not a good method to

determine to what type of printer an application is printing, it is probably a good idea to document

the possibility of a LaserWriter timing out for a user who chooses to select “pause” for over two

minutes.

A

2 of 3 #294: Me And My pldle Proc (or how to let users know what’s going on during print time...)

Developer Technical Support April 1991

Some Printer Drivers Do Not Support pIdle Procedures

Some printer drivers do not support pIdle procedures, as they prefer to handle the pIdle procedure
in their own manner without giving an application’s pIdle procedure any time. This situation
should not be a problem as long as you do not assume that your pIdle procedure is always called at
print time. Therefore, you should only create your pIdle procedure to display the dialog box and
respond to a user pausing, continuing, or canceling a print job.

Conclusion

When installing your pldle proc, it must be installed before the application calls PrOpenDoc. You
want to make sure that you save and restore the GrafPort , upon entry and exit of your pldle
procedure, to make sure that the printer driver will image into the correct port during the print job.
Finally, if you are changing the resource chain by calling _OpenResFile or _UseResFlle, you want
to make sure that you save and restore the resource chain.

Further Reference:
* Inside Macintosh, Volume II, The Printing Manager
* Technical Note #161, A Print Loop That Cares...

eee

#294: Me And My pldle Proc (or how to let users know what’s going on during print time...) 3 of 3

4
Macintosh ¢

Technical Notes 2

Developer Technical Support

#295: Feeder Fodder

Written by: Zz Zimmerman April 1991

This Technical Note discusses the new Feeder button available in the 6.1, and 7.0 versions of the
LaserWriter driver. This Feeder button mechanism allows developers to insert code into the
LaserWriter driver to support a sheet feeder connected to a LaserWriter. This Note provides a
description of the button, as well as information required to implement one.

Introduction

The LaserWriter driver now implements a standard method for handling sheet feeders. Most
LaserWriter sheet feeders need a way to present a user with a dialog as well as a way to
download the PostScript® code necessary to control the feeder. In the past, most manufacturers
resorted to modifying the LaserWriter driver’s code resources; however, this functionality is now
possible without the need to patch existing resources in the driver—by adding three new
resources.

When the LaserWriter driver notices these three special resources in its resource fork, it displays
a Feeder button in the lower right corner of the Print dialog box. It is important to note that this
feature is not provided for general application use, but rather only for developers of sheet feeders
and other LaserWriter add-on devices. The button is always labeled Feeder, and there can be
only one set of Feeder resources in the LaserWriter driver. Because of this restriction, you
should not attempt to use this feature to implement anything other than a sheet feeder.

The first special resource contains code to implement the user interface of the feeder, and the
other two contain the PostScript code required to drive the feeder. When an application calls the
LaserWriter driver to display the Print dialog box, the driver looks for three resources of type
'feed' and displays the Feeder button in the lower right corner of the dialog box if they are
found. If no 'feed' resources are available, it does not display the Feeder button.

When a user selects Print, the driver displays the standard Print dialog box with the Feeder
button. If a user clicks on the Feeder button, the driver displays a dialog box in front of the Print
dialog box, which allows the user to configure the feeder, then returns to the Print dialog box
once the user confirms or cancels the feeder configuration. This feeder dialog box should not
contain an option to print, as this could override choices made in the standard Print dialog box.

Implementation

To handle interaction with the user, you must install a resource of type 'feed' (ID = -8192)
into the LaserWriter driver with the code required to manage the dialog box. Like all Printing
Manager code resources, this resource begins with a jump table, followed by the actual code.
The code is implemented as a procedure that is passed a single parameter. This parameter is a
eS

#295: Feeder Fodder 1 of 6

Macintosh Technical Notes

rectangle defining the page size selected by the user. This page size is equivalent to the rPaper
rectangle in the print record, meaning it defines the actual page size, not just the printable area.
The rectangle is expressed in 72 dpi coordinates and has a negative origin.

Go Ahead and Jump

The jump table consists of a 68000 JMP instruction that jumps to the proper offset in the

resource. In this case, there is only one routine, so the code starts immediately following the

jump table. To make this step automatic, the jump table is created using a small assembly

language header:

IMPORT Feeder ; Feeder is NOT defined here...

Start MAIN EXPORT ; This is the main entry point for the linker.

JMP Feeder ; The one jump table entry in this table.

END

This example first imports the Feeder procedure, which can be defined externally in the

language of your choice. Next is Start, the main entry point to the jump table. By passing this

label to the link command, the jump table is located at the beginning of the resource. The next

line is the actual jump table entry, and the END is required to end the assembly-language header.

That’s all there is to it. The only thing one should have to change in this code fragment would be

the name of the routine to import.

The Real MacCode

Now that the jump table is complete, it needs some place to jump. Although MPW C and Pascal

examples are provided in this Note, the code can be written in any language. As mentioned

before, the code is implemented as a procedure that takes one parameter.

C Definition

In C, this looks like:

#include <Types.h>

#include <Quickdraw.h>

void FEEDER (Rect *r)

{
<Code to present and handle dialog...>

}

Since the assembler converts all labels to uppercase, the name of the procedure FEEDER must be

capitalized to match the case of the label in the jump table. If you are using MPW, you can use

the assembler's CASE directive to prevent the assembler from capitalizing the labels. Since the

rectangle is passed using the C calling convention (i.e., the caller strips the parameter), there is

no need to declare the procedure as type Pascal. However, this convention does make things a

little more interesting for the Pascal version:

 ————

2 of 6
#295: Feeder Fodder

Developer Technical Support April 1991

Pascal Definition

If you are using MPW, you can use the Pascal compiler's C directive to define the Feeder
procedure as using the C calling convention. This makes the definition look like this:

UNIT FeederSample;

INTERFACE

USES Types, Quickdraw;

PROCEDURE Feeder(r: Rect); C;

IMPLEMENTATION

PROCEDURE Feeder(r: Rect);

BEGIN

<Code to present and handle dialog...>
END;

END.

So this is straight forward. The procedure Feeder is defined as having one parameter (r), and the
C directive is used so that the stack is handled correctly.

If you are using some other development environment that doesn't support the C directive, you
have to do a little more work, making the definition look like this:

UNIT FeederSample;

INTERFACE

USES Types, Quickdraw;

PROCEDURE Feeder;

IMPLEMENTATION

FUNCTION StealRectalParam: Rect;

INLINE $2EAE, 0008; { MOVE.L 8(A6),(A7) }

PROCEDURE Feeder;

VAR

B ea Rect;

BEGIN

r := StealRectalParam;

<Code to present and handle dialog...>

END;

END.

First of all, a unit is defined, and the proper interfaces are included. The definition of the
Feeder procedure in the INTERFACE section is required to make the label available to external
modules. In the IMPLEMENTATION section, one starts with the StealRectalParam
function, which is used to get the rectangle passed by the Printing Manager without actually
removing it from the stack. If you declared the rectangle as a parameter to the Feeder
procedure, Feeder would remove the parameter before returning, then when the caller tried to
remove the parameter again, the stack would be invalid and would cause a crash.

To solve this problem, define the Feeder procedure with no parameters. This way, the
Feeder procedure leaves the parameter right where the caller left it. To get the parameter
without removing it from the stack, use the StealRectalParam function, which moves the
parameter from its normal location (off of A6é) into the location pointed to by the stack pointer.
Since StealRectalParam is a function, the stack pointer is already pointing to the return

— Eee

#295: Feeder Fodder 3 of 6

Macintosh Technical Notes

value. When StealRectalParanm returns, the Feeder routine gets the rectangle parameter,
without having removed it from the stack.

Tickled Link

Now you have the jump table and the code, but you still need to link them together. This step is

pretty simple, but remember to specify the starting location of the jump table. It looks like the

following:

Link -w -t feed -c ZzZz -rt feed=-8192 -m START -sg Feeder 0
Feeder.a.o 0 # This file MUST be first.
Feeder.p.o @
"{Libraries}"Runtime.o @
"{Libraries}"Interface.o 0
"{PLibraries}"SANELib.o @
"{PLibraries}"PasLib.o @
-o Feeder

First tell the linker to link the code into a 'feed' resource with an ID of -8192. Next, specify

that the resource begins with the code at label START. This label was defined by the assembly-

language used to generate the jump table. Finally, tell the linker to link all of the code into a

single segment named Feeder. Obviously, the list of libraries and object files changes

depending upon the language used, but the directives to the Link command should remain the

same.

Well Fed

So that should be enough to get some code into the 'feed' resource. Now you need to actually

control the feeder during the print job. To do this, you must use PostScript. Your driver should

also provide a 'feed' resource of -8191 containing PostScript code. This code is downloaded

by the LaserWriter driver prior to downloading the rest of the job. For those familiar with the

‘PREC! 103 resource, the PostScript in the 'feed' resource is downloaded before the

'PREC! 103 code. Additional PostScript to be downloaded can be stored in 'feed' -8190.

The PostScript code in the 'feed' resource should redefine (i.e., patch) the PostScript operators

required to handle switching feeders. A likely candidate is the showpage operator called at the

end of each page. As always, calling or redefining operators defined by the LaserPrep (md)

dictionary is not supported. If your device is connected via the LaserWriter’s serial port, you can

license code from Adobe Systems, Inc. that makes it possible to access the serial port while the

LaserWriter is connected over AppleTalk. For more information, contact Adobe at:

Adobe Systems, Inc.
1585 Charleston Road
Mountain View, CA 94043
(415) 961-4400

Once a user has confirmed the configuration from the dialog box, you can edit the PostScript

code in the -8191 resource to reflect the choices made. However, when MultiFinder is active,

you cannot add or change the size of resources in the LaserWriter driver. For this reason, you

should pad the 'feed' -8191 resource to the maximum size. This padding can be done by

adding spaces at the end. If you later need to resize the resource, you can simply overwrite some

of the spaces. For more information on printer drivers under MultiFinder, see the Learning to

Drive document, which is part of “Developer Essentials,” and is available on AppleLink, the

Apple FTP site, and the Developer CD Series.

re

4 of 6 #295: Feeder Fodder

Developer Technical Support April 1991

You probably need to provide other resources along with the 'feed' resources; for example,

you need 'DITL' and 'DLOG' resources for the dialog box. This is okay, but you should be

sure to pick unique resource types to avoid confusing the LaserWriter driver. In the case of a
Feeder button, you are a guest in someone else’s house. It would be wise to avoid rearranging
the furniture.

When the LaserWriter driver actually opens the connection to the printer, it looks for 'feed'
resources -8191 and -8190. If they exist, they are downloaded. For those familiar with the
"PREC' 103 method of downloading PostScript code (refer to Technical Note #192, Surprised
in LaserWriter 5.2 and Newer), the 'feed' resources are downloaded before the 'PREC' 103
resource. In the case of background printing, the resources are copied into the spool file. Since
'feed' resources -8191 and -8190 are automatically downloaded by the LaserWriter, they must
contain PostScript code. The format of these PostScript resources is a string of ASCII characters
without any length byte or terminator. The size of the string is determined by the size of the
resource; there are no special size restrictions on these resources, and their only requirement is
that they contain PostScript code. To make debugging easier, you should separate lines of
PostScript using a carriage return character (13 or $0D hex).

Don't Feed The Print Monster

One last important note concerns the 6.1 version of the LaserWriter driver, shipped on the
Macintosh Printing Tools disk included with the Personal LaserWriter LS and StyleWriter. In
this version of the driver, the Feeder button will only work when Background printing is
disabled. There is a problem with the driver finding the 'feed' resources when Background
printing is enabled. This problem has been solved in the 7.0 version of the driver which should
be used instead of the 6.1 driver as soon as it is available. Since there is no workaround for the
problem, you don't really have to do anything except for possibly noting it in your
documentation. Any note should recommend upgrading to the 7.0 version of the driver as soon
as possible.

Driving Miss Lasey

Now that you have the two or three 'feed' resources, the big question is installation. How
should you ship these things? There are two methods. The first method involves licensing the
LaserWriter driver from Apple Software Licensing (SW.License on AppleLink). This method is
only required for “turn-key” systems, where all installation is done for the user and you must
ship the LaserWriter driver as part of your product. The second method, which is by and large
preferred as it requires no licensing, is to ship your resources in an installer application. This
application simply opens the LaserWriter file and adds the necessary resources.

Conclusion

So this should be all the information you need to implement the feed resources for your device.
If you intend to drive a sheet feeder through the LaserWriter’s serial port, be sure to contact
Adobe Systems, Inc. for the most current implementation and licensing information. Although
the Feeder button could theoretically be used for other purposes, it will always be labeled
“Feeder” by the LaserWriter driver. Because of this consistency, developers should not attempt
to extend its functionality beyond support for sheet feeders.

Further Reference:

* PostScript Language Reference Manual, Adobe Systems Inc.

ee ee a ee a eee a ee

#295: Feeder Fodder 5 of 6

Macintosh Technical Notes

¢ Technical Note #192, Surprised in LaserWriter 5.2 and Newer

PostScript is a registered trademark of Adobe Systems Incorporated.

NN —
———

6 of 6
#295: Feeder Fodder

4
Macintosh *

Technical Notes .

Developer Technical Support

#296: The Lo Down on Dictionary Downloading

Written by: Zz Zimmerman April 1991

This technical note discusses a method for downloading PostScript dictionaries automatically
using the LaserWriter driver. It will also provide the format and use of the PREC(103) resource.
It will also describe some problems with the now obsolete PREC(201) resource. If you are using
PostScript dictionaries, or either of these resources, you should definitely read this note.

Introduction

Although many picture comments have been added to support the features of PostScript that are
missing from Quickdraw, many developers have still taken to sending PostScript directly from
their applications. As the use and complexity of this PostScript code increases, more and more
developers are finding it necessary to define and use their own PostScript dictionaries.
PostScript dictionaries are basically collections of variables and procedures that can be
predefined, and accessed later. They are used to prevent conflicts between the symbols used by
applications and those used by system software (such as the LaserWriter driver's LaserPrep
dictionary). Unfortunately, because of the LaserWriter drivers habit of using the PostScript 'save'
and 'restore' operators, there are problems with keeping a PostScript dictionary defined.
PostScript definitions made by code sent with the print job (ie. sent between the calls to
PrOpenPage/PrClosePage) will be lost the first time the LaserWriter driver calls 'restore'. There
are a couple of solutions to this problem, but one that hasn't been documented before involves the
use of the PREC(103) resource. If the LaserWriter driver finds a resource of type PREC with an
ID of 103, it will download the PostScript code to the LaserWriter before performing the initial
‘save’ operation. This means that any definitions made by the PostScript code stored in the
PREC(103) resource will remain defined for the duration of the print job, independent of the
LaserWriter driver's calls to save and restore.

Caveats

The PREC(103) method is a great way to get a dictionary downloaded at print time.
Unfortunately, this does not solve the problem for using dictionaries in export files like PICT. If
you insert PostScript code into Quickdraw pictures, the system is not smart enough to record the
PREC(103) code into the picture. Instead, you must record the dictionary using the standard
PostScript picture comments (defined in Technical Note #91, Optimizing for the LaserWriter—
PicComments). You should also use the appropriate PostScript structuring comments as defined
by the Adobe Document Structuring Conventions. If you use the Adobe comments correctly, an
application that is importing your picture will have the option of parsing for the procedure set
comments, and extracting the dictionary definition to be placed in a PREC(103) resource at print
time.

eee

#296: The Lo Down on Dictionary Downloading 1 of 3

Macintosh Technical Notes

The next Caveat concerns the use of multiple PREC(103) resources. At PrOpenDoc time, the
LaserWriter driver makes one GetResource call to load the resource of type PREC with an ID of
103. Because the call is a GetResource call (instead of Getl Resource), the PREC can be stored
in any open resource file. To avoid any conflicts, the resource should be stored in the resource
fork of your application, or in the document file that is referencing the PostScript dictionary.
Because the GetResource call is only made once, only the first PREC resource found by
GetResource will be used. Any other PREC(103) resources will be ignored. As long is this
resource is only used by applications, there is no problem since there can only be one application
active at any particular time. If the resource is used by other elements of the system (ie. desk
accessories, drivers, INITs), you can easily run into the problem of your PREC resource being
ignored. The best solution to this problem is to only use the resource from within an application.

Since the PREC(103) resource is considered part of the print job, the definitions it makes are lost
when the job ends (ie. when the LaserWriter receives EndOfFile from the Macintosh). Because

of this, the code you place in the PREC(103) resource should not attempt changing any persistent

parameters in the printer. The means avoiding the PostScript 'exitserver' operator. You should

also avoid calling other routines that reset the current state of the printer (ie. initclip, initgraphics,

etc.). Use of these operators will have a serious effect on Quickdraw operations that may be

present in the print job.

When the PREC(103) resource was originally introduced, it had a cousin called PREC(201).

PREC(201) was similar to the PREC(103) resource in that it allowed PostScript to be

downloaded to the printer before the actual print job. The difference between the two resources

was that the PREC(201) resource downloaded the PostScript code at the same time that it

downloaded the LaserPrep dictionary, outside of the PostScript 'server loop’. Because of this,

any definitions made by the code in the PREC(201) resource would remain after the current job.

Like the LaserPrep dictionary, the dictionary downloaded in PREC(201) would remain until the

LaserWriter was rebooted (ie. powered off then on again). Although this feature was useful in

some situations, it did have its problems. Not the least of which was the valuable printer

memory consumed by the dictionary that was downloaded. Since the dictionary remained after

the job that required it, subsequent jobs had less memory available to them. The only way to

reclaim the memory was to reboot the printer, and this was not obvious to naive users. The other

problem was introduced when background printing became available. With background printing

enabled, the LaserWriter driver could no longer count on the PREC(201) resource always being

available. Since you could no longer store the resource in the LaserWriter driver (because of the

LaserWriter driver being MultiFinder compatible - see Learning To Drive for more information),

it has to be stored in a separate resource file. This made it virtually impossible for the

LaserWriter driver to find the resource when it was required. For this reason, the PREC(201)

resource is only downloaded when background printing is turned off.

Needless to say, we don't recommend the use of features that only work in certain situations, so

the PREC(201) resource is now considered unsupported and obsolete. If you are using the

PREC(201) resource, you should be able to revise your application to use the PREC(103)

resource instead, with only a small performance penalty. On the bright side, the PREC(201)

resource will continue to be supported in the foreground through the 7.0 version of the

LaserWriter driver, and most likely, until the new printing architecture becomes available, giving

you plenty of time to revise...

Implementation

The PREC(103) resource can be implemented by simply creating the resource with ResEdit or

Rez, and then storing it in an open resource file at print time. In the case of ResEdit, you should

create a new resource of type PREC with an ID of 103. You should then open the new resource

NN:

2 of 3 #296: The Lo Down on Dictionary Downloading

Developer Technical Support April 1991

using the resource template for string (‘STR ') resources. You can then type your PostScript code
directly into the resource.

If you would rather keep your PREC definition as a Rez source file with the rest of your project,
you can do this by simply defining the PREC resource type at the top of the file, followed by an
instance of the PREC resource. Consider the following Rez source code:

/* First the resource type definition: */

type 'PREC' {
string;

};

/* Now the real resource definition: */

resource 'PREC' (103) {

"userdict /mydict 50 dict def";

};

We begin by defining the resource type as being a string. We then define an instance of the
resource with an ID of 103. Finally, we define the contents of the resource. The PostScript code
above basically defines a dictionary named mydict within the userdict dictionary. The mydict
dictionary is defined as having a maximum of 50 elements. Consult the PostScript Language
Reference Manual for more information concerning legal operations on dictionaries.

Conclusion

The PREC(103) is a simple, efficient way to download a PostScript dictionary at print time. It
does not solve the problem of exporting PostScript that references a dictionary into file formats
such as PICT, but it can help. Applications can be revised to extract PostScript dictionary
definitions from files such as PICT and download them at print time using the PREC(103). It
should be noted however that this is not automatic, the application must parse the picture to get
this functionality. Finally, the PREC(201) resource can only be supported when background
printing is disabled, so it is now considered obsolete, and use of it is unsupported.

Further Reference:

* PostScript Language Reference Manual, Adobe Systems Inc.
* Adobe Document Structuring Conventions, Adobe Systems Inc.
* LaserWriter Reference Manual, Addison-Wesley

PostScript is a registered trademark of Adobe Systems Incorporated.

i

#296: The Lo Down on Dictionary Downloading 3 of 3

a

UA

Macintosh =

Technical Notes 6

Developer Technical Support

#297: Pictures and the Printing Manager

Written by: Zz Zimmerman April 1991

This technical note described some problems and features of using Quickdraw pictures with the
Printing Manager. In general, if your application prints Quickdraw pictures, you should read this
note.

Introduction

Most applications support Quickdraw pictures to some degree. They will allow you to import or
export picture files, as well as using the PICT resource format on the clipboard to support Cut &
Paste with other applications. Unfortunately, there are some problems that occur with pictures at
print time, and that's what I want to cover here.

You PICT When?

One of the problems that comes up at print time is the use of picture comments. Some
applications store their data in a native format, and only create pictures at print time to enable the
use of picture comments. For each page of the document, they open a new picture, record the
Quickdraw calls that described the document, along with any picture comments they want to use,
and finally close the picture. When this is done, they call DrawPicture to print the picture, and
then start the whole process over again for the next page.

This method is supported and fully compatible with future system software, but is not required.
The Printing Manager spools each page of a document into a Quickdraw picture. Since the
Printing Manager already has a picture open, it is totally legal to send a picture comment (via the
PicComment call) in between calls to PrOpenPage and PrClosePage without having them
recorded in a picture. The Printing Manager has already replaced the StdComment procedure
with its own anyway, so the PicComment call will be intercepted and supported correctly by the
Printing Manager. If the only reason you are recording into pictures is so that you can use
veer aaa you can avoid the overhead at print time by simply sending the comments
irectly.

Feeling PICT On?

Even if you aren't sending picture comments, you may still need to create a picture at print time.
In general, you should try to create any pictures you need prior to calling PrOpen. This is
because there is no way to predict how much memory a particular printer driver will require.
Instead, you need to make as much memory available as possible. If you are creating pictures
with the Printing Manager open, the chances are good that you are using memory you can't
afford to waste.

eee

#297: Pictures and the Printing Manager 1 of 4

Macintosh Technical Notes

If you need to create a picture with the Printing Manager open, and memory is not a problem
you should still be aware of some potential problems. First of all, keep in mind the Printing
Manager receives data from the application by replacing the Quickdraw GrafProcs stored in the
GrafPort returned by PrOpenDoc. One of these procedures is the StdComment procedure which
is called each time the application calls the Quickdraw PicComment routine. Since the Printing
Manager has these routines patched, creating a picture in the Printing Manager's GrafPort can
cause problems. If you must create a picture between calls to PrOpenPage/PrClosePage, you
should be sure to set the port to a standard Quickdraw GrafPort before calling OpenPicture. Any
GrafPort that was created by Quickdraw (as opposed to the Printing Manager) will work fine.

If you do create a picture at print time, you may experience a syndrome we call ‘floating picture
comments’. That is, calls made by your application to the PicComment routine will be recorded
in a different order than you made them. This will usually cause them to effect the wrong part of
the picture, and lead to endless confusion. The best solution to this problem is to create any
pictures that your application will need before opening the Printing Manager.

Scaling Pictures - Mountains from Mole Hills

Another problem is a basic problem with pictures that seems to show up more at print time. The

problem concerns the scaling of pictures using the destination rectangle passed to DrawPicture.

This method will work for most pictures, but problems arise with more complex pictures, and for

pictures that contain text. The problem is the method that Quickdraw uses to scale the text stored

within pictures. When scaling, Quickdraw tries to handle the text scaling intelligently by

changing the size of the font being used, as opposed to just scaling the bits. Unfortunately, the

widths used by bitmapped fonts are not always linear (ie. the 12 point width isn't exactly 1/2 of

the 24 point width). Because of this, you can run into problems with lines of text getting slightly

longer or shorter as the picture is scaled. In many cases, the error is insignificant, but if you are

trying to draw a line of text that fits exactly into a box (a spreadsheet cell for example), you

might be surprised to see the line of text extending beyond the box when the picture is scaled.

There can also be problems when using certain picture comments or imbedded PostScript. In the

case of the TextCenter picture comment, you specify an offset to the center of rotation. This

offset is usually based on the metrics of the font being used. If you scale the picture, Quickdraw

decides to use a different font, and the offset you originally specified will be incorrect.

The easiest way to solve these problems is to scale the picture yourself. Especially if you are

trying to scale by a large amount. For example, some applications create a picture at 72 dpi (ie.

dots per inch), and then scale it to 288 dpi for printing by simply increasing the destination

rectangle by 4x. This is asking a lot of the system, and will result in the text problems described

above. Instead, you should either draw the picture into its original frame, and let the Printing

Manager handle scaling it to the resolution of the device, or handle the scaling yourself by

parsing the picture and playing it back opcode by opcode instead of calling DrawPicture.

One last thing to watch for when scaling pictures is integer overflows. It's usually pretty rare that

you will overflow a coordinate when creating a Quickdraw picture, but it is not so hard to do

when scaling a picture. For example, some applications will draw something offscreen to make

sure the Printing Manager has configured the clip region and other related structures. They

usually do this by moving the cursor to (-32767,-32767), and then draw a pixel. This works fine

to initialize the Printing Manager, and the pixel isn't actually seen on the output. The problem

occurs when you try to scale this picture. If you try to make it bigger, Quickdraw will adjust to

coordinate (-32767,-32767) which will end up overflowing. The only way to solve these

——————————

2 of 4 #297: Pictures and the Printing Manager

Developer Technical Support
April 1991

problems is to look for these kinds of operations in the picture before trying to scale it with

DrawPicture.

Pictures Within Pictures—Is Nesting the Best Thing?

One cool feature of Quickdraw pictures is the ability to nest them easily. Basically, you can call

OpenPicture, and then call DrawPicture with multiple pictures, and when you call ClosePicture,

they will all have been recorded into one picture. Very cool. The problem comes when you start

using the Begin/End form of picture comments. There are some comments like

PostScriptBegin/PostScriptEnd, and TextBegin/TextEnd that have a begin comment that is

followed by an end comment. When using these comments, it is very important to make sure
that you have an end for each begin that you have sent. If the nesting gets off, you will, at the
least, get incorrect output, though it is more likely that the Printing Manager will actually crash.
If your application is generating picture comments, it is very simple to make sure that you have
an end for each begin. But when nesting a picture that you have imported from another
application, it is important to know how its comments will interact with yours.

In most cases, you can simply call DrawPicture to render the picture to the Printing Manager and
you don't have to worry. But if you are creating a picture for export, you may have to nest
multiple pictures from multiple creators into the same picture to be exported. If this is the case, it
is important to make sure that all of your begin comments have matching end comments before
attempting to insert another picture. If this is done, you can insert the imported picture without
having to worry about the comments it contains. If all of your begin/ends are matched, you can
assume that the imported picture will be just as valid.

On the other hand, if you have a begin comment, and want to insert a picture before inserting the
appropriate end comment, you must parse the picture to be inserted to make sure it is not using
the same comment pair. If it is, and you insert it, you will have problems.

So make sure that all your begins and ends are matched, and don't try to insert other pictures
between begin/end pairs of comments. If you find that you have to insert a picture between a
pair of begin/end comments, you must parse the picture to be inserted to make sure that it does
not use the same comments.

Penalty for Quickdraw - Clipping

Here's a subtle fact about Quickdraw pictures. If you call OpenPicture, and then record some
drawing operations, and you don't explicitly specify a clipping region, Quickdraw will specify
one for you. In fact, Quickdraw will use the last clip region stored in the GrafPort that you are
using when you call OpenPicture. This has been a surprise to many a developer when they
record a picture, and a big piece of it ends up missing when they draw it. This isn't specific to
print time, it can happen on the screen too, but it happens enough that it's worth mentioning.

D' Resolution

If you've read Technical Note #275, Features of 32 Bit Quickdraw 1.2, you probably noticed the
new font and resolution information. Basically, fonts are now stored in pictures by name, not by
ID. This means that fonts stored in pictures will be displayed correctly on any Macintosh
without fonts remapping to other faces. The other new addition to the picture format is
horizontal and vertical resolution information. Applications that create pictures using the new
OpenCPicture call will be able to tell Quickdraw the native resolution of the picture data. So if
-_———oeeeEeEeeeeSSSSSFSFSSSSSSSSSSSSshseseeSse

#297: Pictures and the Printing Manager 3 of 4

Macintosh Technical Notes

you're a scanner that is scanning at 200 dpi, you will be able to store your data at 200 dpi (instead
of scaling it to 72 dpi first). When an application subsequently opens the picture, it can
determine the picture's resolution and take the necessary steps to display it correctly (ie. scaling
down for display on the 72 dpi screen, or scaling up for display on 300 dpi devices like the
LaserWriter).

Conclusion

Quickdraw pictures can be used successfully at print time, if you avoid the problems described
above. Although there is a little overhead required by some of the workarounds, most are very
simple to implement, and will help you avoid future compatibility problems.

Further Reference:
¢ PostScript Language Reference Manual, Adobe Systems Inc.
¢ LaserWriter Reference Manual, Addison-Wesley

PostScript is a registered trademark of Adobe Systems Incorporated.

ee

#297: Pictures and the Printing Manager
4 of 4

4

Macintosh es

Technical Notes :

Developer Technical Support

#298: Color, Windows and 7.0

Revised by: Guillermo A. Ortiz May 1992

Written by: Guillermo A. Ortiz January 1991

System 7.0 introduces a new look for the Macintosh Desktop. In order to implement those

changes ‘wctb' and ‘cctb' resources have changed in both form and use; it is now up to developers

to take the lead and help the new standard work. The task can be divided in two main areas: in

most cases all developers have to do is to stick to the system resources in order to provide a

homogeneous feel to the user; developers in this group need only make sure the old ‘wctb's are

disposed of and that all dialogs and windows are based on CGrafPorts.

The other case is more restricted and involves developers that need to use their own colors; these
applications have to define the resources using the new templates and do a careful selection of the
colors in order to not break the color scheme implemented by the system.

Changes since January 1991: Removed note about 7.0 beta. Added mention to GetGray and
added reference to where to find the sample 'WDEF'

Introduction

The good news is that the mechanics of coloring windows through the use of 'wctb' resources is
amazingly well documented in Inside Macintosh volume V, the bad news is that System 7.0 uses a
new and completely different scheme for colorizing windows. The new method uses 'wctb'
resources that are different than what is described in IM V in both their contents and use, and it is
no longer recommended that applications provide their own ‘wctb's or that they change system
‘wetb' resources at all.

This change is not arbitrary. System 7.0 establishes a new user interface that not only presents a
new and better-looking appearance for windows, but also enhances the user perception of
function. The new look helps the user find the place to click in order to produce a certain result.

As with most of the rest of the interface, Apple has already done the research and testing for you,
so let the system do the work, and you can focus on your application’s code. Of course an
application can replace the 'wctb' provided by the system, but the results are bound to produce
less-than-desirable results.

Effects on existing applications

Note: ‘cctb' resources are now tightly coupled to 'wctb's (especially for scroll bars) and therefore
the discussion about the effects of the new scheme on old 'wctb's also applies to 'cctb's; the extent
of the effect depends on the type of application.

Applications that directly access 'wctb' resources to custom color windows and controls and can
only deal with the old resources will not work; these resources are different and the elements that

#298: Color, Windows and 7.0 lof 5

Macintosh Technical Notes

correspond to the old parts perform new functions or are ignored. Directly accessing 'wctb'
resources may Cause system crashes and/or produce really ugly results.

Solution: Revise application and utilities that manipulate 'wctb's to take into account the new data
structure.

The system will ignore old-style 'wctb' resources; as a result applications that provide their own
pre-System 7.0 window color table resources will not get the colors they used to see. The system
will use the default look for the windows. If new style resources are provided then the entries will
be used according to the new scheme; chances are the results are not going to be as good as those
obtained with the system colors.

Solution: Take away the old resources and get used to the new system colors, your users will
appreciate that your windows are similar to those across the system. In the few cases where it
make sense update your resources to the new templates.

Applications that carry their own 'WDEF' and 'CDEF' resources will not get the new nice looking
windows provided by the system and although these applications should not experience problems
since they are doing all the work themselves the result will be a negative one from the good user
interface perspective. These applications will have windows with the old look when all others look
modern.

Solution: Developers should revise their applications to include 'WDEF' and 'CDEF' resources
that are compatible with the new color interface. As of this writing, sample code for 'WDEF' can
be found on AppleLink in the following location:

"Developer Support:Developer Services:System Software:
More US System Software:System 7 Golden Master:Sys7WDEF"

Certain colors are counted on to produce the correct shades in this new color interface, applications
that completely destroy the color environment of the system will cause interface problems for the
user. In the few cases when the system can find colors that produce a similar shading effect, the
system will use those colors and display windows using the color interface (although not the same
as all the other windows since the colors are different). When the system can not come up with a
reasonable alternative for the colors it needs it reverts to displaying black and white windows.

Solution: Developers should revise their applications so that they don't take over the color
environment and don't leave the colors all screwed up when switching out. Do use the Palette
Manager, don't blast color tables, and don't hog all the available colors. The key to happiness is
moderation.

The facts Ma'am, just the facts ...

The new data structure for 'wctb' resources resembles the old format but more 'part' fields are
now present, the part codes for the new 'wctb's are:

Part code: Part it corresponds to:
Q wContentColor Content area of the window
1 wFrameColor Frame
2 wTextColor Window Title color & Default Text color for Dialog buttons
3. wHiliteColor Reserved
4 wTitleBarColor Reserved

2 of 5 #298: Color, Windows and 7.0

)

Developer Technical Support May 1992

5 wHiliteColorLight Used to produce colors in Tittle Bar stripes and for grayed text

6 wHiliteColorDark Used to produce colors in Tittle Bar stripes and for grayed text
7 wTitleBarLight Used to produce colors in Tittle Bar Background
8 wTitleBarDark Used to produce colors in Tittle Bar Background
9 wbDialogLight Used to produce the colors in a dialog's beveled frame
10 wDialogDark Used to produce the colors in a dialog's beveled frame
11 wTingeLight Used to produce tinges in parts of windows
12 wTingeDark Used to produce tinges in parts of windows

The colors in the windows are generated algorithmically using the colors in the 7.0 'wetb'. Most of
the colors are shades between the light and dark colors. For example, the background color of the
title bar is a shade in between wTitleBarLight and wTitleBarDark. The resulting color is obtained
by calling GetGray, check Inside Macintosh VI (Chapter 17: Color QuickDraw) for details on this
call.

'cctb' resources are also different; here are the part codes and their corresponding parts for 'cctb':

Part code: Part it corresponds to:
0 cFrameColor Frames controls
1 cBodyColor Background color in buttons.
2 cTextColor Interior text in buttons and legend for radio buttons and check boxes
3 cThumbColor Reserved
4 cFillPatColor Reserved
5 cArrowsColorLight Used to produce colors in Arrows and scroll bar background color
6 cArrowsColorDark Used to produce colors in Arrows and scroll bar background color
7 cThumbLight Used to produce colors in Thumb
8 cThumbDark Used to produce colors in Thumb
9 cHiliteLight (corresponding to wHiliteLight)
10 cHiliteDark (corresponding to wHiliteDark)
11 cTitleBarLight (corresponding to wTitleBarLight)
12 cTitleBarDark (corresponding to wTitleBarDark)
13 cTingeLight (corresponding to wTingeLight) Affects 5-6 and 7-8 above
14 cTingeDark (corresponding to wTingeLight)

... but how does it work?

In System 7.0 windows and scroll bars are drawn in color on a color device 8 bit deep or more (4
bit deep or more in gray scale devices) independent of the type of grafport, the design gives
windows and scroll bars a 'gray' look with subtle color tints around the corners; these tinges are
intended to give the user hints about the functions of the different parts.

When a window is active it will be drawn with the frame in wFrameColor, the title in
wTextColor, and the Drag Bar, the Scroll Bars and all the gadgets (Grow, Zoom and Go-away
boxes,) in a gray color with the edges showing the tints; note that in the context of this Technical
Note gray color can be different than RGB gray (R=G=B), for example if the light color is red and
the dark color is blue then the 'gray' result will be purple. It is also important to note that the exact
gray result may not be available in the color table of the target device in which case a close
equivalent is used, in the cases when there is no equivalent available then the system resorts to
black and white (old style) windows.

When the window is inactive the frame is drawn in a grayed wFrameColor to indicate its
disabled state; the Drag Bar, the gadgets and the scroll bar of the window are whited out and the
title will be grayed out (using gray color to display text, not the dithered gray produced with a 50%
pattern) based on wHiliteColorLight and wHiliteColorDark. When the gadgets of a

eee

#298: Color, Windows and 7.0 3 of 5

———
Macintosh Technical Notes

scroll bar (thumb and arrows) are enabled they are drawn in gray with tinting (coordinated with the
color theme used by the window!); when disabled the thumb disappears altogether and the arrows
show in gray only with no tinges. VY

In keeping the overall scheme of color interface the background pattern of scroll bars has to be a
gray pattern based on cArrowsColorLight and cArrowsColorDark; when the scroll bar is
disabled (when no scrolling is necessary to show all the items in a window) then the scroll bar will
be displayed in a solid gray. Don’t confuse this grayed out state with unselected windows that
present the scroll bars as well as the drag bar and all gadgets completely whited out.

Edit 2.1b3
ZSitems 30.4 MB in disk de

Release Note Examples

peewee bows

i Zitems Z04MBindisk 444)

Figure 2 Active Window—Horizontal scroll bar disabled

Reskdit 2.1n3
| Zitems Z30.4MBindisk 4

Release Note Examples

Figure 3 Inactive Window—Notice gray title ()

4o0f5 #298: Color, Windows and 7.0

Developer Technical Support May 1992

Dialogs and Alerts

Dialogs and alerts have also been colorized following the same theme as in windows, but instead
of a tinged border Dialogs and alerts are displayed with a beveled border outlined with black; the
bevel, with its spectrum of colors spreading between wDialogLight and wDialogDark produce a
three dimensional effect. When a dialog becomes inactive the outline reverts to gray.

Traffic Light (6.0.4 & 7.0 compatible)

Copyright © 1988-90 Apple Computer

Brought to you by:

Macintosh Developer

Technical Support

Regardless of the port (GrafPort or CGrafPort) dialogs and alerts are displayed using the shading
scheme when the target device is set to 8 bits per pixel or more and colors, or when the target
device is gray scale and set to 4 bits per pixel or more.

Buttons, Radio Buttons, Check Boxes and Text

Scroll Bars are not the only controls effected by ‘cctb' resources, in general the names of the parts
give a clear idea of what effect is produced by a given color, one area that is slightly different is
Text; the text in buttons is drawn using cText Color ina fashion similar to pre-System 7.0
systems, but when the button is disabled, the new system displays the text using gray color instead
of using dithered gray like it did in earlier systems.

A gray color is used to draw the text of disabled buttons whenever the dialog is a CGrafPort and
the depth of the target device is 2 bits per pixel or more. Dialogs based on old style ports will
display disabled text using the old dithered gray.

The text associated with Radio Buttons and Check Boxes follows the same principles, text is the
key to indicate the state (enabled or not) of Radio Buttons and Check Boxes since the body of
Radio Buttons and Check Boxes is drawn using cFrameColor whether the control is enabled or
not.

And you thought it would never end!

As always, all applications should refrain from non-friendly practices when dealing with the color
environment, they should use the Palette Manager, and should never change color tables directly.

Further Reference:

* Inside Macintosh, Volumes V & VI, Color QuickDraw, Window Manager, Dialog
Manager and Palette Manager.

oO eeEeEeeeeSSSSFSSSSMSSSSmmmmmhsheseseseeeeSeSeSeSeSeSeSS

#298: Color, Windows and 7.0 S of 5

Developer Technical Support April 1991

4

Macintosh]

Technical Notes .

Developer Technical Support

#299: MultiFinder 6.0.x’s Gross Anatomy

Written by: Paul Snively April 1991

This Technical Note discusses the programmatical interfaces to various of MultiFinder’s heretofore

undocumented capabilities under System 6.x.

Introduction

Historically MacDTS has refused to divulge considerable useful information about MultiFinder in the
System 6.x world because the manner in which many capabilities were implemented was subject to change
in a fashion that might have resulted in a change to the API. With the advent of System 7.0 looming large,
it seems appropriate to document many of the gory details about MultiFinder at this time.

Process Management

The one distinct area that remained undocumented in The Programmer’s Guide to MultiFinder and the
various Tech Notes to date was process management. Everyone knew that it must exist at some level—
after all, selecting “About the Finder” from the Apple menu showed the status of the applications currently
running—but Apple wasn’t forthcoming with any information about how such things might be done. Of
course, System 7.0 provides process management, and the System 7.0 Process Manager is documented in
Inside Macintosh, Volume VI. However, there are differences between System 6.x MultiFinder and the
System 7.0 Process Manager that need to be explained.

The routines defined by the Process Manager in System 7.0 are:

GetCurrentProcess GetNextProcess GetProcessInformation
SameProcess GetFrontProcess SetFrontProcess
WakeUpProcess LaunchApplication LaunchDeskAccessory

This Technical Note will define interfaces to the equivalent functions in MultiFinder for the 6.x world,
although launching in the 6.x world is not as well integrated as it is in System 7.0, so those differences
will remain. Another difference is the way that processes can be identified; in 6.x only 16-bit PIDs are
used, as opposed to the 64-bit Process Serial Numbers (PSNs) of System 7.0. Because of this, to
facilitate the writing of code that works both in the 6.x and the 7.0 worlds, and to be consistent with the
Programmer’s Guide to MultiFinder, the 6.x interfaces will all begin with MF (e.g.
MFGetCurrentProcess).

Data Structures

A central data structure in MultiFinder 6.x is the Process Info Record. In Pascal, it looks like this:

TYPE MFProcessInfoRec =

#299: MultiFinder 6.0.x’s Gross Anatomy 1 of 8

Macintosh Technical Notes Bos 2 SES a nee ae eee ae

RECORD

ProcessState: INTEGER;

ProcessID: INTEGER;

ProcessType: OSType;

ProcessSignature: OSType;

ProcessVersion: LONGINT;

ProcessZone: THz?

ProcessMode: LONGINT;

ProcessNeedSuspResEvts: BOOLEAN;

ProcessBack: BOOLEAN;

ProcessActivateOnResume: BOOLEAN;

ProcessDad: INTEGER;

ProcesSize: LONGINT;

ProcessStackSize: LONGINT;

ProcessSlices: LONGINT;

ProcessFreeMem: LONGINT;

ProcessName: STRING[31];

ProcessVRefNum: INTEGER;

END;

In C, it looks like this:

struct MFProcessInfoRec {

short ProcessState;

short ProcessID;

OSType ProcessType;

OSType ProcessSignature;

long ProcessVersion;

THz ProcessZone;

unsigned long ProcessMode;

Boolean ProcessNeedSuspResEvts;

Boolean ProcessBack;

Boolean ProcessActivateOnResume;

short ProcessDad;

unsigned long ProcesSize;

unsigned long ProcessStackSize;

unsigned long ProcessSlices;

unsigned long ProcessFreeMem;

Str3l1 ProcessName;

short ProcessVRefNum;

};

An important address to know is $B7C, which is the address that contains MultiFinder’s A5 value. (This

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

process state }

the process id }

type of task (usually APPL) }

signature of task }

version of task }

pointer to minor zone }

process’ created mode }

process expects suspend/resume events }

can accept background time }

app activate/deactivate on suspend/resume }

process id of my dad }

size of his world }

size of his stack }

of times process has CPU }

{ amount of free memory in heap }

{ name of backing app }

{ vrefnum of app res file }

process state */

the process id */

type of process (usually APPL) */

signature of process */

version of process */

pointer to minor zone */

process’ created mode */

process expects suspend and resume events x7

can accept background time */

app will activate/deactivate on suspend/resume */

process id of my dad */

size of his world */

size of his stack */

of times process has CPU */

amount of free memory in heap */

name of backing app */

vrefnum of app res file as passed to MFLaunch */

value will be SFFFFFFFF if MultiFinder is not present.)

In Pascal, you can represent this with:

TYPE

LONGINTPtr

INTEGERPtr

“LONGINT;

“INTEGER;

i

2 of 8
#299: MultiFinder 6.0.x’s Gross Anatomy

e

©

pe ppo'
pril 1991

Developer Technical Support
Apri

CONST

MFAS = $B7C;

In C, you should use:

#define MFA5 OxB7C

There are two more values that will be important to us:

In Pascal:

CONST

ProcInfoArray = $FFFFECFE;

FrontPID = $FFFFF7CE;

InC:

#define ProcInfoArray OxFFFFECFE

#define FrontPID OxFFFFF7CE

These definitions are offsets from MultiFinder’s A5, and are valid for Systems 6.0.5 and 6.0.7.

Note: While the A5 global offsets are probably valid in other 6.0.x versions of MultiFinder as
well, they have not been tested in the others. Besides that, MacDTS recommends that for
CPUs that feature sound input capability, System 6.0.7 be used, and that 6.0.5 be used for
all other supported CPUs. Also, many developers use the so-called “Set Aside
MultiFinder” that is provided with Apple’s SADE debugger. The most recent such version
of MultiFinder is 6.1b9. In MultiFinder 6.1b9, the value for ProcInfoArray is
$FFFFF24A, and the value for Front PID is $FFFFF23C.

Note: Determining the version of MultiFinder available is a pain, at least in Pascal. There is an
OSDispatch selector to a routine that I’ll call MPGet Version, but it expects a pointer to a
double-long (eight bytes), period. So in Pascal, you wind up with something like:

FUNCTION MFGetVersion(VAR String[8]: MFVersion): OSErr;

FUNCTION InnerMFGetVersion(Ptr: Result): OSErr;

INLINE $3F3C, $0002, SA88F;

BEGIN

MFGetVersion := InnerMFGetVersion(@(Ord(MFVersion) + 1));
MFVersion[0] := chr(8); {Cheesy way to set the length byte}

END;

int:

pascal OSErr MFGetVersion(char MFVersion[8])

= ({0x3F3C,0x0002, 0xA88F};

With the Pascal version, the result will be a valid Pascal String[8]; with the C version, the result will be a
char[8] that’s been filled in. For MultiFinder 6.0.7 the result will be 'TWITO110' and for MultiFinder
6.1b9, the result will be 'TWITO120'.

#299: MultiFinder 6.0.x’s Gross Anatomy 3 of 8

Macintosh Technical Notes —e————————————————
eee

Note: Having said all of that, MacDTS does not support oF
? the use of MultiF

purpose other than the use of the SADE debagcer ultiFinder 6.1b9 for any

There are still three other useful numbers that will be needed:

In Pascal:

CONST

LinkOffset = $18;

PEntrySize = $6E;

PIDOffset = $02;

inc

#define LinkOffset 0x18

#define PEntrySize Ox6E

#define PIDOffset 0x02

Armed with the MFProcessInfoRecord, MultiFinder’s A5 pointer, the ProcInfoArray and

FrontPID globals, and the LinkOffset, PEntrySize, and PIDOffset values, we can move on to
the routines themselves.

MFGetCurrentProcess

MFGetCurrentProcess simply returns the PID of the currently executing process.

In Pascal the definition is:

FUNCTION MFGetCurrentProcess: INTEGER;

INLINE $3F3C, $0013, SA88F;

In C, the definition is:

pascal short MFGetCurrentProcess()

= ({0x3F3C,0x0013, OxA88F};

MFGetCurrentProcess is useful in instances where the code calling it doesn’t know what process is

current, e.g. a desk accessory, driver, or trap patch might for some reason benefit from knowing which

process is currently awake.

Note: The current process is not necessarily the same as the front process. The current process is

the one whose A5 world is in place and whose code will be executed until the next context

switch, either major or minor, occurs.

MFGetNextProcess

This routine is a natural adjunct to MFGetFrontProcess, as you Can use it to cycle through all

processes.

Unfortunately, this one isn’t provided as a selector to OSDispatch; we have to roll our own. Fortunately,

it’s pretty simple with the magic constants given above.

In Pascal:

40f8 #299: MultiFinder 6.0.x’s Gross Anatomy

mo

Developer Technical Support April 1991

FUNCTION MFGetNextProcess(PID: INTEGER): INTEGER;

LocalPointer: Ptr;

BEGIN

{ Point to the ProcInfoArray }

LocalPointer := @(Ord(LONGINTPtr (MFAS) *) +ProcInfoArray) ;

{ Point to the pointer to the next PEntry }

LocalPointer := @(Ord(LocalPointer) + (PID*PEntrySize) +LinkOffset)

{ Dereference the pointer }

LocalPointer := @LONGINTPtr (LocalPointer) *;

{ Get the PID from the new PEntry }

MFGetNextProcess := INTEGERPtr (@(Ord(LocalPointer) +PIDOffset))*;

END;

In C:

pascal short MFGetNextProcess(short PID)

{

Ptr LocalPointer;

LocalPointer = *MFA5+ProcInfoArray;

LocalPointer = LocalPointer+(PID*PEntrySize) +LinkOffset;

LocalPointer = *((Ptr *)LocalPointer);

return(*((short *) (LocalPointer+PIDOffset)));

Note: MFGetNextProcess will always return a next process—don’t expect there to be a point
at which, when you call MFGetNextProcess, it will return zero. If you pass a PID to
MFGetNextProcess, get the result, pass that to MFGet Next Process, etc. you will
find yourself in an infinite loop, as what seems like it should be the end of the line will
simply point you back to the beginning.

MFGetProcessInformation

MFGet ProcessInformation is the function that fills in a ProcessInfoRec, the definition of which is
provided in the “Data Structures” portion of this Tech Note.

The definition in Pascal is:

FUNCTION MFGetProcessInformation(INTEGER: PID; VAR ProcInfoRec: ProcInfo): OSErr;

INLINE $3F3C, $0017, SA88F;

In C:

pascal OSErr MFGetProcessInformation(short PID, ProcInfoRec *ProcInfo)

= {0x3F3C,0x0017,0xA88F};

The majority of the ProcInfoRec is probably self-explanatory, with the likely exception of the ProcessState
field. It can have one of the following values:

In Pascal:

CONST

#299: MultiFinder 6.0.x’s Gross Anatomy 5 of 8

Macintosh Technical Notes

Inc:

#define piStateReady

#define piStateNull

#define piStateBackRun

#define piStateRun

#define piStateUpdate

#define piStateDebug

#define piStateMoving

#define piStatePuppet

#define piStateSleeping

These values should be considered informational and read-only; changing them in the ProcInfoRecord

won’t have any effect anyway.

piStateReady = 1;

piStateNull = 2;

piStateBackRun = 3;

piStateRun = 4;

piStateUpdate = 5;

piStateDebug = 6;

piStateMoving =

I ~o piStatePuppet

piStateSleeping = 9;

MFSameProcess

The only reason that SameProcess exists in System 7.0 is that Process Serial Numbers (PSNs) are 64-

bit quantities, and a language that shall remain nameless, but whose initial is “C,” cannot directly compare

structured data.

Since MultiFinder in the System 6.0.x world uses 16-bit Process IDs (PIDs), you can use the = operator

in Pascal or the == operator in C to compare two PIDs. There is no such routine as MFSameProcess.

MFGetFrontProcess

Amazingly, MultiFinder 6.0.x doesn’t have an OSDispatch selector for this! Luckily, it does maintain a

global, so here goes:

In Pascal:

FUNCTION MFGetFrontProcess:

BEGIN

END;

MFGetFrontProcess :=

In:C:

pascal short MFGetFrontProcess (void)

{

6 of

return(*((short *) (*MFA5+FrontPID)));

8

wow OoOrntnanu st WN PRP

INTEGER;

INTEGERPtr (@(LONGINTPtr (MFAS) * + FrontPID))%;

#299: MultiFinder 6.0.x’s Gross Anatomy

a

pe ppo April 1991
Developer Technical Support

This function is almost certainly most useful in conjunction with MFGetNextProcess and

MFGetProcessiInformation. You can call it, call MFGetProces sInformation, then

MFGet Next Process, and repeat to get information on all available processes, but heed the note under

MFGet Next Process—it doesn’t eventually terminate, so in your loop you will have to compare the

result of MFGetNextProcess with the result of MFGetFrontProcess, and terminate when they are

equal.

MFSetFrontProcess

MFSetFrontProcess can be used to make a particular process the active process.

In Pascal, it looks like this:

FUNCTION MFSetFrontProcess (INTEGER: PID): OSErr;

INLINE $3F3C, $0011, SA88F;

In C:

pascal OSErr MFSetFrontProcess(short PID)

= {0x3F3C,0x0011, OxA88F};

Note: Use MFSetFrontProcess sparingly; as a generalization, the user should remain in

control of which process is the active process. An example of an acceptable exception to

this rule would be a backup utility that backs up a hard disk or a network at a particular
time, such as 3:00 AM, and then wants to shut down the machine(s) gracefully. Since only
the Finder can do that, it would be acceptable to use MFSet FrontProcess to make the
Finder active, and then use Post Event to fake a selection of “Shut Down” from the

“Special” menu.

MFWakeUpProcess

Try as I might, I couldn’t produce an analog to System 7.0’s WakeUpProcess call in the System 6.0.x
world. There is no OSDispatch selector for it, and neither is it something that can be easily reproduced by
fiddling with some bits in the MultiFinder globals. Besides that, the effect that MFWakeUpProcess
would have can be approximated with a little bit of forethought when you are designing your application.
If your process is going to be communicating with another process somehow, for example, you should
probably use a relatively small sleep parameter in your WaitNextEvent call so that your process can be
somewhat responsive in terms of reacting to messages that it receives via IPC. You may wish to use a
large sleep value initially, especially if your process has been switched into the background, and only
decrease it upon receiving your first IPC message. When the IPC dialog has been terminated, you can
then use a larger sleep value again. A little bit of software engineering can make up for this particular lack
to a considerable degree.

MFLaunch

The important thing to note about MF Launch is that it is distinct from Launch in that MFLaunch will
not switch the thing being launched to the foreground. This is particularly useful, for example, to launch a
background-only application whose sole raison d’étreis to provide some service to the rest of the system.

Because Launch and MFLaunch are distinct, and don’t really resemble System 7.0’s Launch, no effort
has been put into making MFLaunch resemble Launch in System 7.0.

#299: MultiFinder 6.0.x’s Gross Anatomy 7 of 8

Macintosh Technical Notes

In Pascal:

FUNCTION MFLaunch(String[31]: Name; LONGINT: Size; INTEGER: vRefNum; LONGINT:
TaskMode; LONGINT: StackSize): INTEGER;

INLINE $3F3C, $0010, SA88F;

InC:

pascal short MFLaunch(StringPtr Name, unsigned long Size, short vRefNum, unsigned long

TaskMode, unsigned long StackSize)

= {0x3F3C,0x0010, OxA88F};

MF Launch will return the PID of the launched process, or an OSErr if there was a failure.

MF Launch takes several parameters, but there are quite a few subtleties to be aware of with them and with
MF Launch in general.

First of all, if you’ve used Launch before, you probably found out the hard way that you need to set up
the AppParmHand1e appropriately first. The AppParmHand1e is documented in Inside Macintosh V.
I, pages 57-58.

Secondly, you must pass the Size parameter, and yes, that Size parameter does come from the SIZE
resource. However, you can’t just OpenResFile, get the SIZE resource, extract the value, and pass it
verbatim. It has to be adjusted for both the required stack space and for the presence or lack of Color
QuickDraw. So before passing the Size value, if you are on a Color QuickDraw system, add 32K. Also
add in the default stack size for the system, which can be found in the low-RAM global Def1tStack. VU
But subtract the default stack size for a Macintosh Plus, which is 8K, because MultiFinder assumes that
you need an 8K stack. Got that? Good.

The vRefNum parameter will probably be a WDRefNum that you’ll have to create in order to specify the
folder that contains the application. For that matter, since most applications expect the default folder to be
the one they were launched from, you will probably need to create the working directory, and then do a
SetVol on it before doing the launch.

The TaskMode parameter is simply the set of flags from the SIZE resource.

The StackSize parameter is whatever value is contained in the low-RAM global Def1t Stack without

any of the tomfoolery necessary for the Size parameter.

Further Reference:

¢ Programmer's Guide to MultiFinder
¢ Technical Note #158, MultiFinder Questions
¢ Technical Note #180, MultiFinder Miscellanea
¢ Technical Note #190, WDs & MultiFinder
* Technical Note #205, MultiFinder Revisited

8 of 8 #299: MultiFinder 6.0.x’s Gross Anatomy

; UA

Macintosh

Technical Notes e

Developer Technical Support

#300: My Life as a PascalObject

Written by: Kent Sandvik & Mark Bjerke April 1991

This Technical Note discusses the PascalOb ject base class, used, for instance, with MacApp

programming. The Technical Note describes how to write PascalObject derived classes that work
with both Object Pascal and C++ code linking. It also describes the current restrictions and bugs
with writing C++ code using PascalOb ject as the base class. This Technical Note is based on
MacApp 2.0(.1), MPW 3.2 and MPW C++ 3.1.

Introduction

PascalObjects are useful. If you use PascalObject as the base class you are able to use the
object libraries with both Object Pascal code and C++ code. MacApp 3.0 is written in C++ using
PascalObject as the base class. Code written in Object Pascal is link compatible with C++ as
long as any C++ objects which are accessed are derived from a PascalObject base class.

There are C++ semantics that will not work with Object Pascal, and there are semantic limitations
with Object Pascal that the C++ programmer should be aware of if the code is to be used with
Object Pascal.

An important issue is the class interfaces, C++ and Object Pascal. Any C++ language constructs
that don't work in Object Pascal should not be present in the Object C++ header files. For instance
there is no notion of const in Object Pascal, so a C++ declaration using const would be
misleading because the value could be changed (from Object Pascal). Note that code inside the
class methods!) (that are not accessible for the class user).does not need to conform to Object
Pascal limitations, with some exceptions which we try to cover in this Technical Note. Be careful
when defining interface definitions for both Object Pascal and C++ use. Avoid any C++ syntax or
semantics which can't be mapped to Object Pascal, if the intention is to produce libraries that will
work with both C++ and Object Pascal.

PascalObjects behave like classes defined in Object Pascal, with the same kind of relocatable,
handle-based objects and the same kind of method lookup tables. In the case of MacApp the
TObject class is inherited from the PascalObject base class. Do not confuse PascalObjects with the
HandleObject base class, even if both use handles they differ at the base class level.

1) We use the Smalltalk terminology in this Technical Note, where method loosely corresponds to the C++
definition member function.

ee

#300: My Life as a PascalObject 1 of 8

Macintosh Technical Notes

How to Write C++ PascalObject Classes

Constructors/Destructors in the PascalObject Domain

In the wonderful world of C++ programming the constructor takes arguments for values that are
needed for the creation of the instance of the class. The C++ programmer is also able to pass
arguments up to the parent classes if needed. In C++ the construction of a class starts with the base
class, and each constructor down the inheritance chain is run.

This will not work with Object Pascal code. The construction of a PascalObject is usually an
assignment of memory, and any possible initialization is done in a special method called
IClassName (where ClassName is substituted to the class name, for example
IMyApplication).

So if the C++ programmer assumes that everyone in the galaxy will use C++ notation for
signalling information to the construction of the class, she/he is wrong. The policy is to create
initialization methods for each class, and inside each method call the parent initialization method.
This way all the initialization methods all the way to the top level are called. Note also that the order
of calling base class constructors is implementation dependent, whereas in C++ the base
constructors are Called first, and the child constructors later. It usually makes sense to define this as
well with PascalObject hierarchies, so the class library user could rely on the order of class
initializations.

This is also true of destructors: instead of calling the destructor you need to define a method call
Free (when using PascalObjects). You also need to call the method Free yourself, instead of
relying as in the C++ world that the destructor will automatically work when the object goes out of
scope.

Here's a simple MacApp example:

class TFooApplication: public TApplication

{
public:

virtual pascal IFooApplication (void) ; // this is our "constructor"
virtual pascal Free(void) ; // this is our "destructor"

// other methods and fields...

he

void TFooApplication: : IFooApplication (void)

{
this->IApplication (kFileType) ; // call the base class constructor

// do own stuff...

}

void TFooApplication: :Free (void)

{
.

inherited: :Free(); // call base class functions above

// do own stuff...

eee eae ee

2 of 8 #300: My Life as a PascalObject

Developer Technical Support
April 1991

pascal Keyword, virtual/OVERRIDE

Always define every method with Pascal calling conventions, as in the following example:

class TFoo: public TObject

{
public:

virtual paseal void Reset (void);

// .
}

This means that you are able to call the function from Object Pascal. If you define the method

virtual, and it's PascalObject based, then you are able to override the method from Object Pascal

using the OVERRIDE keyword.

Function overloading as such does not work from Object Pascal, because Object Pascal does not

have the notion of function name mangling.

Stack Objects (Objects on the Stack)

Object Pascal is not capable of defining objects on the stack . PascalObjects (as handles) are heap

based. The compiler also complains if you try to define stack-based PascalObjects with C++.

A C++ example of a object declared on the stack is shown below:

void foo(void)

{
TDaffyDuck myDaffyDuck; // declared on the stack

myDaffyDuck . ShootMeNow (kDuckSeason) ;

// continue with the function...

}

private/protected/public in C++ and Object Pascal

C++ has access control of methods and fields inside classes, using private, protected and
public as keywords. Field checks are done during compilation time, not linktime or runtime.
Because the C++ modules are compiled separately from the Object Pascal modules, access control
is not active from the Pascal code. It does not hurt to specify access control for C++ classes - quite
the contrary - but Object Pascal code is able to access any method or function inside the C++ class.

So beware that any dependencies of the C++ class access control definitions will be broken under
Object Pascal if you use PascalObject as the base class.

Str255 - Pascal Strings

Pascal strings are the common method for passing strings between multilanguage modules. (There
are exceptions in the MacOS Toolbox.) If a method or function sends or receives a string, it should

be declared asa Pascal String (Str255, Str63, Str31...). The MPW libraries have functions
for changing, copying and comparing both Pascal strings and C strings (null terminated strings).

#300: My Life as a PascalObject 3 of 8

Macintosh Technical Notes

Breakpoint Information (%_BP and %_EP)

If you want to generate breakpoint information in the object files from C++, specify the '-t race
on' flag to the C++ compiler, or use the new #pragma trace onand#pragma trace
off switches inside the code. This only works with MPW 3.2 C and future releases. This is
equivalent to the $D++ and $D- statements in Object Pascal.

Default Arguments

Object Pascal does not have the syntax for defining default argument values inside function
prototypes. This means that you can't define default argument values in the FUNCTION and
PROCEDURE methods in the Unit header files for Object Pascal (as you can do with C++
methods). If the user wants to change these default values there's no way to achieve this with
Object Pascal.

Public Base Class

Classes that inherit from PascalObject should be defined with a public interface because the
operator new is overloaded. An example of this looks like:

class TFoo: public PascaldObject

{
// class contents

he

Inlining

Inlining of C++ methods works with the C++ header files, even if the semantics is not supported
with Object Pascal header files. We assume that the inlining is used for C++ PascalObject class
construction, where the classes are implemented in C++.

General C/Pascal Issues

Try to write code that works and functions well under both Object Pascal and C++. All the rules
concerning Pascal and C code reusability are true for writing C++ and Object Pascal object libraries
for as well. For instance avoid function and variable names with changes in capital case only, for
example Foo and foo are identical function names under Pascal.

Also try to use the new "call by reference" notation of C++ (& - resembles VAR in Pascal) when
passing references to variables to functions, instead of using the normal pointer notation. This way
developers can write similar looking code for calling functions with values.

You also need to create Unit header files for Object Pascal use with the class definitions in Object
Pascal. Remember to define any interface constants in Object Pascal that are defined as enums in
the C++ class.

4 of 8 #300: My Life as a PascalObject

Developer Technical Support
April 1991

Bugs and Limitations with PascalObjects

General

Please consult the latest MPW and C++ Release Notes for the latest information about known

bugs and limitations.

Pure Virtual Functions

Pure virtual functions are allowed in C++ PascalObject hierarchies, as long as these functions are

defined. The compiler will complain if the programmer tries to create an instance of an abstract

class (the class that contains the pure virtual function) with new. However the linker does not like

that the pure virtual function is not defined, so when the programmer links object modules with
classes containing pure virtual functions which are not defined the linker will complain.

The following code example shows the problem and the workaround:

class TAbstract : public PascalObject { // pure abstract class
virtual void Method() =0; // define pure virtual

}e

class TDerived : public TAbstract { // not abstract because
virtual void Method() {}; // of this definition (non-pure)

};

void TAbstract : :Method() // you need to define
{ // this function for the linker

// dummy, this is abstract anyway

}

TAbstract* noWay;

TDerived* okClass;

main ()

{
noWay = new TAbstract; // compiler will complain!

okClass = new TDerived; // OK, not an abstract class

return 0;

Pointers to PascalObject Members

You may not have pointers to PascalObject member functions if you are using the MPW 3.1 Link
tool. You must use the new MPW 3.2 linker and a new MPW 3.2 C++ compiler for using this
feature. The old way of doing method dispatch was broken, but it is fixed in the new optimized
dispatch code. (See UObject .a in MacApp 2.0.1.)

-__—_———

#300: My Life as a PascalObject 5 of 8

Macintosh Technical Notes BL ES 2 a a a ee Lee eee eee Lea

Multiple Inheritance

Because PascalObjects method lookup is based on Object Pascal method lookup tables (instead of
normal C++ vtables), Multiple Inheritance does not work with PascalObjects.

Problems with including PascalObject Runtime Support

This bug has to do with not including the call to _PGM which brings in the segment containing the
% SelProcs and the method tables used in PascalObject method dispatch. This is flagged (for
including this runtime support) when CFront sees a use of a member function belonging to a (type
derived from) PascalObject. If it compiles main () before it sees a use of the member function
then the callto _PGM will not be included. Note that even a call to operator new inside of main ()
does not do the trick for PascalObjects with constructors because the constructor calls operator
new, notmain().

The way to get around this is to invoke operator new on a dummy object with no constructor
(much like anti-dead stripping code). Remember that this is only necessary in cases where there is
no code before main () referencing a PascalObject method. Below is code which reproduces this
problem. Note that the call to operator 'new' in main normally would be enough except that class
foo has a constructor.

class foo : PascalObject {
public:

foo (void) ;

virtual void methl1 (void);

}e

void main ()

{
foo* afoo = new foo;

}

foo::foo(void) { ; }
void foo::methl (void) { ; }

void non_member_ func(foo* theClass)

{
theClass->methl () ;

}

pascal Keyword

The pascal keyword is broken in the specific situation where one attempts to call a C function

which returns a pointer to a Pascal-style function. The C compiler currently misinterprets the C

function as a Pascal-style function and the function result is lost.

a

6 of 8 #300: My Life as a PascalObject

Developer Technical Support
April 1991

Problems with returning Structs/Objects

Methods may not return structs/objects or anything that requires the C compiler to push and

address for the called routine to copy return values. This will break the method dispatch which is

expecting a handle (this-> pointer) to the object as the last thing pushed.

Alignment Problems with Arrays

There is an alignment bug involving the size the C compiler calculates for certain PascalObjects and

the actual size CFront allocates for such objects using operator new. Basically if an object has a

multidimensional array of a byte sized quantity (char, Boolean, etc) whose total size in bytes is

odd, then pad bytes are added by CFront and the C compiler and everything is fine. Now if you

have two such arrays declared (see example) back to back, then CFront makes the mistake of not

adding the pad bytes.This results in the C compiler accessing memory that is off the end of the

object in question (since the new was done with the size parameter too small). For example:

class foo { // CFront generates size as 20 - C compiler

// uses 22
char bytes1[3] [3];

char bytes2 [3] [3];
short x; // Access of this field falls off end of object

};

set_new_handler()

To give more control over memory allocation, you could define an extern pointer from

set_new_handler (_new_handler) to be called if operator new fails. This is not supported

in the operator new used for PascalObject because the code for operator new fails to make the

call to the user handler through the function pointer set with set_new_handler().

Call of the Wrong Member Function

There is a bug that involves calling the wrong member function in the case of PascalObjects whose
names differ only in case (forexample class Fooand class foo).

This example shows the problem:

class foo : public PascalObject // note the all lowercase name

{
public:

virtual pascal void foobar (void) ;

};

class Foo : public PascaloObject // n.b Foo
{ ;

public:
virtual pascal void foobar (void) ;

};

pascal void foo::foobar(void) {}

#300: My Life as a PascalObject 7 of 8

Macintosh Technical Notes

pascal void Foo::foobar(void) {}

main ()

{

foo *afoo = new foo;

Foo *aFoo = new Foo;

afoo->foobar();
aFoo->foobar () ; // Calls the wrong 'foobar()'

}

Information

For more inside information about PascalObjects, check the MacApp files UObject .a, which
describes how method lookup is handled, and UObject .Global.p, which shows how NEW is
implemented under Object Pascal.

Conclusion

Using PascalObjects as the base class for your class libraries will get you many Object Pascal
programmers as new friends. If you use TObject (from MacApp) as your base class library
(subclass of PascalObject), you get a lot of meta-information and meta-methods for free. And
PascalObject classes are handle based, so you get less memory allocation problems on small
memory configuration Macintosh computers.

Further Reference:
¢ Technical Note #265, Pascal to C: PROCEDURE Parameters
* Technical Note #281, Multiple Inheritance and HandleObjects
¢ MPW C++ 3.1 Reference
¢ MPW C++ 3.1 Release Notes
¢ C++ Programming with MacApp , Wilson, Rosenstein, Shafer, Addison& Wesley
¢ The Annotated C++ Reference Manual, Ellis&Stroustrup, Addison& Wesley

aE pe ee ee ee

8 of 8 #300: My Life as a PascalObject

,

UA

Macintosh

Technical Notes ®
ee

Developer Technical Support

#301: File Sharing and Shared Folders

Written by: Jim Luther August 1991

This Note describes modifications to the existing File Manager routines, PBGetCatInfo,

PBHGetDirAccess, PBHSetDirAccess, PBHSetFLock and PBHRstFLock, when used

on volumes prepared by Macintosh System 7 File Sharing.

js nn

Introduction

There are several differences between System 7 File Sharing and AppleShare 2.0.1. This Note

describes what those differences mean when calling PBGetCat Info, PBHGetDirAccess,

PBHSetDirAccess, PBHSetFLock and PBHRstFLock on local volumes that return

bHasPersonalAccessPrivileges to PBHGetVolParms.

Share Points, Shared Areas, Locked Folders and PBGetCatInfo

The first notable difference between AppleShare 2.0.1 and File Sharing is that File Sharing allows
both folders and volumes to be exported or shared over an AppleTalk network (only volumes
could be shared with AppleShare 2.0.1). A folder or volume can be shared by selecting the
“Share this item and its contents” check box in the Finder’s Sharing dialog. A folder or volume
shared in this way is called a “share point” and its Finder icon (if it’s a folder) is shown in
Figure 1. The share point and all folders under it in the directory structure have access privileges
and those access privileges can be set by the local user.

(_
ot eae

Figure 1-Folder that is a Share Point

The server’s owner is a user with “All Privileges” and can remotely access all sharable volumes
and folders on the Macintosh no matter what access privileges are set. The owner of an
AppleShare 2.0.1 server is the server administrator. The owner of a File Sharing server is the
owner of the Macintosh system as set by the Sharing Setup control panel. All other users of a
server are considered regular users. Figure 2 shows the Finder icon of a folder that is a share point
mounted by some regular user.

a:

Figure 2-Folder that is a Share Point Mounted by a Regular User

#301: File Sharing and Shared Folders 1 of 3

Macintosh Technical Notes

Folders under a share point are already in a shared area and cannot be share points. However,
those folders have access privileges so the visual feedback given by the Finder is the icon shown in
Figure 3.

Figure 3-Folder in a Shared Area of the Folder Hierarchy

To allow applications to see share points and folders in shared areas, new bit definitions have been
added to the ioF lAtt rib bitmap returned by the File Manager call PBGet Cat Info when the
information returned is for a folder. Bit 4 of ioF Attrib is always set for folders. If a folder is
a share point, bit 5 of ioF lAttrib is set. If a folder that’s a share point is mounted, bit 3 of
ioF lAttrib is set. If a folder is in a shared area of the folder hierarchy, bit2 of ioF lAttrib
is set. If a folder is locked, bit 0 of ioF Attrib is set. Folders can locked or unlocked with the
PBHSetFLock or PBHRstFLock calls. Figure 4 shows the ioF lAttrib bitmap for folders
as returned by PBGet Cat Info under the System 7 File Manager.

746} 5] 4] 3} 24 1] 0]
Set if folder is a share point

Always set for folders

Set if share point is mounted by some regular user

Set if folder is in a shared area of the folder hierarchy

Set if folder is locked

Figure 4-ioFlAttrib for a Folder

Note: These bits are READ-ONLY for folders. Do not try to set these bits with the
PBSetCatInfo call.

Note: As noted in Inside Macintosh, Volume VI, PBCat Search searches only on bits 0 and 4.
The additional bits returned in ioF lAttrib by PBGetCatInfo cannot be used by
PBCatSearch.

Shared Folders and Blank Access Privileges

Another difference between AppleShare 2.0.1 and File Sharing is that File Sharing supports a new
user access privilege called blank access privileges. A folder with blank access privileges set
ignores the other access privilege bits and uses the access privilege bits of its parent. On the local
Macintosh, folders in a shared area default to blank access privileges (until set otherwise) and new
folders created in a shared area are given blank access privileges. Folders created over AppleShare
are given the same access privileges as the parent folder (or volume) and are owned by the user that
created them.

Blank access privileges are useful because folders’ access privileges now behave in a way which
users expect them to. When a folder with blank access privileges is moved around within a folder
hierarchy, it always reflects the access privileges of its containing folder. However, once the blank
access privileges bit has been cleared for a folder, its access privileges “stick” to that folder, and
remain unchanged no matter where the folder is moved.

2 of 3 #301: File Sharing and Shared Folders

Developer Technical Support August 1991

Volumes that support blank access privileges have the bHasBlankAccessPrivileges bit set
in vMAttrib longword of the volume parameter data returned by the PBHGet VolParms call.
Folders with blank access privileges can be identified with the PBHGetDirAccess call.
PBHSetDirAccess allows you to set blank access privileges. When bit 28 of ioACAccess is
set, blank access privileges are set for a folder. The entire access privileges longword with the
new bit for blank access privileges is shown in Figure 5.

Blank Access Privileges

Directory owner

User’s privileges 31] 3029] 28] 27] 26] 25] 24
Everyone’s privileges

15] 14] 13}12] 11] 10] 9] 8 | Group’s privileges

1746| 5] 4/3] 2] 1] 0] Owner’s privileges

Write

Read

Search

Figure 5-Access Privileges in ioACAccess

Note: Only the blank access privileges bit (bit 28) in the high byte of ioACAccess may be set
when calling PBHSetDirAccess. You cannot set the directory owner bit or the user’s
privileges of a folder.

Note: The blank access privileges bit is not retumed in the ioACUser field by the
PBGetCatiInfo routine.

Further Reference:
¢ Inside Macintosh, Volume IV, The File Manager
¢ Inside Macintosh, Volume V, File Manager Extensions In a Shared Environment
¢ Inside Macintosh, Volume VI, The File Manager
¢ Inside AppleTalk, AppleTalk Filing Protocol

#301: File Sharing and Shared Folders 3 of 3

4

Macintosh eo
Technical Notes ® Gaede a pc ee eee

Developer Technical Support

#302: Help for Movable Modal Dialogs

Written by: James “im” Beninghaus
August 1991

This Technical Note describes the process by which an application can remap the Help Manager 'hmnu'

resource while a movable modal dialog box is on the screen. The Help Manager handles the case for modal

dialog boxes but punts in the case of movable modal dialog boxes. The following information will help

you get the correct interface performance.
a

What’s involved

The System 7 support for movable modal dialog boxes is limited to providing the new “WDEF’ variant.

The rest of the implementation of movable modal dialog boxes is left to the application. Applications must

provide handling for all events intended for a movable modal dialog box. This could be accomplished by

calling the IsDialogEvent and DialogSelect Toolbox routines, or using other Toolbox routines such as

FindWindow, BeginUpdate, DrawDialog, EndUpdate, TrackControl, TEClick.

How you process the events is up to you, but when it comes to appropriate balloon help the application

must Call the EnablelItem, DisableItem and HMSetMenuResID Toolbox routines. The HMSetMenuResID

is used before and after enabling or disabling the menus. HMSetMenuResID routine maps an alternative

‘hmnu’' resource to your menus.

The Systems 'hmnu' string resource

Listed here are two alternative 'hmnu' resources. The first one uses the same strings that the Help Manager
shows when ModalDialog is called. The constant kKHMHelpID is defined in the interface files
BalloonsTypes.r, Ballons.h, and Balloons.p. In general it refers to the ID of various Help Mgr resources.
In this case it selects a STR# resource in the System and the constants 31 and 32 refer to the string index
within that resource. These strings are the ones the Help Manager uses when a Modal Dialog Box is on the
screen.

resource 'hmnu' (256,"System Movable Modal Dialog hmnu") {

HelpMgrVersion,

hmDefaultOptions,

0,

O,

HMStringResItem { /* Missing items */

0, 0,

kHMHelpID, 31,

0, 0,

0, 0,

HMStringResItem { /* Menu Title */

0, 0,

#302: Help for Movable Modal Dialogs 1 of 3

KHMHelpID, 32,

0; 0,

},

ye

An alternate 'hmnu' from your application

If you don’t want to display the same strings that the Help Manager displays for Modal Dialog Boxes, you
can map in your own alternate 'hmnu' resource such as the following.

resource 'hmnu' (256,"Application Movable Modal Dialog hmnu") {

HelpMgrVersion,

hmDefaultOptions,

0,

O,

HMStringItem { /* Missing items */
nme

i:

"This item is not available because it cannot be used with"

"the About box on your screen.",

HMStringlItem { /* Menu Title */

ne
,

"This menu is not available because it cannot be used with"

"the About box on your screen.",

bahar
f

an WwW
’

};

This resource is just an example. It’s up to you to define the contents of the strings including the

internationalization issues.

Using the alternate 'hmnu' resource

After displaying the movable modal dialog box on the screen, the application should disable inappropriate

menus and items and map in the alternate 'hmnu' resources.

menu = GetMHandle(mApple) ;

DisableItem(menu, 0);

HMSetMenuResID(mApple, 256);

menu = GetMHandle(mFile) ;

DisableItem(menu, 0);

HMSetMenuResID(mFile, 256);

menu = GetMHandle (mEdit) ;

DisableItem(menu, 0);

HMSetMenuResID(mEdit, 256);

DrawMenuBar () ;

WO
nL EE

E

2 of 3 #302: Help for Movable Modal Dialogs

Removing the alternate 'hmnu' resource

After removing the movable modal dialog box from the screen, the application must enable appropriate
menus and items and unmap the alternate 'hmnu' resources.

E>

menu = GetMHandle(mApple) ;

EnableItem(menu, 0);

HMSetMenuResID(mApple, -1);

menu = GetMHandle(mFile) ;

EnableItem(menu, 0);

HMSetMenuResID(mFile, -1);

menu = GetMHandle(mEdit) ;

EnableItem(menu, 0);

HMSetMenuResID(mEdit, -1);

DrawMenuBar () ;

Note: The previous fragments of code do not perform error checking. Well-behaved applications
perform error checking whenever required. In these example the menu handle should be
checked for a nil value before calling DisableItem and Enableltem.

Further Reference:
¢ Inside Macintosh, Volume V1, Help Manager

#302: Help for Movable Modal Dialogs 3 of 3

f 4

Ps Ul

Macintosh

Technical Notes ®

Developer Technical Support

#303: Using a PurgeProc

Written by: Mensch August 1991

This Technical Note discusses the use of the purgeProc field of an application’s heap zone.

Introduction

Most applications will never need to use a purgeProc. However, if your application requires the
ability to maintain purgeable handles containing data, or you need to have special notification when
a certain handle is purged, a purgeProc might help you.

What exactly is a purgeProc?

The purgeProc, which is documented in very briefly in/nside Macintosh, Volume 2, page 2-23, is
the mechanism which allows the Memory Manager to alert your application that it is getting ready
to purge a given purgeable handle. This warning is given so that you can save the data, or note for
any special reason that the data no longer exists. The purgeProc is passed the handle that is being
purged. It is up to you to determine if any action should be taken on the handle. The Pascal
interface to the purgeProc looks something like this:

PROCEDURE MyPurgeProc (theHandle:Handle);

In C it would look like this:

pascal void myPurgeProc(Handle theHandle) ;

Each zone has its own purgeProc pointer in its zone header. Each time the Memory Manager
prepares to purge a handle, it checks the zone header of the zone that the handle belongs to, to
determine if your application has installed a purgeProc. If this field is not NIL, it calls the routine
pointed to with the handle being purged. This occurs for each handle being purged (not every
purgeable handle necessarily). When your routine is called, test the handle passed to be sure that it
is a handle you care about, and then act on it. Keep in mind that all handles that pass through your
purgeProc may not be expected, since your application can create purgeable handles in a few ways,
like calling _HPurge on an existing handle, or loading a resource (the resource could have the
purgeable attribute set), or by calling a routine that could load a resource.

Installing a purgeProc

You install your own purgeProc by setting the field in your zone header. Here is a sample routine
that installs a purgeProc:

PROCEDURE InstallProc;

VAR myZone: THz;

BEGIN

#303: Using a PurgeProc 1 of 2

Macintosh Technical Notes

myZone:=Get Zone; { recover my applications zone }

gOldProc:=myZone*.purgeProc; { save the old purgeProc }

myZone* .purgeProc:=@myPurgeProc;

END;

You must be sure to follow these rules regarding what a purge proc must, can, and cannot do.

* Do not rely on A5 being set properly to your application’s globals. (See Technical Note #208).
* Do not cause memory to be moved or purged.
* Do not open a file (but you can write to an already open file).
* Do not dispose of or change the purge status of the passed handle.
¢ Only use purgeProcs when absolutely needed.
¢ Avoid using purgeProcs if you are also using the SetResPurge(true) feature.
¢ Do write any data to a data file synchronously.
* Do preserve the contents of all registers except AO-A2/D0/D1.
* Do use the FindFolder feature of System 7 to locate the temporary folder on the user’s hard disk
if you are creating a temporary file to hold the contents of purged handles.
* Do test the handle state first to determine if the handle belongs to the Resource Manager, to weed
out most handle purges you do not care about
* Do not take too long to determine if the passed handle is in need of purge notification (many

programmers do not realize just how many purgeable handles come and go, or how often their
purgeProc might be called for a single new handle).

Here is a pseudo code sample that illustrates one possible use of the purge warning procedure:

saving the contents of the handle to a file before purging.

Procedure PurgeWarning (theHandle:myHType) ;

begin

SetUpApplicationAS; { see Inside Mac and Tech Notes for how to do this }

IF BAND(hGetState(theHandle) ,$20)=0 then

BEGIN {If we get here the handle does not belong to a resource}

IF InSaveList (theHandle) then WriteData(theHandle) ;

END;

RestoreOldAS5;

END;

Remember, the save file should probably be open at this point because opening a file can cause

memory to move. You will have to maintain a save list to indicate. purgeable handles that need

saving.

NOTE: If you plan to use the SetResPurge(true) option that allows you to modify purgeable

resources (not a normal thing for an application to do), don’t patch the purgeProc pointer.

If you do, remove your purgeProc, call SetResPurge, then re-install the purgeProc, being

sure that it calls through to the Resource Manager’s routine after it is finished.

Conclusion

PurgeProcs can be used when an application needs to better manage low memory situations, and

easily take advantage of large memory conditions. Be very careful when using them, however,

keeping in mind that you are in the middle of a Memory Manager routine when you are being

called, and you may be called often.

Further Reference:
© Inside Macintosh, Volume 1, Memory Manager chapter

¢ Technical Note #208, Setting and Restoring A5

e Inside Macintosh, Volume VI, Finder Interface chapter (FindFolder)

a

2 of 2 #303: Using a PurgeProc

| i

4

Macintosh a4

Technical Notes _
Te ag de

Developer Technical Support

#304: Pending Update Perils

Revised by: C.K. Haun <TR> October 1991

Written by: C.K. Haun <TR> August 1991

This Technical Note discusses potential problems when pending update events for windows

behind modal dialogs are not serviced. This note also documents some new System 7 Dialog

Manager calls.
Changes since August 1991: Added note clarifying how to use the new calls, documented

use of StdFilterProc in Interface.o,and corrected code errors.

a

Introduction

Modal dialog boxes have always caused some problems with windows behind dialog windows.

Since the Moda1Dialog call makes an internal event call that bypasses your normal event loop you

have always had the potential for not knowing that updates have occured for the other windows in

your application when you are in a Moda1Dialog loop.

If you’ve ever written a filter procedure for a modal dialog, you’ve probably seen this for yourself.

Your filter will get a continual stream of update events. These events are not for the dialog, but are

for the window behind the dialog, which has not been updated since the modal dialog came up.

Since the event has not come through your normal event loop you have probably not serviced the

update since you are only concerned about events for your dialog, so it keeps getting resent. The

only way for the update to stop is for the update region of the affected window to be cleared, by

the Begin/EndUpdate calls in your drawing routine (see the discussion of update handling in Inside
Mac I, the Window Manager chapter).

This situation is exacerbated by screen savers or Balloon Help in System 7. If a screen saver
becomes active while a modal dialog is up, or if your user has Balloon help on and part of a behind
window is obscured by a balloon, then an update event will be generated for the behind window,
and you normally have no way to clear it.

The Update And Modal Dialog

Under System 7 (and in System 6 under MultiFinder), if there is an update event pending for
your application, no other applications, drivers, control panels, or anything else will get time.

Updates pending for other applications do not cause the problem, they will be handled normally by
the application in the background. But updates for the frontmost application must be serviced or
the other applications will not get time.

#304: Pending Update Perils 1 of 9

Macintosh Technical Notes emcee

This is a potential Bad Thing. Many pieces of code need time to keep living, to maintain network
connections, or just to look good.

A simple example is the Clock desk accessory. Open the Clock DA, then launch an application that
you know has a modal dialog. Position the clock so you can see it, and you’ll notice that it
refreshes its time count even while it’s in the background.

Now make sure there is a document window open in the frontmost application. Turn on Balloon
Help from the Help menu.

Open a modal dialog in the application (the About box in most applications will work). Now move
the cursor over the window behind the modal dialog. A balloon will appear saying something like
"This window is not active because a dialog box is up....", and a piece of the window will be
blasted by the balloon. Now look at the Clock. It has stopped running. The window that got
zapped by the balloon now has an update pending for it, that update is going through the
ModalDialog trap, and not through the program’s event loop, so it is not being serviced. Time
stops for all other applications.

Note: This only happens if the update is for the same application as the dialog box. If
you blast a window in another application (like the Finder) then that update will be
processed normally.

Yuck, that’s nasty!

You have two choices in your application to prevent this from happening. The first is to have no
other open windows in your application when you open a modal dialog. Obviously, this isn’t a
realistic solution. :

The second, saner, solution is to provide yourself a mechanism to refresh all your windows from
within your modal dialog.

A filter procedure (described in the Dialog Manager chapter of Inside Mac volume J) is the proper
tool to use to fix this problem. You’ll need to add a simple filter procedure to every dialog or alert
you bring up in your application. And, in most cases, it can be the same filter for every dialog, so
it’s not a great deal of extra code.

You’re going to have to do a little preparation to do this. Your filter proc needs to have a way to
call the drawing procedure for any of your windows. There are many ways to do this, dictated by
the specific needs of your application and your own programming style. You may want to create a
window control object that contains a pointer to your drawing routine, you may want to include the
same check and dispatch you have in your main event loop, or use another method which you are
comfortable with.

The simplest, bare bones method, would be to include a flag for your drawing procedure in your
window record refCon, and have your drawing routine vector based on the value in the refCon, as

shown here.

In MPW C
/* Window drawing proc, defined somewhere else */

Boolean MyDrawProc(WindowPtr windowToDraw)

{
Boolean returnVal = true;

/* switch off the value you've stored in your window earlier */

switch (GetWRefCon(windowToDraw)) {

EE

2 of 9 #304: Pending Update Perils

Developer Technical Support
October 1991

case kMyClipboard: /* draw my clipboard */

DrawMyClip (windowToDraw) ;

break;

case kMyDocument: /* document content */

DrawMyDoc (windowToDraw) ;

break;

default: /* do nothing for anything else, to prevent drawing a window */

returnVal = false; /* that isn’t mine */

break; }

/* this return value is used to tell the Dialog Manager if you’ve handled the update */

/* or not when this is called from your filter. In normal uses (i.e. in response to */

/* an updateEvent in your main event loop) the boolean is unnecessary, but it doesn’t */

/* do any harm */

return (returnVal) ;

}
/* install the flag when I create the window */

myWindowPtr = Get NewWindow (kMyWindowID,nil, (WindowPtr)-1);

SetWRefCon (myWindowPtr, (long) myDrawingProcFlag) ;

In your filter, the update handling would look something like this

if (theEventIn->what == updateEvt && theEventIn->message != myDialogPtr) {

/* if the update is for the dialog box, ignore it since the regular ModalDialog function */

/* will redraw it as necessary */

return (MyDrawProc((WindowPtr) theEventIn->message));

/* go to my drawing routine, window will be redrawn if I own it */

}

In MPW Pascal

{ The function’s result is used to tell the Dialog Manager if you’ve handled the update }

{ or not when this is called from your filter. In normal uses (i.e. in response to }

{ an updateEvent in your main event loop) the boolean is unnecessary, but it doesn’t }

{ do any harm. The window drawing procedure is defined somewhere else. }

FUNCTION MyDrawProc(windowToDraw WindowPtr): BOOLEAN;

BEGIN

CASE GetWRefCon(windowPtr) OF

kMyClipboard:

BEGIN

DrawMyClipboard (windowToDraw) ;
MyDrawProc := TRUE;

END;

kMyDocument:

BEGIN

DrawMyDocument (windowToDraw) ;

MyDrawProc := TRUE;

END;

OTHERWISE

MyDrawProc := FALSE;

END; {CASE}

END;

Install the flag when you create a window:

#304: Pending Update Perils 3 of 9

Macintosh Technical Notes

myWindowPtr := GetNewWindow(kMyWindowID, NIL, WindowPtr(-1));
SetWRefCon (myWindowPtr, myDrawingProcFlag) ;

In your filter, the update handling would look something like this:

FUNCTION MyFilter(currentDialog: DialogPtr; VAR theEventIn: EventR : ; E - ecord; VAR thel :
INTEGER) : BOOLEAN; a

{ if the update is for the dialog box, ignore it since the regular ModalDialog
{ function will redraw it as necessary }

BEGIN

IF (theEventIn.what = updateEvt AND theEventIn.message <> currentDialog)

BEGIN

MyFilter := MyDrawProc(currentDialog) ;

END;

If you do some, you have to do a little more....

The only down side to adding your own filter procedure to a dialog is that the Dialog Manager then
assumes that you are handing more than just updates. Specifically, the Dialog Manager assumes
that you are handling the standard "return key aliases to item 1" filtering. So, you need to write
keystroke handling in the filter yourself.

The Dialog Manager in System 7 has some new calls you can make to ease the load on your
program. These calls were created and tested too late in System 7’s development cycle to be
documented in Inside Macintosh, so they are presented here. They allow you to call on the
services of the System to track standard keystrokes in your dialog.

NOTE: You must call the standard filter proc (see GetStdFilterProc below) for these new
calls to work properly. Automatic cursor tracking, default button bordering, and keystroke
aliasing for OK and Cancel will only be active if you call the standard filter procedure.
Also, these calls are System 7 specific. You cannot use them in previous system versions.

To make things even easier, MPW 3.2 and later contain glue code to allow you to call the standard
filter procedure without calling GetStdFilterProc and dispatching to the procedure pointer returned.

The glue routine is called StdFilterProc and is contained in the Interface.o file in the standard MPW

libraries. The description of the call is included below. If you are not using the MPW

development environment and do not have access to the MPW libraries from your development

environment, you will of course have to get the procedure pointer and call it yourself.

New System 7 Dialog Manager call interfaces

MPW C

/* Returns a pointer to the Dialog Manager’s standard dialog filter */

pascal OSErr GetStdFilterProc(ModalFilterProcPtr *theProc)

= { 0x303C, 0x0203, OxAA68 };

/* Indicates to the Dialog Manager which item is default. Wiil then alias the return =f

/* & enter keys to this item, and also bold border it for you (yaaaaa') */

pascal OSErr SetDialogDefaultItem(DialogPtr theDialog, short newlItem)

= { 0x303C, Ox0304, OxAAE8 };

/* Indicates which item should be aliased to escape or Command - . */

ee

4 of 9 #304: Pending Update Perils

)

Developer Technical Support
October 1991

pascal OSErr SetDialogCancelitem(DialogPtr theDialog, short newItem)

= { 0x303C, 0x0305, OxAAG8 };

/* Tells the Dialog Manager that there is an edit iine in this dialog, and */

/* it should track and change to an I-Beam cursor when over the edit line */

pascal OSErr SetDialogTracksCursor (DialogPtr theDialog, Boolean tracks)

= { 0x303C, 0x0306, OxAA68 };

/* This routine is included in the MPW 3.2 Interface.o library, and eliminates the */

/* need for you to have to dispatch to the ModalFilterProcPtr returned by GetStdFilterProc */

/* StdFilterProc will call GetStdFilterProc and dispatch to it for you «/

pascal Boolean StaFilterProc(DialogPtr theDialog, EventRecord xtheEvent, short *itemHit);

MPW Pascal

{ Returns a pointer to the Dialog Manager’s standard dialog filter }

| FUNCTION GetStdFilterProc(VAR theProc: ProcPtr): OSErr;

INLINE $303C, $0203, SAA68;

{ Indicates to the Dialog Manager which item is default. Will then alias the return & }

{ enter key }

{ to this item, and also bold border it for you (yaaaaa!) }

| FUNCTION SetDialogDefaultItem(theDialog: DialogPtr; newItem: INTEGER): OSErr;

INLINE $303C, $0304, SAA68;

{ Indicates which item should be aliased to escape or Command - . }

| FUNCTION SetDialogCancelitem(theDialog: DialogPtr; newItem: INTEGER) : OSErr;

INLINE $303C, $0305, SAA68;

{ Tells the Dialog Manager that there is an edit line in this dialog, and }

{ it should track and change to an I-Beam cursor when over the edit line }

| FUNCTION SetDialogTracksCursor(theDialog: DialogPtr; tracks: Boolean) :OSErr;

INLINE $303C, $0306, SAA68 ;

{ This routine is included in the MPW 3.2 Interface.o library, and eliminates the }

{ need for you to have to dispatch to the ModalFiiterProcrtr returned by GetStdFilterProc }

{ StdFilterProc will call GetStdFilterProc and dispatch to it for you }
FUNCTION StdFilterProc(theDialog: DialogPtr; VAR event: EventRecord; VAR itemHit: INTEGER):

BOOLEAN;

MPW Assembly

selectGetStdFilterProc EQU 3

paramWordsGetStdFilterProc EQU 2

selectSetDialogDefaultItem EQU 4

paramWordsSetDialogDefaultItem EQU

selectSetDialogCancelitem EQU 5

paramWordsSetDialogCancelitem EQU 3

selectSetDialogTracksCursor EQU 6

paramWordsSetDialogTracksCursor EQU 3

_DialogDispatch OPWORD SAA68

MACRO

DoDialogMgrDispatch &routineName

DoDispatch _DialogDispatch, select éroutineName, paramWordsé rout ineName

ENDM

; Returns a pointer to the Dialog Manager’s standard dialog filter

; FUNCTION GetStdFilterProc(VAR theProc: ProcPtr): OSErr;

#304: Pending Update Perils 5 of 9

Macintosh Technical Notes ————————————————— eee

MACRO

_GetStdFilterProc
DoDialogMgrDispatch GetStdFilterProc
ENDM

Indicates to the Dialog Manager which item is default. Will then alias the return key
& enter key to this item, and also bold border it for you (yaaaaa!)
FUNCTION SetDialogDefaultItem(theDialog: DialogPtr; newlItem: INTEGER): OSErr;

Se Ne Nee

MACRO

_SetDialogDefaultItem

DoDialogMgrDispatch SetDialogDefaultItem

ENDM

Indicates which item should be aliased to escape or Command - .

; FUNCTION SetDialogCancelItem(theDialog: DialogPtr; newItem: INTEGER): OSErr;

MACRO

_SetDialogCancelitem

DoDialogMgrDispatch SetDialogCancelitem

ENDM

; Tells the Dialog Manager that there is an edit line in this dialog, and

; it should track and change to an I-Beam cursor when over the edit line

; FUNCTION SetDialogTracksCursor(theDialog: DialogPtr; tracks: Boolean): OSErr;

MACRO

_SetDialogTracksCursor
DoDialogMgrDispatch SetDialogTracksCursor

ENDM

Using these calls requires a little preparation on your part. After you create your dialog, you need
to tell the Dialog Manager which items you want as the default and cancel items. The button
selected as the cancel item will be toggled by the Escape key or by a Command-. keypress. The
button specified as the default will be toggled by the return or enter key, and also will have the
standard heavy black border drawn around it! The buttons will also be hilited when the correct key
is hit.

The SetDialogTracksCursor Call tells the Dialog Manager that you have edit lines in your

dialog. When you pass a ‘true’ value to the SetDialogTracksCursor call the Dialog Manager

will constantly check cursor position in your dialog, and change the cursor to an I-Beam when the

cursor is over an edit line.
So the complete System 7 filter, incorporating update handling and new Dialog Manager calls, will

look something like this;

MPW C

/* Before we go into a ModalDialog loop, do a little preparation */

myDialogPtr = GetNewDialog(kMyDialogID, nil, (WindowPtr)-1);

myErr = SetDialogDefaultItem(myDialogPtr, ok); /* Tell the Dialog Manager that the OK */

/* button is the default */

myErr = SetDialogCancelItem(myDialogPtr,cancel); /* Teli the Dialog Manager the cancel */

/* outton is the cancel item */

myErr = SetDialogTracksCursor (myDialogPtr, true); /* We have an edit item in our dialog,so

EE

6 of 9 #304: Pending Update Perils

Bid

Developer Technical Support
October 1991

/* tell the Dialog Manager to change */

/* the cursor to an I-Beam when it’s */

/* over the edit line */

do {

ModalDialog((ModalFilterProcPtr)myFilter, shitItem);

}while(hitItem != ok && hitItem !=cancel);

/* and your filter will look something like this */

pascal Boolean myFilter(DialogPtr currentDialog, EventRecord *theEventIn, short

*theDialogItem)

{OSErr myErr;

ModalFilterProcPtr standardProc;

Boolean returnVal = false;

WindowPtr temp;

if (theEventIn->what == updateEvt && theEventIn->message != currentDialog) {
/* if the update is for the dialog box, ignore it */

/* since the regular ModalDialog function

/*¥will redraw it as necessary */

returnVal = MyDrawProc(theEventIn->message); /* go to my drawing routine */

} else {

/* it wasn’t an update, pass it on to the */

/* system filter */

GetPort (&temp) ; /* save the current port */

SetPort (currentDialog) ; /* and set to the dialog, this is necessary */

/* to track the edit line */

/* cursor change correctly */

/* NOTE: If you are using MPW 3.2, there is a glue routine in the Interface.o library */

/* that will take care of the details of getting and dispatching to the standard filter */

/* for you. If you are not using MPW 3.2, you will have to call the standard */

/* filter procedure yourself. Both ways will be shown here, remember to only use */

/* one of these for you actual implementation */

#ifdef MPW3.2

/* using MPW 3.2, use the glue */

StdFilterProc(currentDialog,theEventIn,theDialogItem); /* MPW 3.2 glue routine */

#else

/* not using MPW 3.2, get and call the standard filter myself */

myErr = GetStdFilterProc(é&standardProc) ; /* get the standard system dialog filter

/* address */

/* if it was not an update, we pass control to the standard filter */

if (!myErr)

returnVal= ((ModalFilterProcPtr) standardProc) (currentDialog, theEventIn, theDialogItem) ;

#endif

SetPort (temp) ;}

return (returnVal) ;

}

MPW Pascal

{ Before we go into a ModalDialog loop, do a little preparation }

{ This inline dispatches to the standard dialog filter for you }

PROCEDURE CallStdFilterProc(theDialog: DialogPtr; VAR event: EventRecord; VAR itemHit:
INTEGER; standardProc : ProcPtr);

INLINE $205F, $4EDO;

{ This pulls the proc pointer of the stack and jumps to the standard filter, }
{ MOVE.L (SP)+,A0 }

{ JMP (AO) }

myDialogPtr := GetNewDialog(kMyDialogID, NIL, WindowPtr(-1));
myErr := SetDialogDefaultItem(myDialogPtr, ok); { Tell the Dialog Manager the default item }
myErr := SetDialogCancelItem(myDialogPtr, cancel); { Teli Dialog Manager the cancel item }
myErr := SetDialogTracksCursor(myDialogPtr, TRUE); { We have an edit item in our dialog, }

{ so tell the Dialog Manager to change the }
{ cursor 20 en i-Beam when it’s over edit line }

REPEAT

ModalDialog(@MyFilter, hitItem);

ONTIL ((hitItem = ok) OR (hitItem = cancel));

oO eeeeeeSSSSFSSSSSSSSSSSSSSSshhhehesesesesesssFFFFeFee

#304: Pending Update Perils 7 of 9

Macintosh Technical Notes re

Your filter for System 7 will look something like this:

FUNCTION MyFilter(currentDialog: DialogPtr; VAR theEventIn: EventRecord; VAR theltem:
INTEGER) : BOOLEAN;

VAR

savePort : GrafPort;

BEGIN

{ if the update is for the dialog box, ignore it since the regular ModalDialog

{ function will redraw it as necessary }

IF (theEventIn.what = updateEvt AND theEventIn.message <> currentDialog)

MyFilter := MyDrawProc(currentDialog)

ELSE

BEGIN

Get Port (savePort) ; { save the current port }

SetPort (currentDialog) ; { set to the dialog, this is necessary to }

{ track the edit line cursor change correctly }

NOTE: If you are using MPW 3.2, there is a glue routine in the Interface.o library }

that will take care of the details of getting and dispatching to the standard filter }

for you. If you are not using MPW 3.2, you will have to call the standard }

filter procedure yourself. Both ways will be shown here, remember to only use }

one of these for you actual implementation } as ee ca eae ee

{$IFC MPW3.2 }

{ using MPW 3.2, use the glue }

StdFilterProccurrentDialog, theEventIn, theltem); { MPW 3.2 glue routine }

{ $ELSEC}

{ not using MPW 3.2, get and call the standard filter myself }

myErr := GetStdFilterProc(gStandardProc); {get the current system standard filter and }

{ store it in a global, so our assembly glue can use it }

{ if it was not an-update, pass control to the assembly glue that will call the }

{ standard filter }

IF myErr = noErr THEN

MyFilter := CallStdFilterProc(currentDialog, theEventIn, theItem,gStandardProc) ;

{ SENDC}
SetPort (savePort) ; { restore the saved port }

END;

END;

The System 6 Way
Of course, under pre-System 7 applications you can’t use the new calls, so you have to do it

yourself. Here’s a sample System 6.0.x filter proc that does roughly the same thing. Of course,

you can’t call the new Dialog Manager routines under System 6.
MPW C
/* Pre-system 7 dialog filter */

pascal Boolean MyFilter(DialogPtr currentDiaiog, EventRecord *theEventin, short

*theDialogItem)

{ /* declared as ‘pascal’ since it’s called by the toolbox */

#define kMyButtonDelay 8

Boolean returnVal = false;

long waitTicks;

short itemKind; /* some temporary variables for GetDItem use */

Handle itemHandle;

Rect itemRect;

if (theEventIn->what == updateEvt && theEventIn->message ‘> myDialogPtr) {

/* myDialogPt is defined where you created the dialog */

/* if the update is for the dialog box, ignore */

/* it since the regular ModalDialog function */

redraw it as necessary */

returnVal = MyDrawProc(theEvent In->message) ; /* go tc my drawing routine */

} else {

nn —.

8 of 9 #304: Pending Update Perils

Developer Technical Support
October 1991

/* it wasn’t an update, see if it was a x/

/* keystroke */

/* Check for the return or enter key, */

/* and alias that as item 1. */

/* I also included a check here for the escape */

/* key aliasing as item 2, you may not af

/* want to use that */

if ((theEventIn->what == keyDown) || (theEventIn->what == autoKey)) {

/* it was a key */
switch (theEventIn->message & charCodeMask) {

case kReturnKey:

case kEnterKey:

theDialogitem = ok; / change whatever the current item is to x/

/* the OK item ok is #defined in Dialogs.h as 1*/

/* now we need to invert the button so the */

/* user gets the right feedback */

GetDItem(currentDialog, ok, &itemKind, &itemHandle, éitemRect) ;

HiliteControl((ControlHandle) itemHandle, inButton); /* invert the button */

Delay (kMyButtonDelay , &waitTicks); /* wait about 8 ticks so they can see it */

HiliteControl((ControlHandle) itemHandle, false); /* and back to normal */

returnVal = true; /* tell the Dialog Manager we handled this event */

break;
/*This filters the escape key the same as item 2 */

/= (the cancel button,usually) */

case kEscKey:

theDialogItem = cancel; / cancel is #defined in Dialogs.h as 2 */

GetDItem(currentDialog, cancel, éitemKind, sitemHandle, éitemRect) ;

HiliteControl((ControlHandle) itemHandle, inButton);

Delay (kMyButtonDelay , &waitTicks);/* wait about 8 ticks so they can see it */

HiliteControl((ControlHandle) itemHandle, false);

returnVal = true; /* tell the Dialog Manager we handled this event */

break;

}

}

}
return(returnVal);

}

MPW Pascal

{ Your filter for pre-System 7 will look something like this: }

FUNCTION MyFilter(currentDialog: DialogPtr; VAR theEventIn: EventRecord; VAR thelItem:

INTEGER) : BOOLEAN;

CONST

kMyButtonDelay = 8;

VAR

itemKind : INTEGER;

itemHandle : Handle;

itemRect : Rect;

savePort : GrafPtr;

waitTicks : LONGINT;

BEGIN

{ if the update is for the dialog box, ignore it since the regular ModalDialog

{ function will redraw it as necessary }

IF (theEventIn.what = updateEvt AND theEventIn.message <> currentDialog)

MyFilter := MyDrawProc(theEventiIn.message)

ELSE { it wasn’t an update, see if it was a keystrcexe }

BEGIN

{ Check for the return or enter key, and alias that as item "ok". }

{ I also included a check here for the escape xey aliasing as item "cancel", }

{ you may not want to use that }

IF ((theEventIn.what = keyDown) OR (thefventiIn.what = autokey)

BEGIN { it was a key }

#304: Pending Update Perils 9 of 9

Macintosh Technical Notes

CASE CHR(BAnd(theEventIn.message, charCodeMask)) OF

kReturnkey, kEnterKey:

BEGIN

GetDIitem(currentDialog, ok, itemKind, itemHandle, itemRect);

HiliteControl(ControlHandle(itemHandle), TRUE);

Delay (kMyButtonDelay , waitTicks); { wait about 8 ticks so they can see it }

HiliteControl(ControlHandle(itemHandle), FALSE); { and back to normal }

MyFilter := TRUE; { tell the Dialog Manager we handled this event }

END;

kEscKey:

BEGIN

theItem := cancel;

GetDItem(currentDialog, cancel, itemKind, itemHandle, itemRect);

HiliteControl(ControlHandle(itemHandle), TRUE);

Delay (kMyButtonDelay , waitTicks); { wait about 8 ticks so they can see it }

HiliteControl(ControlHandle(itemHandle), FALSE); { and back to normal }

MyFilter := TRUE; { tell the Dialog Manager we handled this event }

END;

END; {CASE}

END;

END;

END;

Conclusion

Neverending updates are not a new problem, MultiFinder just makes it imperative that you do
something about it. There isn’t much extra work involved, just add a simple filter to all your
dialogs and alerts, and put a flag to your drawing proc in your window structure.

The results will allow the system to continue to run smoothly, and as an added benefit your users
will always see your application windows the way they should be, instead of windows with
chunks bitten out of them.

Also, using the new Dialog Manager calls (even when you’re not using a filter) allow you to
present a consistent user interface across the whole system, a goal we’re all striving for.

Further Reference:
e Inside Macintosh, Volume I, Window Manager, Dialog Manager, Event Manager

a

10 of 10 #304: Pending Update Perils

a

4

Macintosh @

Technical Notes .
Baccano S

Developer Technical Support

#305: PBShare, PBUnshare, and PBGetUGEntry

Written by: Jim Luther
October 1991

This Technical Note documents three new File Manager routines available on shared local

volumes. The Pascal glue code, C glue code, and the assembler equates and macros for the calls

are included in this note.

Three new File Manager routines, PBShare, PBUnshare and PBGetUGEntry are available on

local volumes that have File Sharing enabled. These three routines are necessary to implement a

“Sharing” dialog used to make a volume or directory a “share point” on the network and to set the

Owner and User/Group of a shared folder. (For a description of share points, see Macintosh

Technical Note #301.) The PBShare routine makes a volume or folder a share point. The

PBUnshare routine undoes the effect of PBShare; it makes a share point unavailable on the

network. The PBGetUGEnt ry routine lets you access the list of User and Group names and IDs

on the local file server.

File Sharing should be on and the volume should be sharable before you call these three routines.

You can check to see if File Sharing is turned on and that the local volume is sharable by calling the

PBHGet VolParms routine and checking the bHasPersonalAccessPrivileges (local File

Sharing is enabled) bit returned in the vMAtt rib field of the Get VolParmsInfoBuffer. File

Sharing is turned on if local File Sharing is enabled on any mounted volume. A portion of a

volume can be shared only if local File Sharing is enabled on that volume. The following two

functions can be used for these checks:

FUNCTION VolIsSharable (vRefNum: Integer): Boolean;

{See if local File Sharing is enabled on the volume specified by vRefNum}

VAR

pb: HParamBlockRec;

infoBuffer: GetVolParmsInfoBuffer;

err: OSErr;

BEGIN

WITH pb DO
BEGIN

ioNamePtr := NIL;

ioVRefNum := vRefNum;

ioBuffer := @infoBuffer;

ioReqCount := SizeOf(infoBuffer) ;

END;

err := PBHGetVolParmsSync(@pb) ;

IF err = noErr THEN

IF BIst (infoBuffer.vMAttrib, bHasPersonalAccessPrivileges) THEN

VolIsSharable := TRUE

ELSE

VolIsSharable := FALSE

ELSE

VolIsSharable := FALSE;

END;

#305: PBShare, PBUnshare, and PBGetUGEntry 1 of 9

Macintosh Technical Notes ————"|:.nansnmn eee ee

FUNCTION SharingIsOn: Boolean;

{See if File Sharing is turned on by seeing if any volume has}
{local File Sharing enabled}

VAR

pb: HParamBlockRec;

errs OSErr;

voliIndex: Integer;

sharing: Boolean;

BEGIN

sharing := FALSE; {assume File Sharing is off}
volIndex := 1;

REPEAT

WITH pb DO
BEGIN

ioNamePtr := NIL;

ioVolIndex := volIndex;

END;

err := PBHGetVInfoSync(@pb) ;

IF err = noErr THEN

sharing := VolIsSharable(pb.ioVRefNum) ;
volIndex := volIndex + 1;

UNTIL (err <> noErr) OR sharing; {stop if error or if a volume has}

{local File Sharing enabled}

SharingIsOn := sharing;

END;

The Routines

Assembly-Language Note: These routines are called through the HFSDispatch
 ° macro with register AO pointing to the parameter block

and register DO containing a routine selector. When
your completion routine is called, register AO points to
the parameter block of the asynchronous call and register
DO contains the result code. See Inside Macintosh
Volume IV, pages IV-115 through IV-119, for detailed
information.

PBShare

FUNCTION PBShare (paramblock: HParmBlkPtr; async: Boolean)

OSErr;

Trap Macro Share
Routine selector $42

Parameter Block

—> 12 ioCompletion long pointer to completion routine

< 16 ioResult word result code

—> 18 ioNamePtr long pointer to directory name

—> 22 ioVRefNum word volume specification

—> 48 ioDirID long parent directory ID

PBShare makes the directory pointed to by the ioNamePt r/ioDirID pair on the volume

specified by ioVRefNum a share point.
a

2 of 9 #305: PBShare, PBUnshare, and PBGetUGEntry

Developer Technical Support October 1991

Field descriptions

ioCompletion Longword input pointer: A pointer to the completion routine.

ioResult Word result value: Result code.

ioNamePtr Longword input pointer: Points to the directory name, or NIL if ioDirID
is the directory ID.

ioVvRefNum Word input value: The volume specification (volume reference number,
working directory reference number, drive number, or 0 for default
volume).

ioDirID Longword input value: The directory or parent directory specification.

Result codes
noErr 0 No error
tmfoErr -42 Too many share points
fnfErr -43 File not found
dupFNErr -48 There is already a share point with this

name
paramErr -50 This function is not supported
dirNFErr -120 Directory not found
afpAccessDenied -5000 This folder cannot be shared
afpObjectTypeErr -5025 Object was a file, not a directory

a> afpContainsSharedErr -5033 The directory contains a share point
afpInsideSharedErr -5043 The directory is inside a shared directory

Pascal glue code for PBShare:

FUNCTION PBShare (paramBlock: HParmBlkPtr; async: BOOLEAN): OSErr;
| INLINE $101F, { MOVE.B (A7)+,D0 }

| $205F, { MOVEA.L (A7)+,A0 }

| $6606, { BNE.S *+$0008 }

| $7042, { MOVEQ #$42,D0 }

$A260, { _FSDispatch, Immed }

$6004, { BRA.S *+$0006 }

$7042, { MOVEQ #$42,D0 }

$A660, { _FSDispatch,Sys,Immed }

$3E80; { MOVE.W DO, (A7) }

FUNCTION PBShareSynec (paramBlock: HParmBlkPtr): OSErr;

INLINE S$205F, { MOVEA.L (A7) +, A0 }

$7042, { MOVEQ #$42,D0 }

$A260, { _FSDispatch, Immed }

$3E80; { MOVE.W DO, (A7) }

FUNCTION PBShareAsync (paramBlock: HParmBlkPtr): OSErr;

INLINE $205F, { MOVEA.L (A7) +,A0 }

$7042, { MOVEQ #$42,D0 }

SA660, { _FSDispatch,Sys,Immed }

$3E80; { MOVE.W DO, (A7) }

#305: PBShare, PBUnshare, and PBGetUGEntrry 3 of 9

Macintosh Technical Notes

MPW C v3.1 glue code for PBShare:

pascal OSErr PBShare (HParmBlkPtr paramBlock, Boolean async)

= {O0x101F, /* MOVE.B (A7) +,D0 */

Ox205F, /* MOVEA.L (A7) +,A0 */

0x6606, /* BNE.S *+$0008 */

0x7042, /* MOVEQ #$42,D0 */

OxA260, /* _FSDispatch, Immed a A
0x6004, /* BRA.S *+$0006 zy

0x7042, /* MOVEQ #$42,D0 af

OxA660, /* _FSDispatch, Sys, Immed */
Ox3E80}; /* MOVE.W DO, (A7) */

pascal OSErr PBShareSyne (HParmBlkPtr paramBlock)

= {Ox205F, /* MOVEA.L (A7)+,A0 =f

0x7042, /* MOVEQ #$42,D0 */

OxA260, /* _FSDispatch, Immed */
Ox3E80}; /* MOVE.W DO, (A7) x/

pascal OSErr PBShareAsyne (HParmBlkPtr paramBlock)

= {Ox205F, /* MOVEA.L (A7)+,A0 */

0x7042, /* MOVEQ #$42,D0 */

OxA660, /* _FSDispatch, Sys, Immed */

Ox3E80}; /* MOVE.W DO, (A7) */

MPW C v3.2 glue code for PBShare:

pascal OSErr PBShare (HParmBlkPtr paramBlock, Boolean async)

= {Oxl01F, /* MOVE.B (A7) +,D0 */

Ox205F, /* MOVEA.L (A7)+,A0 iif

Ox6606, /* BNE.S *+$0008 */

0x7042, /* MOVEQ #$42,D0 */

OxA260, /* _FSDispatch, Immed ay
0x6004, /* BRA.S *+$0006 */

0x7042, /* MOVEQ #$42,D0 */

OxA660, /* _FPSDispatch, Sys, Immed */
Ox3E80}; /* MOVE.W DO, (A7) af

#pragma parameter __DO PBShareSync(_ AO)
pascal OSErr PBShareSync (HParmBlkPtr paramBlock)

= {0x7042, /* MOVEQ #$42,D0 Wa

OxA260}; /* _FSDispatch, Immed oy 4

#pragma parameter _ DO PBShareAsync(_ AO)

pascal OSErr PBShareAsyne (HParmBlkPtr paramBlock)

= {0x7042, /* MOVEQ #$42,D0 */

OxA660}; /* _FSDispatch,Sys,Immed */

Assembler equate and macro for_Share:

selectShare EQU $42

macro

_Share éasyncl, éasync2

DoHFSDispatch selectShare, éasyncl, &async2

endm

i

4 of 9 #305: PBShare, PBUnshare, and PBGetUGEntry

Developer Technical Support
October 1991

PBUnshare

} FUNCTION PBUnshare (paramblock: HParmBlkPtr; async: Boolean)

OSErr;

Trap Macro Unshare
Routine selector $43

Parameter Block

— 12 ioCompletion long pointer to completion routine

< 16 ioResult word result code

— 18 ioNamePtr long pointer to directory name

— 22 ioVRefNum word volume specification

—> 48 ioDirID long parent directory ID

PBUnshare makes the share point pointed to by the ioNamePt r/ioDirID pair on the volume

specified by iovRefNum unavailable on the network; it undoes the effect of PBShare.

Field descriptions

ioCompletion Longword input pointer: A pointer to the completion routine.

ioResult Word result value: Result code.

ioNamePtr Longword input pointer: Points to the directory name, or NIL if ioDirID

Pron _ is the directory ID.

iovRefNum Word input value: The volume specification (volume reference number,

working directory reference number, drive number, or 0 for default

volume).

ioDirID Longword input value: The directory or parent directory specification.

Result codes
noErr 0 No error

fnfErr -43 File not found

dirNFErr -120 Directory not found

afpObjectTypeErr -5025 Object was a file, not a directory, or this
directory is not a share point

Pascal glue code for PBUnshare:

FUNCTION PBUnshare (paramBlock: HParmBlkPtr; async: BOOLEAN): OSErr;

INLINE $101F, { MOVE.B (A7)+,D0 }

$205F, { MOVEA.L {(A7) +,A0 }

$6606, { BNE.S *+$0008 }

$7043, { MOVEQ #$43,D0 }

$A260, { _FSDispatch, Immed }

$6004, { BRA.S *+$0006 }

$7043, { MOVEQ #$43,D0 }

$SA660, { _FSDispatch,Sys,Immed }

, $3E80; { MOVE.W DO, (A7) }

#305: PBShare, PBUnshare, and PBGetUGEntry 5 of 9

Macintosh Technical Notes

FUNCTION PBUnshareSynec (paramBlock: HParmBlkPtr): OSErr;
INLINE $205F, { MOVEA.L (A7)+,A0 }

$7043, { MOVEQ #$43,D0 }
$A260, { _FSDispatch, Immed }
$3E80; { MOVE.W DO, (A7) }

FUNCTION PBUnshareAsynec (paramBlock: HParmBlkPtr): OSErr;
INLINE $205F, { MOVEA.L (A7) +, A0 }

$7043, { MOVEQ #$43,D0 }
SA660, { _FSDispatch,Sys,Immed }

S3E80; { MOVE.W DO, (A7) }

MPW C v3.1 glue code for PBUnshare:

pascal OSErr PBUnshare (HParmBlkPtr ParamBlock, Boolean async)
= {0xl01F, /* MOVE.B (A7)+,D0 */

Ox205F, /* MOVEA.L (A7)+,A0 */
Ox6606, /* BNE.S *+$0008 x,
0x7043, /* MOVEQ #$43,D0 *«/
OxA260, /* _FSDispatch, Immed */
0x6004, /* BRA.S *+$0006 =
0x7043, /* MOVEQ #$43,D0 */
OxA660, /* _FSDispatch,Sys,Immed */
Ox3E80}; /* MOVE.W DO, (A7) */

pascal OSErr PBUnshareSynce (HParmBlkPtr paramBlock)
= {0x205F, /* MOVEA.L (A7) +,A0 cae |

0x7043, /* MOVEQ #$43,D0 «f/f

OxA260, /* _FSDispatch, Immed xf

Ox3E80}; /* MOVE.W DO, (A7) Lf

pascal OSErr PBUnshareAsyne (HParmBlkPtr paramBlock)

= {0Ox205F,

0x7043,

OxA660,

Ox3E80};

/*

/*

/*

/*

MOVEA.L (A7)+,A0

MOVEQ #$43,D0
_FSDispatch, Sys, Immed
MOVE.W DO, (A7)

MPW C v3.2 glue code for PBUnshare:

pascal OSErr PBUnshare (HParmBlkPtr paramBlock, Boolean async)

= {0x101F,

Ox205F,

Ox6606,

0x7043,

OxA260,

0x6004,

0x7043,

OxA660,

Ox3E80};

/*

/*

/*

/*

/*

/*

/*

/*

/*

MOVE.B (A7)+,D0

MOVEA.L (A7) +,A0

BNE.S *+$0008
MOVEQ #$43,D0

_FSDispatch, Immed
BRA.S *+$0006

MOVEQ #$43,D0

_FSDispatch, Sys, Immed

MOVE .W DO, (A7)

eA

i

my

st

i}

sf

*/

= 7

xy

ai A

olf

*/

ef

#pragma parameter _— DO PBUnshareSync(_ AO)

pascal OSErr PBUnshareSync

= {0x7043,

OxA260};

/*

/*

MOVEQ #$43,D0

_FSDispatch, Immed

(HParmBlkPtr paramBlock)

*/}

*/

#pragma parameter DO PBUnshareAsync(_ AO)

pascal OSErr PBUnshareAsync

= {0x7043,

OxA660};

6 of 9

/* MOVEQ #$43,D0

/* _FSDispatch,Sys,Immed */

(HParmBlkPtr paramBlock)

aif

#305: PBShare, PBUnshare, and PBGetUGEntry

Developer Technical Support
October 1991

Assembler equate and macro for_Unshare:

selectUnshare EQU $43

macro

_Unshare &asyncl, &async2

DoHFSDispatch selectUnshare, &asyncl, &async2

endm

PBGetUGEntry

FUNCTION PBGetUGEntry (paramblock: HParmBlkPtr; async: Boolean)

OSErr;

Trap Macro GetUGEntry
Routine selector $44

Parameter Block

— 12 ioCompletion long pointer to completion routine

« 16 ioResult word result code

—> 26 ioObjType word object type function code

— 28 ioO0bjNamePtr long ptr to returned user/group name

& 32 ioObjID long user/group ID

PBGetUGEnt ry asks the local file server for the next user or group in its list. PBGetUGEntry

returns the user or group name and the user or group ID.

Field descriptions ~

ioCompletion Longword input pointer: A pointer to the completion routine.

ioResult Word result value: Result code.

io0b Type Word input value: Determines the type of object to be returned, as follows:

$0001 return next user
$0002 return next group
$0003 return next user or next group

ioObjNamePtr Longword input pointer: Points to a result buffer where the user or group
name is to be returned. If the pointer is NIL, then no name is returned. The
name is returned as a Pascal string with a maximum size of 31 characters
(Str31).

ioObjID Longword input/result value: The server will return the first user or group
whose name is alphabetically next from the user specified by ioObjID.
Setting i0Ob jID to 0 will return the first user or group. On returm,
ioObjID will be the user or group’s ID.

You can enumerate the user or group list in alphabetical order by calling this routine again and
again without changing the parameter block until the result code fnfErr is returned.

#305: PBShare, PBUnshare, and PBGetUGEntry 7 of 9

III EEL EO

Macintosh Technical Notes eS

Result codes

noErr 0 No error
paramErr -50 The io0bjID is negative or this function

1s not supported
fnfErr -43 There are no more users or groups to

retum

Pascal glue code for PBGet UGEnt ry:

FUNCTION PBGetUGEntry (paramBlock: HParmBlkPtr; async: BOOLEAN): OSErr;
INLINE $101F, { MOVE.B (A7) +, D0 }

$205F, { MOVEA.L (A7) +, A0 }
$6606, { BNE.S *+$0008 }
$7044, { MOVEQ #$44,D0 }

$A260, { _FSDispatch, Immed }

$6004, { BRA.S *+$0006 }

$7044, { MOVEQ #$44,D0 }

$A660, { _FSDispatch,Sys,Immed }

$3E80; { MOVE.W DO, (A7) }

FUNCTION PBGetUGEntrySync (paramBlock: HParmBlkPtr): OSErr;

INLINE $205F, { MOVEA.L (A7) +,A0 }

$7044, { MOVEQ #$44,D0 }

$A260, { _FSDispatch, Immed }

$3E80; { MOVE.W DO, (A7) }

FUNCTION PBGetUGEntryAsync (paramBlock: HParmBlkPtr): OSErr;

INLINE $205F, { MOVEA.L (A7) +, A0 }

$7044, { MOVEQ #$44,D0 }

$A660, { _FSDispatch,Sys,Immed }

$3E80; { MOVE.W DO, (A7) }

MPW C v3.1 glue code for PBGet UGEnt ry:

pascal OSErr PBGetUGEntry (HParmBlkPtr paramBlock, Boolean async)

= {Ox101F, /* MOVE.B (A7)+,D0 «f/f

Ox205F, /* MOVEA.L (A7)+,A0 ay A

Ox6606, /* BNE.S *+$0008 «/

0x7044, /* MOVEQ #$44,D0 at

OxA260, /* _FSDispatch, Immed */

0x6004, /* BRA.S *+$0006 * ff

0x7044, /* MOVEQ #$44,D0 */

OxA660, /* _FSDispatch,Sys,Immed */

Ox3E80}; /* MOVE.W DO, (A7) ial 4

pascal OSErr PBGetUGEntrySyne (HParmBlkPtr paramBlock)

= {Ox205F, /* MOVEA.L (A7) +, A0 bail d

0x7044, /* MOVEQ #$44,D0 «/

OxA260, /* _FSDispatch, Immed xf
Ox3E80}; /* MOVE.W DO, (A7) “/

pascal OSErr PBGetUGEntryAsyne (HParmBlkPtr paramBlock)

= {0x205F, /* MOVEA.L (A7) +,A0 a

0x7044, /* MOVEQ #$44,D0 sd f

OxA660, /* _FSDispatch,Sys,Immed */

Ox3E80}; /* MOVE.W DO, (A7) */

aN

8 of 9 #305: PBShare, PBUnshare, and PBGetUGEntry

Developer Technical Support October 1991

| MPW C v3.2 glue code for PBGet UGEnt ry:

pascal OSErr PBGetUGEntry (HParmBlkPtr paramBlock, Boolean async)

] = {Ox101F, /* MOVE.B (A7)+,D0 */

Ox205F, /* MOVEA.L (A7) +, A0 af

Ox6606, /* BNE.S *+$0008 */

0x7044, /* MOVEQ #$44,D0 *“/

OxA260, /* _FSDispatch, Immed */

0x6004, /* BRA.S *+$0006 */

0x7044, /* MOVEQ #$44,D0 */

OxA660, /* _FSDispatch,Sys,Immed */

Ox3E80}; /* MOVE.W DO, (A7) xf

#pragma parameter _ DO PBGetUGEntrySync(__ A0)
pascal OSErr PBGetUGEntrySyne (HParmBlkPtr paramBlock)

= {0x7044, /* MOVEQ #$44,D0 ag

0xA260}; /* _FSDispatch, Immed */

#pragma parameter _ DO PBGetUGEntryAsync(_ AO)

pascal OSErr PBGetUGEntryAsynce (HParmBlkPtr paramBlock)

= {0x7044, /* MOVEQ #$44,D0 */

OxA660}; /* _FSDispatch,Sys,Immed */

| Assembler equate and macro for_GetUGEntry:

selectGetUGEntry EQU $44

macro

_GetUGEntry é&asyncl, &async2

DoHFSDispatch selectGetUGEntry, éasyncl, &async2

endm

fay

Further Reference:
¢ Inside Macintosh, Volume IV, The File Manager
¢ Inside Macintosh, Volume V, File Manager Extensions In a Shared Environment
¢ Inside Macintosh, Volume VI, The File Manager

| ¢ Inside AppleTalk, AppleTalk Filing Protocol
| ¢ Technical Note #301, File Sharing and Shared Folders

|

a eee na ee en

#305: PBShare, PBUnshare, and PBGetUGEntry 9 of 9

Gap

4
Macintosh —

Technical Notes a

Developer Technical Support

#306: Drawing Icons the System 7 Way

Revised by: Jim Mensch May 1992
Written by: Jim Mensch and David Collins October 1991

This Technical Note describes how to utilize the built-in System 7 icon drawing utility. Use this
information to better conform to the System 7.0 visual human interface.

Introduction

With the introduction of System 7.0 for the Macintosh, Apple has defined a new look and feel for
many screen elements that better utilize color. Among other elements, the icons drawn by the
Finder and other system components have been redefined. While Apple has documented how to
create this new look for most elements, Apple has not documented how to draw the icons the way
the Finder does in System 7. This Technical Note discusses all the icon toolkits that the Finder
uses to draw and manipulate the icons on the screen. Two of the calls, PlotIconID and
PlotCIconHandle, are the ones you will probably use the most since they deal with simply drawing
single icons to the screen. Other places in the Toolbox require that an icon family handle be passed
to them to allow the drawing of color icons. The toolkit provides calls that allow you to create,
draw, and manipulate these handles. What follows is a description of the new icon data structures
and the calls in the icon toolkit.

The New 'ic' Type Resources

PlotIconID and PlotCIconHandle allow the use of standard Clcons as documented in /nside
Macintosh Volume V and the use of a new set of icon resources utilized by the PlotIconID call. This new icon type is actually not a single resource but a collection of many different icons into a family. Each member of the family has a consistent resource ID and a resource type indicating what type of icon data is stored in that particular resource. Currently Apple has defined three sizes of icons and three different bit depths for each size. The sizes are large (32x32 pixels), small (16x16 pixels), and mini (12x12 pixels), and the bit depths are 1, 4, and 8. The actual resource types are
defined as follows:

LargelBitMask = "ICN#';
Large4BitData = ‘kel4t,
Large8BitData = ‘icl8';
Small1BitMask = 'ics#';
Small4BitData = ‘ics4';
Small8BitData = '1es8"5
MinilBitMask = "sicn';
Mini4BitData = ‘icm4';
Mini8BitData = 'icm8';

The 1-bit-per-pixel member of each size also contains the mask data for all icons of that size (yes, this means that all your icons of a certain size must have the same mask). A 1-bit-per-pixel member

eee

#306: Drawing Icons the System 7 Way
1 of 8

Macintosh Technical Notes

must exist for each icon size you want PlotIconID to use. The icon size to use is determined by the
size of the destination rectangle. If the destination rect is greater than 16 pixels on a side then the
large icon will be used. If the destination rect is 13-16 pixels on both sides the small icon will be
used. If the destination is 12 or less on each side the mini icon will be used. The bit depth is
determined by the device of the grafPort you plot into at drawing time. Be sure that you always
create a color grafPort any time you want to use color icons.

Icon Families (or Suites and Caches As the Tool Set Refers to Them)

An icon family is simply a collection of icon handles that contain up to one image of each bit depth
and size for a given icon. By using families, you remove the need to determine which size or depth
of icon to use when drawing into a given rectangle. Several system routines can take an icon family
handle when an icon is requested (the Notification Manager for example) so that the proper color
icons can be used if available. An icon family can be fully populated (every possible size or depth
available) or it can have only those icons that exist or are needed. In the case of a sparsely
populated icon family, if the proper icon is not available the icon tool set will pick an appropriate
substitute that will produce the best results.

An icon cache is a family that also has a ProcPtr and a refCon. The main difference between a

cache and a family is that the elements of the cache’s array are sparsely populated. When using an

icon cache, the system either will use the entry in the icon family portion of the cache, or if the

desired element is empty, it will call your procPtr and request the data for the icon. The Proc has
the following calling convention:

Function GetAnicon(theType:ResType; yourDataPtr:Ptr) :Handle;

This function should return either the icon data to be used to draw or NIL to signify that this entry

in the icon cache does not exist. Icon caches can be used with all icon family calls and have a few

extra calls used to manipulate them.

Now that we know about the different data types let’s examine how to manipulate the drawing:

Drawing Modes or Transforms

In addition to being drawn in various sizes and bit depths, icons can be drawn with different

“Modes” or transforms. Transforms are analogous to certain Finder states for the icons. For

example, the transform that you would use to show an icon of a disk that has been ejected is

ttOffline. Here is a list of the current transforms that are available:

{ IconTransformType values }

ttNone = $0;

ttDisabled = $l;

ttOffline = $2;

ttOpen = $3;

ttSelected = $4000;

ttSelectedDisabled = (ttSelected + ttDisabled) ;

ttSelectedOffline = (ttSelected + ttOffline);

ttSelectedOpen = (ttSelected + ttOpen);

The actual appearance of the icon drawn by each transform type may vary with future system

software, so you should always try to use the transform that best fits the state it represents in your

application. In this way you will be consistent with any possible future changes to the look and feel

of regular system icons. Note that the ttSelected transform can be added to any of the other

a

2 of 8
#306: Drawing Icons the System 7 Way

Developer Technical Support May 1992

transform types. Additional transform types exist for displaying the icon of a file inside your
application that use the Finder label colors to color the icon. To determine the proper label for a
file’s icon, you can check bits 1-3 of the fdFlags field in the file’s Finder info (See the File
Manager chapter in /nside Macintosh Volume IV for more information). These bits contain a
number from 0 to 7. Simply add the corresponding ttLabel value to the transform that you give the
call. The label values are defined like this:

ttLabel0O = $0000;

ttLabell = $0100;

ttLabel2 = $0200;

ttLabel3 = $0300;

ttLabel4 = $0400;

ttLabel5 = $0500;

ttLabel6é = $0600;

ttLabel7 = $0700;

Alignment

Most icons do not fully fill their rectangle, and it is sometimes necessary to draw an icon relative to
other data (like menu text). In these instances it would be nice to be able to have the icon move in
its rectangle so that it will be at a predictable location in the destination rectangle. Therefore, when
drawing an icon you can pass one of these standard alignments in the alignment parameter or you
can add a vertical alignment to a horizontal alignment to create a composite alignment value.

atNone = $0;

atVerticalCenter = $1;

atTop = $2;

atBottom = $3;

atHorizontalCenter = $4;

atLeft = $8;

atRight = SC;

And Now (Drum Roll Please) the Calls and What to Pass

Now that we have defined every major data type we can think of, here is the real meat of this Tech
Note: the actual calls themselves. Iam providing only the Pascal and C interfaces here since they
do not appear in your current MPW Interfaces folder. Disk copies of these can be found on
AppleLink and on current and future versions of the Developer CD Series disc.

Icon Family Calls

Function NewIconSuite(var theSuite:Handle) :OSErr;

This call returns an empty icon family handle with all members set to NIL.

Function AddIconToSuite(theIconData: Handle; theSuite: Handle;

theType:ResType) :OSErr;

This call will add the data in theIconData into the suite at the location reserved for theType of icon
data. This call will replace any old data in that slot without disposing of it, so you may want to call
GetIconFromSuite to obtain the old handle (if any) to dispose. This call will be used most often
with the NewIconSuite call to fill the empty family after it’s created.

Function GetIconFromSuite(Var theIconData: Handle; theSuite:Handle;

theType:ResType) :OSErr;

-_ eee

#306: Drawing Icons the System 7 Way 3 of 8

Macintosh Technical Notes

This call will return a handle to the pixel data of the family member of theSuite specified by
theType. If you intend to dispose of this handle, be sure to call AddIconToSuite with a NIL handle
to zero out the family entry.

Function ForEachIconDo(theSuite: Handle; theSelector:Longint;

actionProc:procPtr; yourData: UNIV ptr) :OSErr;

This routine will call your actionProc for each icon in the family specified by theSelector and
theSuite. TheSelector is a bit level flag that specifies which family members to operate on; they can
be added together to create composite selectors that work on several different family members. The
values for theSelector are as follows:

{ IconSelectorValue masks }

svLargelBit = $00000001;

svLarge4Bit = $00000002;

svLarge8Bit = $00000004;

svSmal11Bit = $00000100;

svSmall4Bit = $00000200;

svSmall8Bit = $00000400;

svMinilBit = $00010000;

svMini4Bit = $00020000;

svMini8Bit = $00040000;

svAllLargeData = SOOOOOOFfF;

svAll1SmallData = SOOO00ff00;

svAllMiniData = SOO0ff0000;

svAll1BitData = (svLargelBit + svSmall1lBit + svMinilBit);

svAl114BitData = (svLarge4Bit + svSmall4Bit + svMini4Bit);

svA118BitData = (svLarge8Bit + svSmall8Bit + svMini8Bit);

svAllAvailableData = Sffffftftf;

The action procedure that gets called for each icon type selected for the family is a Pascal type
function with the following interface:

Function ActionProc(var theIconData:Handle; theType:ResType; yourDataPtr: UNIV ptr) :OSErr;

theIconData is passed by reference here so that your routine can modify the contents of the suite
directly. yourDataPtr is the value passed when you called forEachIconDo; it allows you to easily
communicate with your application. The action procedure returns an OSEnrr; if any value other than
noErr is returned, forEachIconDo will stop processing immediately and return the error passed.
(Note: This implies that the icons selected may only be partially operated on.) There is no

guaranteed order in which the icons get operated on.

Function GetIconSuite(Var theSuite: Handle; theID:Integer;

theSelector:Longint) :OSErr;

GetIconSuite will create a new icon family and then fill it with the icons with the passed ID, of the

indicated types in theSelector, from the current resource chain. This is the call you will probably

use most often to create an icon family. Note: If you SetResLoad(False) before making this call,

the suite will be filled with unloaded resource handles.

Function PlotIconSuite(theRect:Rect; alignment: Integer; transform:Integer;

theSuite:Handle) :OSErr;

This call renders the proper icon image from the passed icon family based on the bit depth of the

display you are using and the rectangle that you have passed. Alignment and transform are applied

to the icon selected for drawing and then the icon is plotted into the current grafPort. PlotIconSuite

On

4 of 8 #306: Drawing Icons the System 7 Way

Developer Technical Support May 1992

chooses the appropriate icon based primarily on size; once the proper icon size is determined
(based on the destination rectangle) the present member of that size with the deepest bit depth that
the current device can use is selected. A size category is considered present if the black and white
member (with mask) is present, ICN#, ics#, or icm#. PlotIconSuite can be used for both picture

accumulation and printing.

Function DisposeIconSuite(theSuite:Handle; disposeData: Boolean) :OSErr;

This call disposes the icon family handle itself; in addition if disposeData is true, any of the icon
data handles that do not belong to a resource fork will also be disposed.

Function SetSuiteLabel(theSuite: Handle; theLabel:Integer) :OSErr;

This call allows you to specify a label that is used to draw an icon of this suite when noLabel is
specified in PlotIconSuite. This is used primarily when you want to make sure that a family passed
to a system routine gets drawn with the proper label. The default label can be overridden by
specifying a label in PlotIconSuite.

Function GetSuiteLabel(theSuite:Handle; var theLabel:Integer) :OSErr;

returns any label set with SetSuiteLabel previously.

Icon Cache Calls

In addition to the icon family calls above, icon caches have these additional calls:

Function MakeIconCache(VAR theCache:Handle; GetAnIcon:ProcPtr;

yourDataPtr:Ptr) :OSErr;

This call creates an empty icon cache similar to NewIconSuite, and associates the additional icon
loading proc and data value with the family.

Function LoadIconCache (theRect:Rect; alignment: Integer; transform:Integer;
theSuite:Handle) :OSErr;

This call allows you to preflight the loading of certain elements of your icon cache. This is handy
when you suspect that certain drawing operations will occur at a time not convenient for you to
load your icon data (for example, when your resource fork might not be in open chain).
LoadIconCache takes the same parameters as PlotIconSuite and uses the same criterion to select the
icon to load. Be sure that the grafPort is set properly before you make this call since it is part of the
criterion for determining which icon to load.

The following four calls are provided to allow you to change the dataPtr and procPtr associated
with an icon cache:

Function GetCacheData (theCache: Handle; VAR yourDataPtr:Ptr) :OSErr;
Function SetCacheData(theCache: Handle; yourDataPtr: Ptr) :OSErr;
Function GetCacheProc(theCache: Handle; VAR theProc:ProcPtr) :OSErr;
Function SetCacheProc (theCache: Handle; theProc:ProcPtr) :OSErr;

Plotting Icons Not Part of a Suite

The following two calls are grouped because they are very similar. These routines let you simply plot an icon to the screen without having to create an icon suite. They are also good if you have a
cicn instead of an icon family.
eee

#306: Drawing Icons the System 7 Way 5 of 8

BT
Macintosh Technical Notes

FUNCTION PlotIconID(TheRect: Rect;

Align: Integer;

Transform: Integer;

TheResID: INTEGER): OSErr;

FUNCTION PlotCIconHandle(TheRect: Rect;

Align: Integer;

transform: Integer;

TheCIcon: CIconHandle): OSErr;

TheRect is the destination rectangle to draw the indicated icon into.

Align is the alignment method to use if the icon does not exactly fit the rectangle given. Pass zero
for this value. See the next version of this Tech Note for more information on alignment.

Transform indicated the desired appearance of the icon on the screen.

TheResID is the resource ID of the family of 'ic' type resources to use. If the correct bit depth or
size required is not defined, the closest-fitting one will be used.

TheClcon is a handle that you get to a standard QuickDraw color icon. Call GetCIcon to load these

and do not forget to dispose of it when you are done (sometimes they can take up quite a bit of

memory).

Both functions return an error code if all did not go well with the drawing, or in the case of the

PlotIconID call, if the indicated icon family could not be used.

Miscellaneous Calls

Function GetLabelColor(labelNumber: Integer; var labelColor:RGBColor;

VAR lLabelString:str255) :OSErr;

This call returns the actual color and string used in the label menu of the Finder and the label’s

Control Panel. This information is provided in case you wish to include the label text or color

when displaying a file’s icon in your application.

Function IconSuiteToRgn (theRgn: RgnHandle; iconRect:Rect

Alignment: Integer; iconSuite:Handle) :OSErr;

Function IconIDToRgn (theRgn: RgnHandle; iconRect:Rect

Alignment:Integer; iconID: Integer) :OSErr;

These routines will create a region from the mask of the icon selected by the Rect and Alignment

passed. This will allow you to do accurate hit testing and outline dragging of an icon in your

application. TheRgn handle must have been previously allocated before you make this call.

Function RectInIconSuite(testRect:Rect; iconRect: Rect; Alignment:Integer;

IconSuite:Handle) :Boolean;

Function RectInIconID (testRect:Rect; iconRect: Rect; Alignment :Integer;

IconID: Integer) :Boolean;

Function PtInIconSuite(testPoint: Point; iconRect:Rect; Alignment: Integer;

IconSuite:Handle) :Boolean;

Function PtInIconID(testPoint: Point; iconRect:Rect; Alignment: Integer;

IconID: Integer) :Boolean;

These calls hit test the passed point or rect again the icon indicated. The iconRect, alignment, an
d

grafPort should be the same as when the icon was drawn last. They return true if the point is in the

icon mask, or if the rect intersects the icon mask.

nn

6 of 8
#306: Drawing Icons the System 7 Way

Developer Technical Support May 1992

Glue for C and Pascal

Since the standard interface files do not contain the glue for these calls, I am going to include it
here since Tech Notes sometimes get distributed in electronic format and if all else fails you can
copy and paste it.

{ Pascal Glue }

FUNCTION PlotIconID(theRect: Rect;align: Integer;transform: Integer;

theResID: INTEGER): OSErr; INLINE $303C, $0500, SABC9;

FUNCTION NewIconSuite(VAR theIconSuite: Handle): OSErr; INLINE $303C, $0207, SABC9;

FUNCTION AddIconToSuite(theIconData: Handle;theSuite: Handle;theType: ResType): OSErr;

INLINE $303C, $0608, SABC9;

FUNCTION GetIconFromSuite(VAR theIconData: Handle;theSuite: Handle;theType: ResType): OSErr;

INLINE $303C, $0609, SABC9;

FUNCTION ForEachIconDo(theSuite: Handle;selector: Integer;action: ProcPtr;

yourDataPtr: Ptr): OSErr; INLINE $303C, $060A, SABC9;

FUNCTION GetIconSuite(VAR theIconSuite: Handle;theResID: INTEGER;

selector: Integer): OSErr; INLINE $303C, $0501, SABC9;

FUNCTION DisposeIconSuite(theIconSuite: Handle;disposeData: BOOLEAN): OSErr;

INLINE $303C, $0302, SABC9;

FUNCTION PlotIconSuite(theRect: Rect;align: Integer;transform: Integer;

theIconSuite: Handle): OSErr; INLINE $303C, $0603, SABC9;

FUNCTION MakeIconCache(VAR theHandle: Handle;makelIcon: procPtr;

yourDataPtr: UNIV Ptr): OSErr; INLINE $303C, $0604, SABC9;

FUNCTION LoadIconCache(theRect: Rect;align: Integer;transform: Integer;

theIconCache: Handle): OSErr; INLINE $303C, $0606, SABC9;

FUNCTION GetLabel(labelNumber: INTEGER; VAR labelColor: RGBColor;

VAR labelString: Str255): OSErr; INLINE $303C, $050B, S$ABC9;

FUNCTION PtInIconID(testPt: Point; iconRect: Rect; align: Integer;

iconID: INTEGER): BOOLEAN; INLINE $303C, $060D, SABC9;

FUNCTION PtInIconSuite(testPt: Point; iconRect: Rect;align: Integer;

theIconSuite: Handle): BOOLEAN; INLINE $303C, SO70E, SABCQ9;

FUNCTION RectInIconID(testRect: Rect; iconRect: Rect;align: Integer;

iconID: INTEGER): BOOLEAN; INLINE $303C, $0610, SABC9;

FUNCTION RectInIconSuite(testRect: Rect; iconRect: Rect;align: Integer;

theIconSuite: Handle): BOOLEAN; INLINE $303C, $0711, SABC9;

FUNCTION IconIDToRgn(theRgn: RgnHandle; iconRect: Rect;align: Integer;

iconID: INTEGER): OSErr; INLINE $303C, $0913, SABC9;

FUNCTION IconSuiteToRgn(theRgn: RgnHandle; iconRect: Rect;align: Integer;

theIconSuite: Handle): OSErr; INLINE $303C, $0914, SABCQ9;

FUNCTION SetSuiteLabel (theSuite: Handle; theLabel: INTEGER): OSErr;

INLINE $303C, $0316, SABC9;
FUNCTION GetSuiteLabel (theSuite: Handle): INTEGER; INLINE $303C, $0217, SABC9;
FUNCTION GetIconCacheData(theCache: Handle; VAR theData: Ptr): OSErr;

INLINE $303C, $0419, SABCQ;

FUNCTION SetIconCacheData(theCache: Handle; theData: Ptr): OSErr;

INLINE $303C, $041A, SABC9;
FUNCTION GetIconCacheProc(theCache: Handle; VAR theProc: ProcPtr): OSErr;

INLINE $303C, $041B, SABC9;

FUNCTION SetIconCacheProc(theCache: Handle; theProc: procPtr): OSErr;

INLINE $303C, $041C, SABC9;
FUNCTION PlotCIconHandle(theRect: Rect; align: INTEGER; transform: INTEGER;

theCIcon: CIconHandle): OSErr; INLINE $303C, SO61F, SABCQ9;

/* C Glue */
pascal OSErr PlotIconID(const Rect *theRect, short align, short transform, short theResID)

= {0x303C, 0x0500, 0xABC9};
pascal OSErr NewIconSuite(Handle *theIconSuite) = {0x303C, 0x0207, 0OxABC9};
pascal OSErr AddIconToSuite(Handle theIlconData,Handle theSuite,ResType theType)= {0x303C, 0x0608, 0xABC9};
pascal OSErr GetIconFromSuite(Handle *theIconData,Handle theSuite,ResType theType)= {0x303C, 0x0609, 0xABC9};
pascal OSErr ForEachIconDo(Handle theSuite,short selector,ProcPtr action,void *yourDataPtr)

= {0x303C, 0x080A, 0xABC9};
pascal OSErr GetIconSuite(Handle *theIconSuite,short theResID,short selector)= {0x303C, 0x0501, 0xABC9};
pascal OSErr DisposeIconSuite(Handle thelconSuite,Boolean disposeData)= {0x303C, 0x0302, 0xABC9};

eee

#306: Drawing Icons the System 7 Way 7 of 8

Macintosh Technical Notes

pascal OSErr PlotIconSuite(const Rect *theRect,short align,short transform,Handle theIconSuite)

= ({0x303C, 0x0603, 0xABC9};
pascal OSErr MakeIconCache(Handle *theHandle,ProcPtr makelcon,void *yourDataPtr)= {0x303C, 0x0604, 0xABC9}; P
pascal OSErr LoadIconCache(const Rect *theRect,short align,short transform,Handle theIconCache) wo)

= {0x303C, 0x0606, 0OxABC9};
pascal OSErr GetLabel(short labelNumber,RGBColor *labelColor,Str255 labelString)= {0x303c, 0x0S0B, 0xABC9};

pascal Boolean PtInIconID(Point testPt,Rect *iconRect,short alignment,short iconID)= {0x303c, 0x060D, 0xABC9};

pascal Boolean PtInIconSuite(Point testPt,Rect *iconRect,short alignment,Handle theIconSuite)
= {0x303c, 0x070E, 0xABC9};

pascal Boolean RectInIconID(Rect *testRect,Rect *iconRect,short alignment,short iconID)
= {0x303c, 0x0610, OxABC9};

pascal Boolean RectInIconSuite(Rect *testRect,Rect *iconRect,short alignment,Handle theIconSuite)
= {0x303c, 0x0711, OxABC9};

pascal OSErr IconIDToRgn(RgnHandle theRgn,Rect *iconRect,short alignment,short iconID)
= {0x303c, 0x0613, OxABC9};

pascal OSErr IconSuiteToRgn(RgnHandle theRgn,Rect *iconRect,short alignment,Handle theIconSuite)
= {0x303c, 0x0714, OxABC9};

pascal OSErr SetSuiteLabel(Handle theSuite, short theLabel)= {0x303C, 0x0316, OxABC9};
pascal short GetSuiteLabel(Handle theSuite)= {0x303C, 0x0217, OxABC9};
pascal OSErr GetIconCacheData(Handle theCache, void **theData)= {0x303C, 0x0419, OxABC9};

pascal OSErr SetIconCacheData(Handle theCache, void *theData)= {0x303C, 0x041A, 0xABC9};
pascal OSErr GetIconCacheProc(Handle theCache, ProcPtr *theProc)= {0x303C, 0x041B, 0xABC9};
pascal OSErr SetIconCacheProc(Handle theCache, ProcPtr theProc)= {0x303C, 0x041C, 0xABC9};
pascal OSErr PlotSICNHandle(const Rect *theRect,short align,short transform,Handle theSICN)

= {0x303C, 0x061E, 0xABC9};
pascal OSErr PlotCIconHandle(const Rect *theRect,short align,short transform,CIconHandle theCIcon)

= {0x303C, 0x061F, 0xABC9};
pascal OSErr SetLabel(short labelNumber, const RGBColor *, ConstStr255Param)

= {0x303C, 0x050C, 0xABC9};

Further Reference: VU

¢ Inside Macintosh, Volume V, QuickDraw chapter

NN.

8 of 8 #306: Drawing Icons the System 7 Way

C)

4
Macintosh e

Technical Notes 2

Developer Technical Support

#307: MPW C++ Pitfalls

New version by: Kent Sandvik May 1992
Original by: Kent Sandvik, Kim Coleman, and Preston Gardner January 1992

This Technical Note covers most of the common and serious subtle problems that a MPW C++
user might encounter. For more information consult the current C++ literature. This Note will be
updated periodically to reflect changes in the language and the compiler. Always read the release
notes included with the MPW C++ to find out the latest status for known bugs and restrictions.

Changes since January 1992: The original inline C++ Tech Note is now part of an overall
MPW C++ problem Tech Note.

1. Introduction

C++, like any other computer language, has its own subtle problems, traps, and pitfalls. It is
impossible to figure out all the possible pitfalls that may occur, but this Tech Note covers the most
frequently asked questions about MPW C++ problems.

2. Class Protection and Inheritance

Access Control Problems

The C++ compiler assumes private access control if any of the access control keywords are
omitted. For instance, in the following case the member function Run is declared private, and
thus is not accessible from the outside the class:

class TClass

{

TClass() {/* constructor code *}

void Run(); // private member function
TL? sess

ye

This is also true when using inheritance; if no keywords are included, the compiler assumes that
the base class is inherited as a private member:

class TFoo : TClass

{

LE 00s

};

Always exercise special care when using inheritance, and use the keywords private,
protected, or public to avoid unexpected problems.

ee ee eee eee eee

#307: MPW C++ Pitfalls 1 of 20

Macintosh Technical Notes

Derived Classes

Every member function must function properly for the same range of arguments accepted by the
base class. If not, then the derived class is not a true subtype of the base and you may encounter
subtle and bizarre problems that are hard to find.

Note that if you inherit the base class as a private class, it is the same as if the class were a private
member of the derived class. Thus there are few cases where one needs to import a base class as a
private class.

Be especially careful to avoid changing the meaning of a base class’s public interface. Any public
member function of the base class should not have its semantics changed by the derived class.
Fortunately the MPW C++ compiler warns you if this is done.

Here’s an example: if a class TBase has an overloaded operator == for comparison that takes
aconst TBaseé& as an argument, then any override of this function by a derived class
TDerived must preserve its semantics. In particular the TDerived class override may not
assume that the argument is of type const TDerivedé, as that changes the meaning of the
member function that is inherited from TBase’s public interface.

In this case it would be better to overload operator == to accept an argument of type const
TDerivedé, and to reexport the inherited operator ==. Thus you need to overload the
derived class’s operator if the comparison overload will make use of a new data structure. Another
solution would be to use a pointer to a function/member function to define the actual comparison

routine instead of assuming there is a fixed comparison routine. Careful analysis of the use of data

structures should help you avoid these problems. Bugs related to this particular problem are

extremely difficult to track down, especially when the class inherits from two or more base classes,
each of which defines a function with the same name but with different semantics.

Derived Classes as Variables

Any member function that accepts a reference or pointer to a class must be prepared to receive a

derived class as an actual argument. Therefore the recipient function must deal with the argument

through an interface that is guaranteed to be preserved in derived classes. If this is not the case the

function call will fail when used with derived classes. If this is not feasible, then the class

documentation should state that it cannot be used as a public base class.

Scoping Issues

The scope rules in C++ are in flux. The earlier C++ compilers did not protect the name space

concerning scoping of types declared inside classes. This has changed in MPW C++ 3.2. You are

now able to define t ypedefs, enums, and classes/structs with a class scope. However, read the

release notes for your MPW C++ version for possible known bugs and limitations concerning this

new feature.

3. Type Casting

The Problem: Conversion Versus Coercion Type Casting

Type casting is occasionally necessary in C and C++, but you should be aware of the
consequences every time you need to use it. Casts are very uncontrolled and dangerous, and you
should ask yourself if you really need to do one every time you catch yourself in the act.

2 of 20 #307: MPW C++ Pitfalls

()

Developer Technical Support May 1992

There are two types of casts in C++. The first one merely changes an object from one type to

another. This includes casts between the built-in arithmetic types and casts involving class objects

(not pointers to classes). These are in general fairly safe, since an actual conversion is taking place.

The other type of cast involves pointers, and these casts are dangerous. This type of cast involves

so-called type coercion: the bit pattern of one type is interpreted as another type. This is very
unsafe, and could cause the code to die mysteriously and subtly.

Unfortunately, some C++ constructs can be interpreted as either of the two types of casts. A cast

from one class pointer to another is interpreted as a conversion cast if the two types are related by
type inheritance and as coercion casts if they are not. The C++ compiler does not warn you if you
intend the first cast but wind up with the second. Worse, a cast between pointers to member
functions may be a conversion on the class part but a coercion on the function prototype part.

Casting Cases

Some casts are always of the coercion type. For instance, casting a const (and a future volatile)
pointer to one without those attributes is always a coercion. Avoid performing such casts. If you
make a member function const because it does not change the object semantics, then you must cast
your this pointer to non-const to make changes to the internal object state. However, this technique
is not recommended; instead you should overload the function or make another design decision.

There are also casts to and from void*. These are dangerous. Avoid such casts, even if the
void* is a useful construct. For instance, do not use void* to avoid assigning a type to a
variable or parameter. Use it only for manipulation of raw storage.

Even if casts from a base class pointer to a derived class pointer are conversions, you should avoid
these. First, if you accidentally specify types not related by inheritance, you will get a silent
coercion. Second, this is a poor programming technique and removes vital information used for
type checking. The future template support in C++ should obviate the need for most such casts.

In general the only normally acceptable cast is the conversion type. Avoid all casts involving
pointers unless absolutely necessary. Note that nonpointer casts can never silently become
coercions.

4. General Class Issues

Handling Failing Constructors

Constructors and destructors do not return any values, so a returned error code is not possible.
There are many ways to provide error handling with constructors/destructors.

For instance, the class could have an internal field that signals whether the construction of the class
succeeded, as well as a special test method or invariant method that checks whether the state of the
newly created class is valid. Failing to figure out if a class is properly constructed could lead to
many subtle bugs. If possible the class should be constructed to a known state so that it can be
destructed without problems.

You should also save information about why the construction failed, which could be useful for
future class operations. The future C++ exception handling scheme will solve this problem. Also
one might use the MacApp FailInfo exception handling files in other non-MacApp projects.

eee

#307: MPW C++ Pitfalls 3 of 20

Macintosh Technical Notes

Operator Overload Issues

Assignment operators should always start with a test that checks whether the object (by mistake)
wants to assign to itself, as in aFoo = aFoo;, which could cause subtle problems. This is done
as in the following:

TFoo& TFoo::operator=(const TFoo& aFoo)

{

if (this == &aFoo) return *this;

//...normal assignment duties...
return *this;

}

Also, always overload all cases of the operator use, for instance both the ‘x = x + y’ and the ‘x
+= y’ operations.

If you are overloading certain operators, make sure that you know whether they have already been
overloaded, and what they return/pass as values. Otherwise the compiler will complain about
mismatch between formal and actual parameter types. For instance, new is overloaded with
PascalObject and HandleObject base classes, and returns a Hand1e instead of a void*.
Note also that if two programmers independently change the behavior of new, the resulting
program might not work as expected.

Also, you need to inherit publicly from your base classes if you want the behavior of any new
operator overload in the base class.

5. Inlining Issues

General

The C++ inlining feature is purely a hint to the compiler indicating that inline substitution of the
function body is to be preferred to the usual function implementation. Inline code is usually used
for code optimization: instead of calling a function, the whole body is inlined at the point of call,
thus saving the cost of a function call.

Here’s a simple example:

class TClass {

public:

long GetField(void) {return this->fField;};

void SetField(long);

private:

long fField;

};

inline void TClass::SetField(long theValue)

{

this->fField = theValue;

}

Note that there are two different ways inline is indicated: by placing the function specifier inline in

front of the function (or member function) declarator, or by defining the code directly in the class

(by which the statements are automatically considered to be inlined). See Section 7.2.1 of The

Annotated C++ Reference Manual for more information on inline function declarations.

a

4 of 20 #307: MPW C++ Pitfalls

Developer Technical Support May 1992

As inlining is purely an optimization issue, it should be used only when the benefits in run-time or
space outweigh the costs and inconveniences imposed by its use. The major cost of a function call
is usually the cost of executing the function body, not the cost of making the call. Therefore,
inlining should be used mostly for simple functions. Examples of such functions are functions that
set or get a value, increment or decrement a value, or directly call another function. A function
consisting of one or two simple expressions is usually a good inline candidate.

Compiler Considerations Concerning Inline Statements

The MPW C++ compiler has a set of rules by which it determines if an inline statement will be
inlined or not. Some of the rules are easily quantified, such as the fact that recursive functions are
never inlined; others vary depending upon whether or not the inline function return type is void,
and upon the calling context. An inline function invoked in an expression context other than a call
statement cannot be inlined if it contains code that cannot be reduced to one or more expressions.
For instance, an if-then-else statement is only acceptable in such a calling context if it can be
successfully converted to a conditional (?:) expression.

The following rules concern Apple’s AT&T CFront port, MPW C++ 3.2 (and should also cover
most cases with MPW C++ 3.1):

Recursive Functions

Recursive functions are never inlined.

Large Functions

Any function containing 12 or more assignments will not be inlined. Otherwise, size is less of an
issue than complexity. For example, a function containing 5 or more calls will not be inlined, but
the compiler may also refuse to inline a function containing fewer calls if there are other statements
adding to the complexity. You can override the compiler’s decision not to inline something based
on size by using the -z17 option, but caution should be exercised.

Functions Invoked Before Defined

If an inline function is called before it is defined, it cannot be inlined. For example:

static int an_inline function();

int an_outline()

{
return (an_inline function());

}

static inline int an_inline function()

{

return 1;

}

Because the compiler had not seen the inline body of "an_inline" when it encountered the first call,
it will generate a call in "an_outline" and an out-of-line copy of "an_inline".

Functions Invoked Twice or More Within an Expression

Typically, in this case, the compiler will inline the body of the function for the first usage and then
use calls for subsequent uses within the same expression. For instance:

i = some_inline() + some _inline();

#307: MPW C++ Pitfalls 5 of 20

Macintosh Technical Notes

An out-of-line copy of "some_inline" will be generated and called for the right operand of the
addition, in most cases. The compiler may still be able to inline the function in both places if it
declares no variables and if either it has no parameters or the actual parameter expressions are VU
sufficiently simple.

Functions Containing loop, switch, goto, label, break, or continue Statements

Value-returning inline functions will not be inlined if they contain any of the statement types listed
above. Even non-value-returning inline functions cannot be inlined if they contain such statements
and are invoked in the middle of an expression; the only control flow statement that can be inserted
into the middle of an expression is the if-then-else Statement.

Taking the Address of an Inline Function

An out-of-line copy will be generated for any inline function whose address is needed, either
because it is the explicit target of the unary ‘&’ operator or because it is used to initialize a function
pointer. Virtual calls of virtual inline functions fall into this category as well.

Non-Value-Returning Inline Functions Containing a Return Statement

These are never inlined.

Functions Declaring Static Variables

These are never inlined.

Functions Containing Statements After a Return

An out-of-line copy will be generated for any inline function with one or more statements after the VU
return statement. This applies primarily to value-returning functions, since non-value-returning
functions containing any return statement will never be inlined. For example:

inline int an_inline(void)

{
if (condition)

return 0;

do_something(); // will suppress inlining

return something;

Segmentation Issues Concerning Non-Inlined Statements—Which Segment
Do Unexpectedly Outlined Functions Appear In?

Inlined code, which is suddenly outlined by the compiler, usually ends up in whichever segment
that is actual for the call that caused the inline code to be outlined. Typically the outlined code ends
up at the end of the object file.

If you want to control in what segment the code will be placed, bracket all the header files with
'#pragma segment HeaderFiles',in combination with #pragma push and #pragma
pop. This way you are able to control into what segment the inline code will end in if it’s suddenly
outlined. Here’s an example of how this is done:

// push the pragma state information

#pragma push ()

6 of 20 #307: MPW C++ Pitfalls

C

Developer Technical Support May 1992

// define segment name for suddenly outlined inline-code

#pragma segment IfOutlinedItGoesHere

class TFoo{

public:

TEOO() {78 cac*/}

long InlineMeMaybe(long x){/* ...*/}

LE ee

};

// pop back the original pragma information

#pragma pop

Compiler Directives

¢ Suppression of No Inline Code
The MPW C++ compiler has a -z0 switch, which forces all inline code to be non-inline. This
switch is useful when trying to track down problems that are eventually related to inline code
generation.

¢ Forced Inlining of Large Functions
The MPW C++ compiler has a -z17 switch that will force inlining of functions that would
normally be rejected because of size considerations. Consider carefully before using this switch as
it can lead to large code. It may also cause CFront to generate expressions larger than the MPW C
compiler can handle.

Warnings

The new MPW 3.2 C++ compiler (available on ETO CD #5 forward) is based on CFront 2.1
(AT&T), and the -w flag in this release will now indicate when the compiler chooses not to inline a
function declared inline.

Conclusion

Inline-defined functions are just hints to the compiler, and the inline code generation rules will vary
from implementation to implementation. The rules described in this document are true for the Apple
MPW C++ compiler. Some of them are limitations resulting from the fact that MPW C++
generates C code; other inlining problems will also apply to native compilers. One needs to realize
that inline statements are not always inlined by C++ compilers, and that inlining rules are C++ /C
compiler implementation dependent.

6. Memory Leakage

General

Memory leakage usually occurs when space is dynamically allocated on the heap and, usually
because of a programming error, the heap space is never deallocated. Unfortunately, with C++
hidden memory leaks can happen, which in the Macintosh memory system will trigger a heap-stack
collision and a bomb. Here’s a list of possible memory leaks and memory allocation problems, and
ways to avoid them:

#307: MPW C++ Pitfalls 7 of 20

Macintosh Technical Notes

¢ Nonpaired New/Deletes
If you allocate data on the heap with new, it usually should be deleted with a subsequent delete

call. This usually happens when the object goes out of scope, but if the data is explicitly allocated

in the heap the compiler doesn’t know how to purge this when the object goes out of scope. This

problem comes up especially when an object creates space for data on the heap as part of its class

structure, as in the following:

class TFoo{

public:
TFoo(char* name); // forgot to declare a ~TFoo() which would

// delete the fName structure

private:

char* fName;

;

TFoo::TFoo(char* name)

{
fName = new char[strlen(name) + 1];

strcpy(fName, name) ;

The fName data structure will be on the heap until delete is called. If you delete the {Name string

in the destructor then you will avoid the memory leak.

¢ Object Pointers That Are Nested Inside Classes
If the class makes use of objects that are referenced via pointers, they need to be deleted; otherwise

the data will stay in the heap, as in the following:

class TBar{

public:

TBar(char* type);

~TBar();

private:

TFoo* fFoo; // from the earlier example

char* fType;

TBar::TBar(char* type)

fFoo = new TFoo("Willie");

fType = new char[strlen(type) + 1];

strcepy(fType, type);

TBar: :~TBar ()

delete fType; // this is OK
// but you also need to delete the fFoo, as in:

// delete fFoo;

a

8 of 20 #307: MPW C++ Pitfalls

Developer Technical Support May 1992

TBar

ial
Figure 1 Nested Objects

¢ Missing Size Arguments to the Delete Function
The delete function needs the size of the deleted data structures, especially in the case of deletion or

arrays of objects. Note that this problem will go away with MPW C++ compilers (MPW 3.2 C++

and later ones) where the general [] notation keeps track of the sizes of the arrays. For example:

main ()

{
TFoo* fooArray = new TFoo[10);

// create an array of 10 TFoo:s

// do something

// delete the array

delete [] fooArray; // should be delete [10] fooArray with MPW C++ 3.1;

¢ Problems With Arrays of Pointers Versus Arrays of Objects
There is a subtle but important difference between an array of pointers to objects, and an array of
objects themselves. The use of the delete operator is different in either case, as in the following:

main ()

eo . 5 TFoo** fooArray = new TFoo[10]; // array of pointers to objects

for(int i=0;i<10;i++) // create the objects in the array
fooArray[i] = new TFoo("Steve") ;

// do something

// now clean up the array

delete [10] fooArray; // this only cleans up the

// pointers, not the objects

// themselves

// the following code should be used instead:
for (i=0;i<10;i++)

delete fooArray[i];

delete [] fooArray;

return 0;

#307: MPW C++ Pitfalls 9 of 20

Macintosh Technical Notes

Destructor

Array Object U

pointers to subobjects

UOUUODUCODOOUOUUD sv obiects

these objects are left in memory!!!

Figure 2 Objects Left Due to Missing Arguments

Memory leaks such as this becomes even more dangerous with object-oriented databases and
persistence cases, where a leak could address more and more hard disk space on a server.

¢ Missing Copy Constructor
When operator overloading occurs, dynamically allocated memory for temporary data storage can
suddenly develop a subtle leak that eats memory slowly. For instance an implicit call to an
undefined copy constructor could be dangerous. These kinds of constructors are called whenever
an initialization is done in code, when objects are passed by value on the stack, or when objects are
returned by value. For example:

class TFoo{

public:

TFoo(char* name, int age); " 2

// TFoo(const TFoos&); note, no copy constructor defined!! ,

~TFoo();

TFoo Copy(TFoo); // copy function, will call default

// copy constructor

private:

char* fName;

int fAge;

TFoo::TFoo(char* name, int age)

fName = new char[strlen(name) + 1];

strcpy (fName, name) ;

fAge = age;

TFoo: :~TFoo ()

delete fName;

TFoo TFoo::Copy(TFoo orig) // note that this code is the same as the code

// which the compiler would create for a default

// copy constructor (i.e. field-wise copy).

fAge orig. fAge; // plain pointer copy

fName = orig. fName;

return *this;

| oO

10 of 20 #307: MPW C++ Pitfalls

Developer Technical Support May 1992

main ()

{
ey) // create two objects

TFoo f1("James", 25);

TFoo £2("Michael", 29);

TFoo £3 = f2; // this calls the copy constructor

// TFoo £3(f£2) would also trigger this

// do something

f1.Copy (£2); // this causes two implicit calls

// to the default copy constructor

// we have a problem, fName is deleted twice, once when fl is destructed,

// and the second time when d2 is destructed

return 0;

}

// solution, create a specific copy constructor, as in:

TFoo::TFoo(const TFooé& orig)

{

fAge = orig.fAge;

fName = new char[strlen(orig.fName) + 1];

strcpy(fName, orig.fName) ;

In general, if the class constructor assigns dynamic data, there should be a copy constructor that
does the same as well. Note also that call by reference does not generate a copy constructor, so use

a of references is both faster and should generate fewer unexpected memory leak problems.

* Missing Overload Assignment Operator (operator=)
Every class that dynamically allocate storage for members should also have a defined overload
assignment operator. If this operator is not clearly designed, there can be memory leaks due to
assignment of dynamic data. For example,

class TFoo{

public:

TFoo(char* name, int age);

TFoo(const TFoos);

// const TFoo& operator=(const TFoos orig); // note missing operator

// overload operator
~TFoo();

private:

char* fName;

int fAge;

he

TFoo::TFoo(char* name, int age)

{
fName = new char[strlen(name) + 1];

strcpy (fName, name) ;

fAge = age;

SO SSS

#307: MPW C++ Pitfalls 11 of 20

Macintosh Technical Notes

TFoo: :~TFoo()

{
delete fName;

}

TFoo::TFoo(const TFoo& orig)

{

fAge = orig.fAge;

fName = new char[strlen(orig.fName) + 1];

strcpy(fName, orig.fName) ;

main ()

// create two objects

TFoo f1("James", 25);

TFoo £2("Michael", 29);

// do something

f2 = fl; // this calls the default operator

// = overload, does not take into

// account the dynamic data (fName)

return 0;

}

// The solution is to define an operator=:

const TFooé

TFoo: :operator=(const TFooé& orig)

{
// avoid assignment to itself, as in aFoo = aFoo

if(this ==éorig) // same address?

return *this;

fAge = orig. fAge;

delete fName; // purge the dynamic memory slot

fName = new char[strlen(orig.fName) + 1];

strcpy (fName, orig. fName) ;

return *this;

¢ Incorrectly Overloaded Operators

In general, try to make overloaded operators return references to objects to avoid overhead

associated with calls to copy constructors. So how should you overload the operators in order to

achieve this?

a ——$—$—$————————

12 of 20 #307: MPW C++ Pitfalls

Developer Technical Support May 1992

Here’s a good solution, we will return a real object instead of a reference in operator+:

ex: P+Q;

| P | i 2 | Don't change the internals of P and Q!

// '+'is overloaded

Figure 4 Correct Overload of Operators

class TFoo{

public:

TFoo() {}
TFoo(char* name, int age);

TFoo(const TFoos&);

const TFoo& operator=(const TFooé& orig);

~T¥Foo() ;

// here's the example of operator+ overload:

TFoo operator+(const TFoos);

private:

TFoo:

TFoo:

TFoo:

char* fName;

int fAge;

:TFoo(char* name, int age)

fName = new char[strlen(name)

strcpy (fName, name) ;

fAge = age;

:~TFoo()

delete fName;

:TFoo(const TFooé& orig)

fAge = orig.fAge;

eae a

fName = new char[strlen(orig.fName)

strcpy(fName, orig.fName) ;

TFoo&

operator=(const TFooé orig)

// avoid assignment to itself, as in aFoo
if(this ==és&o0rig)

return *this;

fAge = orig. fAge;

// return TFoo by value!

// don't forget to overload += also!

aFoo

// same address?

eee

#307: MPW C++ Pitfalls 13 of 20

Macintosh Technical Notes

delete fName; // purge the dynamic memory slot

fName = new char[strlen(orig.fName) + 1];

strcpy (fName, orig. fName) ;

return *this;

}

TFoo

TFoo: :operator+(const TFooé orig)

{

TFoo temp; // create TFoo on the stack

temp.fAge = fAge + orig.fAge; // add ages, heh!

temp.fName = new char[strlen(fName) + strlen(orig.fName) + 1];

sprintf (temp. fName,"%s%s", fName, orig.fName);

// concatenate names, heh!

return temp;

main ()

// create two objects

TFoo f1("James", 25);

TFoo f2("Michael", 29);

TFoo £3 = f1 + f2;

return 0;

Tricks to Help You Find Memory Leaks

In general, you need to go through the code carefully and analyze any possible subtle memory

leaks. Another trick is to override the new and delete operators, and have them print status

information to a log file (using for instance the FILE and LINE ___ macros), and after
running the program you can check to see whether each created data structure on the heap is

deleted or not.

Here’s an example of a possible tracer class, which could be used as the “stamp” for keeping track

of class construction and destruction:

#include <stream.h>

#define TRACEPOINT FILE, LINE __

// make use of the ANSI FILE and LINE macros

class TTracer {

public:
TTracer(const char* className, const char* = 0, int = 0);

virtual ~TTracer ();

private:

const char* fLabel;

const char* fFile;

int fLine;

static int fReferenceCount; // keep track of how many TTracers we

// construct

};

TTracer::TTracer(const char* label, const char* file, int line)

fLabel(label), fFile(file), fLine(line)

{
fReferenceCountt++;

cerr << "File " << fFile <<" ; Line " << fLine

14 of 20 #307: MPW C++ Pitfalls

Developer Technical Support May 1992

<<" #+4++ constructor event in " << fLabel

<< " (reference count = " << fReferenceCount << ")\n";

TTracer::~TTracer ()

{

fReferenceCount--;

cerr << "File " << fFile <<" ; Line " << fLine

<< " #--- destructor event in " << fLabel

<< " (reference count = " << fReferenceCount << ™")\n";

}

int TTracer::fReferenceCount = 0; // initialize with 0 value

TTracer gGlobalTracer("gGlobalTracer", TRACEPOINT) ;

// this will construct a global/universal tracer

// example of use:

void InvertPermutation(int* perm, int* inv, int max)

{

TTracer autoTracer("InvertPermutation function", TRACEPOINT) ;

if(perm && (new TTracer("temp", TRACEPOINT))

// show TTracer in action
&& inv

&& (new TTracer("temp2", TRACEPOINT))

// these two are never destructed = memory leak!

&& (max > 0))

TTracer otherTracer("otherTracer", TRACEPOINT);

for(int i = O; i < max; i++)

{

TTracer thirdTracer ("iterationTracing...",TRACEPOINT) ;

inv(perm[(i]] = i;

// array declarations

int perm [] = {1, 2, 3, 6, 7};

int max = 5;

main ()

{

int* inv = new int [max];

InvertPermutation(&perm[(0], inv, max);

return 0;

The result should look like this (note the output; you can double-click from MPW to get
to the source code line in action):

File TTracer.cp ; Line 52 #+++ constructor event in InvertPermutation

function (reference count = 1)

File TTracer.cp ; Line 54 #+++ constructor event in temp (reference count =

2)

#307: MPW C++ Pitfalls 15 of 20

Macintosh Technical Notes

File TTracer.cp ; Line 56 #+++ constructor event in temp2 (reference count =

3)

File TTracer.cp ; Line 59 #+++ constructor event in otherTracer (reference

count = 4)

File TTracer.cp ; Line 62 #+++ constructor event in iterationTracing...

(reference count = 5)

File TTracer.cp ; Line 62 #--- destructor event in iterationTracing...

(reference count = 4)

File TTracer.cp ; Line 62 #+++ constructor event in iterationTracing...

(reference count = 5)

File TTracer.cp ; Line 62 #--- destructor event in iterationTracing...

(reference count = 4)

File TTracer.cp ; Line 62 #+++ constructor event in iterationTracing...

(reference count = 5)

File TTracer.cp ; Line 62 #--- destructor event in iterationTracing...

(reference count = 4)

File TTracer.cp ; Line 62 #+++ constructor event in iterationTracing...

(reference count = 5)

File TTracer.cp ; Line 62 #--- destructor event in iterationTracing...

(reference count = 4)

File TTracer.cp ; Line 62 #+++ constructor event in iterationTracing...

(reference count = 5)

File TTracer.cp ; Line 62 #--- destructor event in iterationTracing...

(reference count = 4)

File TTracer.cp ; Line 59 #--- destructor event in otherTracer (reference

count = 3)

File TTracer.cp ; Line 52 #--- destructor event in InvertPermutation

function (reference count = 2)

7. Virtual Functions

Virtual Base Classes

As part of the multiple inheritance semantics, MPW C++ contains a feature called virtual base
classes. As you can see in figure 5, if both class B and C are subclasses of A, and class D has both
B and C as base classes, then D unfortunately will have two A’s subobjects if A is not a virtual
base class.

Ee

16 of 20 #307: MPW C++ Pitfalls

Developer Technical Support May 1992

Class A

SaveFunc

7 ie

Class B Class C

SaveFunc SaveFunc

Class D class D will inherit
SaveFunc 2 SaveFunc!

SaveFunc

Figure 5 Virtual Base Classes

Try to avoid this confusing situation, because outside programmers might have a hard time trying
to understand the new derived class. Also, virtual base classes have a problem: once you have a
pointer to a virtual base, there is no way to convert it back into a pointer to its enclosing class.

So, if you have TFoo as a virtual base, and stick this class into an array or another collection,
there’s no way to convert it back to the right type via a cast when you get it out from the generic
collection container.! Anyway, you should avoid casting base classes to derived classes if
possible.

Also, see Annotated C++ Reference Manual, Section 10, for more information about virtual base
classes.

Missing Virtual Functions

If you declare a virtual function in a class, you also need to implement the function. Otherwise the
linker will complain about undefined entry, name: (Error 28) "_ptbl 4TFoo", for
example. This might happen if you define a function as virtual, but don’t create the function until
it’s part of a subclass.

The exception to this is pure virtual functions.

Virtual Destructor Use

Destructors are not implicitly virtual whether the class has other virtual functions or not. This
means that if you delete such an object via a pointer to one of its bases, the derived class
destructors will not be called. This is bad, because it is important to call the right destructor.

!This problem will disappear with future template support.
——_—_— oo eeeeeSSSSSSSSSSSSSSSSSSSSsSSSSSSSSSSSSSSSSSSSSSSSsss

#307: MPW C++ Pitfalls 17 of 20

Macintosh Technical Notes

If you wish the right destructor to be called during run-time, declare the destructor virtual. A good
tule is to declare all destructors virtual by default, and deviate from this rule only if you don’t want
to have a vtable (that is, no other virtual functions in the class), or if you want to save some run-
time lookup by providing a simple class.

Virtual Functions Are Not Real Functions

Virtual functions are references to virtual function resolve to vtable entries. Be aware that they are
not similar to normal functions in all cases; for instance, you can’t use them when unloading
segments, as in

UnloadSeg((ProcPtr) & (TFoo: :Method));

The workaround is to place an empty function stub in the same segment, and use this function

name when calling UnloadSeg.

8. Compiler Issues

Declarations

The definition of C++ requires that data structures and functions have to be declared before they

are used.Understanding this should eliminate a lot of obscure syntax problems. Note that when

writing a particular class at the beginning of the header file you can use the class before the class is

defined, as in the following:

class TFoo; // forward declare this class

class TBar{

LE ss
TFoo* fFooPtr; // use the class!

EE ea

de

Also, if you are using an enum or typedef in the class, it has to be defined before used, as in the

following:

class TFoo{

public:

Leff Constructors/Destructors

TFoo();

const TFoo& TFoo(const TFoo&);

virtual ~TFoo();

// Enums and Typedefs
enum EPriority {kLow, kMedium, kHigh};

// Accessors and mutators

TFoo& SetPriority(EPriority) ;

EPriority GetPriority();

ih, wies

\;

ns

18 of 20 #307: MPW C++ Pitfalls

UO

Developer Technical Support May 1992

Exception Handling and Register Optimization

The MPW C++/C compiler usually tries to move frequently updated variables to registers. This is
important to know if you are using exception handling, either the MacApp provided calls or
something based on setting/restoring registers after an exception has occurred.

The following piece of code shows the problem:

void ProblemCase (void)

{
int nCount;

int nElements;

TFoo* temp;

TRY

{
for(nCount= 0; nCount < nElements; ++nCount) {

temp = new TFoo;

temp->Initialize();

gApplication->AddTFoo(temp) ;

}

}
RECOVER

{
if (temp != NULL) temp->Free(); // clean up

if (count == 0) ExitApplication() // exit application

}
ENDTRY

In this case the nCount integer and the temp pointer will most likely be optimized into a register
allocation. If an exception occurs while the count it updated inside the register, there’s no way for
the exception handler to roll back the old values, because it assumes the stack based values are OK.
Thus any RECOVER action that assumes that the values are OK might not work as expected.

Unfortunately MPW 3.2 C++ has not implemented the volat ile keyword (because it requires a
full implementation). However we can emulate the volatile behavior with a macro. We are
interested in making sure the changed variable is never placed into a register:

#define VOLATILE(a) ((void) &a)

What we need to do is to make sure any possible variable that is subject to change is wrapped
inside the VOLATILE macro before it’s used inside TRY/RECOVER , asin

I aes

VOLATILE (nCount) ;

VOLATILE (temp) ;

TRY

{

for(nCount= 0; nCount < nElements; ++nCount) {

temp = new TFoo;

LD swans

eee

#307: MPW C++ Pitfalls 19 of 20

Macintosh Technical Notes

9. Testing/Debugging

General Issues CF

Do empirical testing/debugging sessions; eliminate one module at a time until you have pinpointed
the problem. Write incremental code, and test the new features before continuing with the code
writing.

Don’t change too many variables at once when you are testing the code. All in all, a controlled test
experiment helps you understand how certain parts interact with each other. If possible, use
debugging code that can be turned on and off with a compiler flag.

10. Conclusion

Careful consideration of any possible side effects will help a lot when using any computer
language. A good motto for programmers is Prepare for the worst, and plan for the best.

Further Reference:
¢ MPW C++ 3.1 Reference oO
¢ MPW C++ 3.1 Release Notes
¢ The Annotated C++ Reference Manual, Ellis and Stroustrup, Addison-Wesley
¢ CTraps and Pitfalls, A. Koenig, Addison-Wesley

aN

20 of 20 #307: MPW C++ Pitfalls

Macintosh ee

Technical Notes x

Developer Technical Support

#310: Who Put That Resource in My CDEV?

Written by: C.K. Haun <TR> February 1992

This Technical Note discusses the new ‘fwst' resource added to some Control Panels under

System 7.0 and later.

A New World for Control Panels

System 7 changes many of the rules for Control Panels (cdevs), and these changes are very well
documented in Chapter 10 of Inside Macintosh Volume VI. However, there is one thing not
documented in JM VI that you need to be aware of, as it could cause you confusion and
frustration— the ‘fwst' resource.

Two groups of developers should be interested in this information: Control Panel developers and
developers of virus and disk security software.

OK, we admit it. The System can add a resource to your Control Panel. But it does it for a good
reason, really!

Control Panels do not show up in the Control Panel desk accessory anymore. Each Control Panel a
user opens will show up in its own window. Because of this, the Finder needs to have a way to
remember (among other things) the position of the Control Panel window on the user’s desktop so
that the Finder can position the Control Panel in the same location every time the user opens it,
thereby saving the user from having to continually reposition the window.

A new resource type—the 'fwst' resource—was created to keep track of the Control Panel window
position (and other things). The contents of this resource is private; you should make no
assumptions about the contents, size, or use of the components of the ‘fwst' resource. The only
public aspect of this resource is that it is used by the Finder to position a Control Panel window on
the desktop.

The 'fwst' resource does not automatically get added to your Control Panel. If a user opens your
Control Panel and closes it without moving the Control Panel window, then no ‘fwst' resource is
needed, since the default position for the window has not changed.

However, if the user moves the window and closes the Control Panel, a ‘fwst' resource is added.
This tells the Finder where to place the Control Panel window when the user opens it up again.
This obviously is a very user-friendly thing to do. Users get consistent positioning of their

#310: Who Put That Resource in My CDEV? 1 of 3

Macintosh Technical Notes

windows, and are not frustrated by having to shuffle windows all the time. Note, however, that it
could cause problems for you if you don’t know that it may show up.

If you check your own resource fork for any reason (for example, scanning for viruses) you need
to know that the ‘fwst' resource may be there. If it’s there, that is normal, and you should not treat
that as a damages resource fork or a viral infection. If you notice the ‘fwst' resource being added to
a Control Panel and if you are a virus protection or disk security software developer you should
not alert the user that a resource has been added or that a viral attack is taking place.

One More Thing

The presence of an 'fwst' resource has one more effect that you may find very frustrating, since
until you know about it you can’t figure it out. Another resource that you normally add to a Control
Panel is the 'nrct' resource. This resource is used to specify a list of rectangles that your Control
Panel used in the pre-System 7 Control Panel desk accessory.

The 'nrct' rectangle resource is described in Inside Macintosh Volume V, and the removal of the
size restriction is documented in JM VI. Basically, what JM VI says is that now, since each Control
Panel has its own window, your 'nrct' does not have to fit inside the old Control Panel bounding
rectangle. Your Control Panel under System 7 can be much bigger than it was in any previous
system. One thing that JM VI doesn't explicitly say is that the first rectangle in your ‘nrct' resource
is the bounding rectangle for the Control Panel window under System 7 and later.

What Does This Have to Do With the 'fwst'?

The ‘fwst' takes precedence over the 'nrct’. So, if you have a ‘fwst' in your Control Panel, any
changes to the first rectangle in your ‘nrct' will not be recognized!

This can be very frustrating during Control Panel development. You’ve been merrily debugging
your Control Panel, moving it around the Finder, and making sure everything works. You decide
you need to add another item to the Control Panel, and therefore you want the Control Panel
window to be bigger. “Great,” think you,““System 7 doesn’t care how big I make it!” and you go
into ResEdit and change your 'nrct’. You go back to the Finder, open the Control Panel, and
nothing has changed!

What’s happening is that the ‘fwst' is overriding the 'nrct’. If you need to change the 'nrct’ of your
Control Panel, make sure you check to see if there is an 'fwst’ resource in your Control Panel’s
resource fork. If there is, delete it and make the necessary changes to your 'nrct'. With no 'fwst'’,
your ‘nrct’ values will be recognized, and a new ‘fwst' reflecting the correct rectangle will be
created if the window is moved. Use ResEdit, your favorite resource editor, or Rez in MPW to
remove the 'fwst'. Here's a command line you can add to MPW build script for your Control
Panel that will remove the 'fwst' resource from the Control Panel automatically during the build
process;

echo “delete 'fwst';" | Rez -a -o "{MyControlPanelName}"

Of course, replace "{mycontrolPanelName}" With whatever name or variable you are using in your
build script to identify your Control Panel.

And remember to remove whatever ‘fwst' is in the Control Panel before your ship your product.
This will let the Control Panel come up on your user's machines in the default location, and the
user can decide where he or she would like the Control Panel placed.

2 of 3 #310: Who Put That Resource in My CDEV?

Developer Technical Support
February 1992

Further Reference:

° Inside Macintosh, Volume V, The Control Panel

¢ Inside Macintosh, Volume VI, Control Panels

#310: Who Put That Resource in My CDEV? 3 of 3

r~

Macintosh G

Technical Notes 6

Developer Technical Support

#311: What’s New With AppleTalk Phase 2

Updated by: Rich Kubota April 1992

Written by: Rich Kubota & Scott Kuechle February 1992

This Technical Note discusses the new features of AppleTalk available for System 7.0 and

AppleTalk version 57. The new features include support for the Flagship Naming Service and the

AppleTalk Multiple Node Architecture. We present the Multiple Node Architecture and discuss the

new calls available to applications. We also discuss the impact of the new architecture on

AppleTalk Device files (ADEVs), and the changes necessary to make them multinode compatible.

Finally, we discuss the Flagship Naming Service, along with the new AppleTalk Transitions. The

new transitions notify a process of changes to the Flagship name, network cable range, router

status, and processor speed.
Changes since February 1992: Provided additional detail on the implementation to the
AAddNode, ADelNode, and AGetNodeRef calls including parameter offsets. Added sample code
to check for existence of LAP Manager. Added Pascal source to determine whether the LAP
Manager exists. Added warning to check the result from the LAPAddATQ function since the
System 7 Tuner extension may not load AppleTalk resources. Corrected typographical errors.
Added information on the discussion on the Speed Change AppleTalk Transition event. Added
discussion regarding the ‘atkv' gestalt selector. Sidebars highlight changes or additions to this
document.

AppleTalk Multiple Node Architecture

Supporting multiple node addresses on a single machine connected to AppleTalk is a feature that
has been created to support software applications such as AppleTalk Remote Access. Its
implementation is general enough to be used by other applications as well.

Note: AppleTalk version 57 is required to support the AppleTalk Multiple Node Architecture.
Version 57 is compatible with System 6.0.4 and greater. If you implement multinode functionality
into your program you should also plan to include AppleTalk version 57 with your product.
Contact Apple’s Software Licensing department for information on licensing version 57. For
testing purposes, AppleTalk version 57 can be installed by using the Network Software Installer
v1.1, now available on the latest Developer CD, on AppleLink in the Developer Services Bulletin
Board, and on the Internet through anonymous FTP to ftp.apple.com (130.43.2.3).

Software Licensing can be reached as follows:

Software Licensing
Apple Computer, Inc.
20525 Mariani Avenue, M/S 38-I
Cupertino, CA 95014
MCI: 312-5360
AppleLink: SW.LICENSE
Internet: SW.LICENSE@ AppleLink.Apple.com
(408) 974-4667

#311: What’s New With AppleTalk Phase 2 1 of 29

III EW

Macintosh Technical Notes

What Is It?

Multiple Node AppleTalk provides network node addresses that are in addition to the normal (user
node) DDP address assigned when AppleTalk is opened. These additional addresses have different
characteristics from those of the user node address. They are not connected to the protocol stack
above the data link layer. When an application acquires a multinode, the application has to supply a
receive routine through which AppleTalk will deliver broadcasts and packets directed to that
multinode address.

The number of multinode addresses that can be supported on one single machine is determined by
a static limit imposed by the AppleTalk ADEV itself (for example, EtherTalk). The limit is currently
253 nodes for Apple’s implementation of EtherTalk ($0, $FF, and $FE being invalid node
addresses) and 254 for LocalTalk ($0 and $FF being invalid node addresses). The number of
receive routines that .MPP supports is determined by the static limit of 256. If all of the multiple
nodes acquired need to have unique receive routines, then only a maximum of 256 nodes can be
acquired, even if the ADEV provides support for more than 256 nodes. .MPP will support the
lesser of either the maximum of 256 receive routines, or the node limit imposed by the ADEV.

Outbound DDP packets can be created with a user-specified source network, node, and
socket (normally equal to a multinode address) with the new Network Write call. With this
capability and the packet reception rules described above, a single machine can effectively become
several nodes on a network. The user node continues to function as it always has.

Things You Need to Know When Writing a Multinode Application

Two new .MPP driver control calls have been added to allow multinode applications to add and
remove multinodes.

AddNode (csCode=262)

A user can request an extra node using a control call to the .MPP driver after it has opened. Only
one node is acquired through each call.

Parameter Block:

--> 24 ioRefNum short ; Qriver ref. number

--> 26 csCode short ; always = AddNode (262)

==> 36 reqNodeAddr AddrBlock j; the preferred address requested

7 by the user.

<-- 40 actNodeAddr AddrBlock ; actual node address acquired.

--> 44 recvRoutine long ; address of the receive routine for MPP

; to call during packet delivery

-=> 48 reqCableLo short ; the preferred range for the

--> 50 reqCableHi short ; node being acquired.

==> 52 reserved([70] char ; 70 reserved bytes

AddrBlock:

aNet short ; network #

aNode unsigned char ; node #

aSocket unsigned char ; should be zero for this call.

This.MpP AddNode call must be made as an IMMEDIATE control call at system task time. The

result code will be returned in the ioResult field in the parameter block. The result code —1021

indicates that the .MPP driver was unable to continue with the AddNode call because of the current

nn

2 of 29 #311: What’s New With AppleTalk Phase 2

_

\ \

Developer Technical Support April 1992

state of .MPP. The caller should retry the AddNode call (the retry can be issued immediately after
the AddNode call failed with —1021) until a node address is successfully attained or another error is
returned. The .MPP driver will try to acquire the requested node address.

If the requested node address is zero, invalid, or already taken by another machine on the network,
a random node address will be generated by the .MPP driver. The parameters reqCableLo and
reqCableHi will be used only if there is no router on the network and all the node addresses in the
network number specified in NetHint (the last used network number stored in parameter RAM)
are taken up.

In this case, the .MPP driver will try to acquire a node address from the network range as specified
by reqCableLo and reqCableHi. The network range is defined by the seed router on a network.
If a specific cable range is not important to the application, set the reqcCableLo and reqCableHi
fields to zero. The recvRoutine is an address of a routine in the application to receive broadcasts
and directed packets for the corresponding multinode.

Possible Error Codes:

noErr 0 7; success

tryAddNodeAgainErr -1021 ; .MPP was not able to add node, try again.

MNNot Supported -1022 ; Multinode is not supported by

; the current ADEV

noMoreMultiNodes -1023 ; no node address is available on

the network

RemoveNode (csCode=263)

This call removes a multinode address and must be made at system task time. Removal of the user
node is not allowed.

Parameter Block:

==> 24 ioRefNum word ; Griver ref. number

--=> 26 csCode word ; always = RemoveNode (263)

==> 36 NodeAddr AddrBlock ; node address to be deleted.

Possible Error Codes:

noErr 0 7; success

paramErr -50 ; bad parameter passed

Receiving Packets

Broadcast packets are delivered to both the user’s node and the multinodes on every machine. If
several multinodes are acquired with the same recvRoutine address, the recvRoutine,
listening for these multinodes, will only be called once in the case of a broadcast packet.

Multinode receive handlers should determine the number of bytes already read into the Read
Header Area (RHA) by subtracting the beginning address of the RHA from the value in A3 (see
Inside Macintosh Volume II, page 326, for a description of the Read Header Area). A3 points past
the last byte read in the RHA. The offset of RHA from the top of the .MPP variables is defined by
the equate TORHA in the MPW include file ATalkEqu.a. The receive handler is expected to call
ReadRest to read in the rest of the packet. In the case of LocalTalk, ReadRest should be done
as soon as possible to avoid loss of the packet. Register A4 contains the pointer to the
ReadPacket and ReadRest routines in the ADEV.

#311: What’s New With AppleTalk Phase 2 3 of 29

Macintosh Technical Notes

To read in the rest of the packet:

JSR 2(A4)

On entry:
A3 pointer to a buffer to hold the bytes
D3 size of the buffer (word), which can be zero to throw away packet

On exit:
DO modified
D1 modified
D2 preserved
D3 Equals zero if requested number of bytes were read; is less than zero

if packet was —D3 bytes too large to fit in buffer and was truncated;
is greater than zero if D3 bytes were not read (packet is smaller
than buffer)

AO preserved
Al preserved
A2 preserved
A3 pointer to 1 byte after the last byte read

For more information about ReadPacket and ReadRest, refer to the Inside Macintosh Volume II,

page 327.

A user can determine if a link is extended by using the GetAppleTalkInfo control call. The

Configuration field returned by this call is a 32-bit word that describes the AppleTalk

configuration. Bit number 15 (0 is LSB) is on if the link in use is extended. Refer to Inside

Macintosh Volume VI, page 32-15.

Sending Datagrams Through Multinodes

To send packets through multinodes, use the new .MPP control call, NetWrite. NetWrite

allows the owner of the multinode to specify a source network, node, and socket from

which to send a datagram.

NetWrite (csCode=261)

Parameter Block:

==> 26 csCode word ; always NetWrite (261)

--> 29 checkSumFlag byte ; checksum flag

==> 30 wdsPointer pointer ; write data structure

Possible Error Codes:

noErr 0) ; success

ddpLenErr =92 ; datagram length too big

noBridgeErr -93 ; no router found

excessCollsns -95 ; excessive collisions on write

This call is very similar to the writeppp call. The key differences are as follows:

aD

4 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support
April 1992

° The source socket is not specified in the parameter block. Instead it is specified along with

the source network number and source node address in the DDP header pointed to by the

write data structure. Furthermore, the socket need not be opened. Refer to / nside

Macintosh Volume II, page 310, for a description of the Write Data Structure, WDS. It is

important to note that the caller needs to fill in the WDS with the source network, source

node, and source socket values. .MPP does not set these values for the NetWrite call.

° The checkSumF lag field has a slightly different meaning. If true (nonzero), then the

checksum for the datagram will be calculated prior to transmission and placed into the DDP

header of the packet. If false (zero), then the checksum field is left alone in the DDP

header portion of the packet. Thus if a checksum is already present, it 1s passed along

unmodified. For example, the AppleTalk Remote Access program sets this field to zero,

since remote packets that it passes to the .MPP driver already have valid checksum fields.

Finally, if the application desires no checksum, the checksum field in the DDP header in the

WDS header must be set to zero.

Datagrams sent with this call are always sent using a long DDP header. Refer to I. nside AppleTalk,

Second Edition, page 4-16, for a description of the DDP header. Even if the destination node is on

the same LocalTalk network, a long DDP datagram is used so that the source information can be

specified. The LAP header source node field will always be equal to the user node address

(sysLapAddr), regardless of the source node address in the DDP header.

AppleTalk Remote Access Network Number Remapping

Network applications should be careful not to pass network numbers as data in a network
transaction. AppleTalk Remote Access performs limited network number remapping. If network
numbers are passed as data, they will not get remapped. AppleTalk Remote Access recognizes
network numbers in the DDP header and among the various standard protocol packets, NBP, ZIP,
RTMP, and so on.

Is There a Router on the Network?

Do not assume that there are no routers on the network if your network number is zero. With
AppleTalk Remote Access, you can be on network zero and be connected to a remote network.
Network applications should look at the SysABridge low-memory global or use the GetZoneList
or the GetBridgeAddress Calls to determine if there is a router on the network.

New for AppleTalk ADEVs

Several new calls have been implemented into the .MPP driver for AppleTalk version 57. Two
calls, AOpen and AClose, were built into AppleTalk version 54 and greater, and are also
documented here. These calls notified the ADEV of changes in the status of the .MPP driver. For
AppleTalk version 57, three new calls, AaddNode, ADelNode, and AGetNodeRef, plus a
change to the AGet Info call, were implemented to support the Multiple Node Architecture.

EtherTalk Phase 2, version 2.3, and TokenTalk phase 2, version 2.4, drivers support the new
Multiple Node Architecture. Both drivers and AppleTalk version 57, are available through the
Network Software Installer, version 1.1. As mentioned previously, AppleTalk version 57 and
these drivers, are compatible with System 6.0.4 and greater. Note that the AppleTalk Remote
Access product includes the EtherTalk Phase 2, version 2.3 driver, but not the multinode-
compatible TokenTalk Phase 2, version 2.4, driver. Token Ring developers, who license

#311: What's New With AppleTalk Phase 2 5 of 29

Macintosh Technical Notes

TokenTalk Phase 2, version 2.2 and earlier, should contact Apple’s Software Licensing
department .

The following information describes changes to the ADEV that are required for multinode
compatibility. This information is of specific importance to developers of custom ADEVs. The
ADEV can be expected to function under System 6.0.4 and greater. A version 3 ADEV must be
used with AppleTalk version 57 or greater. Developers of custom ADEVs will want to contact
Software Licensing to license AppleTalk version 57.

For compatibility with Multinode AppleTalk, the 'at1k' resource of an ADEV must be modified
to respond to these calls as described below. To determine whether an ADEV is multinode
compatible, the .MPP driver makes an AGet Info call to determine whether the ADEV version is 3
or greater. Any ADEVs responding with a version of 3 or greater must be prepared to respond to
the new calls: AAddNode, ADelNode, and AGetNodeRef. See the Macintosh AppleTalk
Connections Programmer’ s Guide for more information about writing an AppleTalk ADEV.

The desired architecture for a multinode-compatible ADEV is such that it delivers incoming packets
to the LAP Manager along with an address reference number, AddrRefNum. The LAP Manager
uses the AddrRefNum to locate the correct receive routine to process the packet. For broadcast
packets, the LAP Manager handles multiple deliveries of the packet to each multinode receive
routine.

The .MPP driver for AppleTalk version 57 supports the new control call to add and remove
multinodes, along with the network write call which allows the specification of the source address.
.MPP includes a modification in its write function to check for one multinode sending to another.
.MPP supports inter-multinode transmission within the same machine. For example, the user node
may want to send a packet to a multinode within the same system.

AGetInfo (D0=3)

The AGet Info call should be modified to return the maximum number of AppleTalk nodes that
can be provided by the atlk. This limit will be used by .MPP to control the number of multinodes
that can be added on a single machine. The new interface is as follows:

Call: D1 (word) length (in bytes) of reply buffer

Al -> Ptr to GetInfo record buffer

Return: Al -> Ptr to GetInfo record
DO nonzero if error (buffer is too small)

AGetInfoRec = RECORD

<-- version: INTEGER; { version of ADEV, set to three (3) }

<= length: INTEGER; { length of this record in bytes }

<-- speed: LongIint; { speed of link in bits/sec }

<=s BandWidth: Byte; { link speed weight factor }

<= reserved: Byte; { set to zero }

o-- reserved: Byte; { set to zero }

<== reserved: Byte; { set to zero }

<= flags: Byte; { see below }

<-- lLinkAddrSize: Byte; { of link addr in bytes }

<-- linkAddress: ARRAY[0..5] OF Byte;

<-- maxnodes: INTEGER;

END;

1 if this is an extended AppleTalk, else 0

1 if the link is used for a router-only connection (reserved
flags: bit 7

bit 6

LEE

6 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support
April 1992

for half-routing)

bit 5 through 0 reserved, = 0

maxnodes is the total number of nodes (user node and multinodes) the ADEV supports. If a

version 3 ADEV does not support multinodes, it must return 0 or 1 in the maxnodes field in

AGetInfoRec and the ADEV will not be called to acquire multinodes. The version 3 ADEV will

be called by .MPP in one of the following two ways to acquire the user node:

+ if the ADEV returns a value of 0 in maxnodes, .MPP will issue Lap Write calls to the ADEV with

DO set to $FF indicating that ENQs should be sent to acquire the user node. -MPP is responsible

for retries of ENQs to make sure no other nodes on the network already have this address. This

was the method .MPP used to acquire the user node before multinodes were introduced. This

method of sending ENQs must be available, even though the new aaddNode call is provided, to

allow older versions of AppleTalk to function properly with a version 3 ADEV.

+ if the ADEV returns a value of 1 in maxnodes, the new AAddNode function will be called by

.MPP to acquire the user node.

For values of maxnode greater than 1, the new AAddNode function will be called by .MPP to

acquire the additional multinodes.

AAddNode (D0=9)

This is a new call which is used to request the acquisition of an AppleTalk node address. It is
called by the .MPP driver during the execution of the AddNode control call mentioned earlier. The
ADEV is responsible for retrying enough ENQs to make sure no other nodes on the network
already have the address. .MPP will make this call only during system task time.

Call: AO-> parameter block
Return: DO = zero if address was acquired successfully

zero if no more addresses can be acquired

at1lkPBRec Record csParam

==> NetAddr DS.L 1 ; offset OxlC 24-bit node address to acquire

==> NumTrys DS.W 1 ; offset Ox20 # of tries for address

--> DRVRPtr DS.L 1 ; offset Ox22 ptr to .MPP vars

--> PortUsePtr DS.L 1 ; offset Ox26 ptr to port use byte

--> AddrRefNum DS.W z ; offset Ox2A address ref number used by .MPP

EndR

The offset values describe the location of the fields from the beginning of the parameter block
pointed to by AO. at 1kPBRec is the standard parameter block record header for a _Control call. The
field NetAddr is the 24-bit AppleTalk node address that should be acquired. The node number is in
the least significant byte 0 of NetAddr. The network number is in bytes 1 and 2 of Net Addr; byte 3
is unused. NumTrys is the number of tries the atlk should send AARP probes on non-LocalTalk
networks to verify that the address is not in use by another entity. On LocalTalk networks,
NumTrys x 32 number of ENQs will be sent to verify an address.

DRVRPtxr and PortUsePtr are normally passed when the atlk is called to perform a write function.
For ADEVs that support multinodes, AppleTalk calls the new AAddNode function rather than the
write function in the ADEV to send ENQs to acquire nodes. However, the values DRvRPtr and
PortUsePtr are still required for the ADEV to function properly and are passed to the AaddNode
call. AddrRefNum is a reference number passed in by .MPP. The ADEV must store each reference
number with its corresponding multinode address. The use of the reference number is described in
the following two sections.

#311: What’s New With AppleTalk Phase 2 7 of 29

Macintosh Technical Notes

For multinode-compatible ADEVs, .MPP will issue the first aaddNode call to acquire the user
node. The aAddrRefNum associated with the user node must be OxFEFFF. It is important to assign
OxFFFF as the AddrRefNum of the user node, and to disregard the AddrRefNum passed by .MPP
for the user node. See the discussion at the end of the aDe1Node description.

ADelNode (D0=10)

This is anew call which is used to remove an AppleTalk node address. It may be called by the
-MPP driver to process the RemoveNode control call mentioned earlier.

Call: A0-> parameter block
Net Addr contains the node address to be deleted

Return: DO = zero if address is removed successfully
zero if address does not exist
at1kPBRec.AddrRefNum = AddrRefNum to be used by .MPP if the
operation is successful

at1lkPBRec Record csParam

--> NetAddr DS.L 1 ; offset Ox1C 24-bit node address to remove

<== AddrRefNum DS.W Hi ; offset Ox2A AddrRefNum passed in by AAddNode

; on return

EndR

The field NetAddr is the 24-bit AppleTalk node address that should be removed. As with the
AAddNode selector, the node number is in the least significant byte 0 of Netaddr. The network
number is in bytes 1 and 2 of NetAddr; byte 3 is unused. The address reference number,
AddrRefNum, associated with the NetAddr, must be returned to .MPP in order for .MPP to clean
up its data structures for the removed node address.

As mentioned above, a value of OxFFFF must be returned to .MPP after deleting the user node.
When the AppleTalk connection is started up for the first time on an extended network, the ADEV
can expect to process an AAddNode request followed shortly by an ADe1Node request. This results
from the implementation of the provisional node address for the purpose of talking with the router
to determine the valid network number range to which the node is connected. After obtaining the
network range, .MPP issues the ADe1Node call to delete the provisional node. The next AAddNode
call will be to acquire the unique node ID for the user node. As mentioned previously, .MPP may
pass a value different than OXFFFF for the user node. The user node is acquired before any multi-
node. The ADEV needs to keep track of the number of AAddNode and ADe1Node Calls issued to
determine whether the user node is being acquired. Refer to Inside AppleTalk, Second Edition,
page 4-8, for additional information.

AGetNodeRef (DO=11)

This is a new call which is used by .MPP to find out if a multinode address exists on the current
ADEV. This call is currently used by .MPP to check if a write should be looped back to one of the
other nodes on the machine (the packet does not actually need to be sent through the network) or
should be sent to the ADEV for transmission.

Call: A0-> parameter block
Return: DO-> = zero if address does not exist on this machine

¥ zero if address exists on this machine
at1kPBRec.AddrRefNum = AddrRefNum (corresponding to
the node address) if the operation is successful

8 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support ’ April 1992

atlkPBRec Record csParam

--> NetAddr DS.L Bi ; offset Ox1C 24-bit node address to remove

<-- AddrRefNum DS.W 1 ; offset Ox2A AddrRefNum passed in by AAddNode

: on return

EndR

The field Net Addr is the 24-bit AppleTalk node address whose AddrRefNun is requested. The

node number is in the least significant byte 0 of Netaddr. The network number is in bytes 1 and 2

of Netaddr; byte 3 is unused. The address reference number, AddrRefNum, associated with the

NetAddr, must be returned to .MPP. Remember to return OxFFFF as the AddrRefNum for the

user node.

AOpen (D0=7)

Call:
==> D4.B current port number

ADEVs should expect the AOpen call whenever the .MPP driver is being opened. This is a good

time for the ADEV to register multicast addresses with the link layer. After this call is completed,

_MPP is ready to receive packets. If the ADEV does not process this message, simply return, RTN.

Note that AOpen is not specific to the Multinode Architecture.

AClose (D0=8)

AClose is called only when .MPP is being closed (for example, .MPP is closed when the

‘nactive” option is selected in the Chooser or when the user switches links in Network CDEV).
The ADEV should deregister any multicast addresses with the link layer at this time. After this
AClose Call is completed, the ADEV should not defend for any node addresses until .MPP reopens
and acquires new node addresses. If the ADEV does not process this message, simply return, RTN.

Note that AClose is not specific to the Multinode Architecture.

For comparison, descriptions of AInstall and AShutDown are documented as follows:

Alnstall (D0=1)

-=> D1.L = value from PRAM (slot, ID, unused, atlk resource ID)

= high 3 bytes for parameter RAM returned by the ADEV,

if no error

<-- DO.W = error code

The AInstali call is made before .MPP is opened either during boot time or when the user
switches links in Network CDEV. This call is made during system task time so that the ADEV is
allowed to allocate memory, make file system calls, or load resources and so on. Note: Aopen call
will be made during .MPP opens.

AShutDown (D0=2)

ADEVs should expect the AshutDown Call to be made when the user switches links in the Network
CDEV. The Network CDEV closes .MPP, which causes the AClose call to be made before the
CDEV issues the ashutDown Call. Note: the AShutDown call is always made during system task
time; therefore, deleting memory, unloading resources, and file system calls can be done at this
time.

#311: What’s New With AppleTalk Phase 2 9 of 29

Macintosh Technical Notes

Receiving Packets

The address reference number (AddrRefNum) associated with each node address must be passed to
-MPP when delivering packets upward. When making the LAP Manager call LReadDispatch to
deliver packets to AppleTalk, the ADEV must fill the high word of p2 in with the address reference
number, corresponding to the packet’s destination address (LAP node address in the LocalTalk
case and DDP address in the non-LocalTalk case). There are a few special cases:

¢ In the case of broadcasts and packets directed to the user node, $FFFF (word) should be used as
the address reference number.

¢ On non-LocalTalk networks, packets with DDP destination addresses matching neither the user
node address nor any of the multinode addresses should still be delivered to the LAP Manager so
that the router can forward the packet on to the appropriate network. In this case, high word of
D2 should be filled in with the address reference number, $FFFE, to indicate to MPP that this
packet is not for any of the nodes on the machine in the case of a router running on a machine on
an extended network.

¢ On LocalTalk networks, the ADEV looks only at the LAP address; therefore, if the LAP address
is not the user node, one of the multinodes, or a broadcast, the packet should be thrown away.

nnn ————

10 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support April 1992

Defending Multinode Addresses

Both LocalTalk (RTS and CTS) and non-LocalTalk (AARP) ADEVs have to be modified to defend
not only for the user node address but also for any active multinode addresses.

The ‘atkv' Gestalt Selector

The 'atkv' Gestalt selector is available beginning with AppleTalk version 56 to provide more
complete version information regarding AppleTalk, and as an alternative to the existing 'at1k'
gestalt selector. Beginning with AppleTalk version 54, the 'at1k' Gestalt selector was available
to provide basic version information. The 'at1k' selector is not available when AppleTalk is
turned off in the Chooser. It is important to note that the information between the two resources
are provided in a different manner. Calling Gestalt with the 'at1k' selector provides the major
revision version information in the low order byte of the function result. Calling Gestalt with the
"atkv' selector provides the version information in a manner similar to the 'vers' resource. The
format of the LONGINT result is as follows:

byte; /* Major revision */
byte; /* Minor revision */

byte development = 0x20, /* Release stage */
alpha = 0x40,

beta = 0x60,

final = 0x80, /* or */ release = 0x80;

byte; /* Non-final release # */

For example, passing the 'atkv' selector in a Gestalt call under AppleTalk 57, gives the following
LONGINT result: 0x39000800.

With the release of the System 7 Tuner product, AppleTalk may not be loaded at startup, if prior to
the previous shutdown, AppleTalk was turned off in the Chooser. Under this circumstance, the
‘atkv' selector is not available. If the 'atkv' selector is not available under System 7, this is an
indicator that AppleTalk cannot be turned without doing so in the Chooser and rebooting the
system.

The AppleTalk Transition Queue

The AppleTalk transition queue keeps applications and other resident processes on the Macintosh
informed of AppleTalk events, such as the opening and closing of AppleTalk drivers, or changes
to the Flagship name (to be discussed later in this Note). A comprehensive discussion of the
AppleTalk Transition Queue is presented in Jnside Macintosh Volume VI, Chapter 32. New to the
AppleTalk Transition Queue are messages regarding the Flagship Naming Service, the AppleTalk
Multiple Node Architecture, changes to processor speed that may affect LocalTalk timers, and a
transition to indicate change of the network cable range. At the end of this Technical Note is a
sample Transition Queue procedure in both C and Pascal which includes the known transition
selectors.

In addition, there is a sample Pascal source for determining whether the LAP Manager version 53
or greater exists. Calling LAPAddATQ for AppleTalk versions 52 and prior will result in a system
crash since the LAP Manager is not implemented prior to AppleTalk version 53. The Boolean
Aa LAPMegrExists, should be used instead of checking the low memory global LAPMgrPtrr,
0B 18.

Calling the AppleTalk Transition Queue

#311: What’s New With AppleTalk Phase 2 11 of 29

Macintosh Technical Notes

System 7.0 requires the use of the MPW version 3.2 interface files and libraries. The AppleTalk
interface presents two new routines for calling all processes in the AppleTalk Transition Queue.
Rather than use parameter block control calls as described in Technical Note #250, “AppleTalk
Phase 2,” use the ATEvent procedure or the ATPreFlightEvent function to send transition
notification to all queue elements. These procedures are discussed in Inside Macintosh Volume VI,
Chapter 32.

Note: You can call the ATEvent and ATPreFlightEvent routines only at virtual-memory
safe time. See the Memory Management chapter of Inside Macintosh Volume V1, Chapter
28, for information on virtual memory.

Standard AppleTalk Transition Constants

You should use the following constants for the standard AppleTalk transitions:

CONST ATTransOpen

ATTransClose

ATTransClosePrep

ATTransCancelClose

ATTransNetworkTransition

ATTransNameChangeTellTask

ATTransNameChangeAskTask

ATTransCancelNameChange

ATTransCableChange

ATTransSpeedChange

0; {open transition }

2; {prepare-to-close transition }

3; {permission-to-close transition }

4; {cancel-close transition }

5; {.MPP Network ADEV Transition }

6; {change-Flagship-name transition }

7 {permission-to-change-Flagship-name transition }

8; {cancel-change-Flagship-name transition }

‘rnge' {cable range change transition }

‘sped' {change in cpu speed } ioueou to bot uw ob ow ou

The following information concerns the new transitions from attransNetworkTransition through
ATTransSpeedChange.

The Flagship Naming Service

System 7.0 allows the user to enter a personalized name by which their system will be published

when connected to an AppleTalk network. The System 'STR ' resource ID —16413 is used to hold

this name. The name (listed as Macintosh Name) can be up to 31 characters in length and can be set

using the File Sharing Control Panel Device. This resource is different from the Chooser name,

System 'STR ' resource ID —16096. When providing network services for a workstation, the

Flagship name should be used so that the user can personalize their workstation name while

maintaining the use of the Chooser name for server connection identification. It’s important to note

that the Flagship name resource is available only from System 7.0. DTS recommends that
applications do not change either of these 'STR ' resources.

Applications taking advantage of this feature should implement an AppleTalk transition queue to

stay informed as to changes to this name. Three new transitions have been defined to communicate

Flagship name changes between applications and other resident processes. Support for the

Flagship Naming Service Transitions is provided starting from AppleTalk version 56. Note that

AppleTalk version 56 can be installed on pre-7.0 systems; however, the Flagship Naming Service

is available only from System 7.0 and later.

The ATTransNameChangeAskTask Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent RECORD 0)

ReturnAddr DS.L 1 ; address of caller

a

12 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support
April 1992

theEvent DS.L 1 ? = 77 ID of ATTransNameChangeAskTask transaction

age DS.L 1 ; pointer to task record

infoPtr DS.L 1 ; pointer to NameChangeInfo parameter block

ENDR

The NameChangeInfo record block is as follows:

NameChangeInfoPtr: *NameChangelInfo;

NameChangelInfo = RECORD

newObjStr: Str32; {new Flagship name to change to }

name StringPtr; {ptr to location to place ptr to process }

{name }

END;

The artransChangeNameAskTask is issued under System 7.0 to inform Flagship clients that a

process wants to change the Flagship name. Each AppleTalk Transition Queue element that

processes the ATTransChangeNameAskTask Can inspect the NameChangeInfoPtr*.newObjStr to

determine the new Flagship name. If you deny the request, you must set the

NameChangeInfoPt r*.name pointer with a pointer to a Pascal String buffer containing the name

of your application or to the nil pointer. The AppleTalk Transition Queue process returns this

pointer. The requesting application can display a dialog notifying the user of the name of the

application that refused the process.

While processing this event, you may make synchronous calls to the Name Binding Protocol

(NBP) to attempt to register your entity under the new name. It is recommended that you register

an entity using the new Flagship name while handling the arTransChangeNameAskTask event.

You should not deregister an older entity at this point. Your routine must return a function result of

0 in the DO register, indicating that it accepts the request to change the Flagship name, or a nonzero

value, indicating that it denies the request.

DTS does not recommended that you change the Flagship name. The Sharing Setup
CDEV does not handle this event and the Macintosh name will not be updated to reflect this change
if the CDEV is open.

The ATTransNameChangeTellTask Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent RECORD)

ReturnAddr DS.L 1 ; address of caller

theEvent DS.L i ; = 6; ID of ATTransNameChangeTellTask transaction

age DS.L 1 ; pointer to task record

infoPtr DS.L a ; pointer to the new Flagship name

ENDR

A process uses ATEvent to send the aTTransNameChangeTelltask to notify AppleTalk
Transition Queue clients that the Flagship name is being changed. The LAP Manager then calls
every routine in the AppleTalk Transition Queue that the Flagship name is being changed.

When the AppleTalk Manager calls your routine with a ATTransNameChangeTellTask transition,
the third item on the stack is a pointer to a Pascal string of the new Flagship name to be registered.
Your process should deregister any entities under the old Flagship name at this time. You may
make synchronous calls to NBP to deregister an entity. Return a result of 0 in the DO register.

Note: When the AppleTalk Manager calls your process with a TellTask transition (that is,
with a routine selector of ATTransNameChangeTellTask), you cannot prevent the Flagship
name from being changed.

#311: What’s New With AppleTalk Phase 2 13 of 29

Macintosh Technical Notes e———e———e ee eeSeSeSeSeSeSFSFSseFeseseseF

To send notification that your process intends to change the Flagship name, use the ATEvent
function described above. Pass aTTransNameChangeTellTask as the event parameter and a i
pointer to the new Flagship name (Pascal string) as the infoPtr parameter. wy

The ATTransCancelNameChange Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent RECORD 0

ReturnAddr DS.L 1 , address of caller
theEvent DS.L 1 + = 8; ID of ATTransCancelNameChange transaction
age DS.L Bl ; pointer to task record

ENDR

The ATTransCancelNameChange transition complements the aTTransNameChangeAskTask
transition. Processes that acknowledged an aTTransNameChangeAskTask transition will be sent
the ATTransCancelNameChange transition if a later process disallows the change of Flagship
name. Your process should deregister any NBP entities registered during the
ATTransNameChangeAskTask transition. You may make synchronous calls to NBP to deregister
an entity. Return a result of 0 in the DO register.

System 7.0 Sharing Setup cdev and Flagship Naming Service Interaction

The Flagship Naming Service is a new system service built into System 7. It is used to publish the
workstation using the Flagship name. The Flagship Naming Service implements an AppleTalk
Transition Queue element to respond to changes in the Flagship name. For example, the Sharing
Setup cdev can be used to reset the Flagship name. When a new Macintosh (Flagship) name is
entered in Sharing Setup, Sharing Setup sends an aTTransNameChangeAskTask message to the Le
AppleTalk Transition Queue to request permission to change the Flagship name. The Flagship
Naming Service receives the ATTransNameChangeAskTask transition and registers the new name
under the type “Workstation” on the local network. Sharing Setup follows with the
ATTransNameChangeTelltask to notify AppleTalk Transition Queue clients that a change in
Flagship name will occur. The Flagship Naming Service responds by deregistering the workstation
under the old Flagship name.

If an error occurs from the NBPRegister call, Flagship Naming Service returns a nonzero error
(the error returned from NBPRegister) and a pointer to its name in the
NameChangeInfoPtr*.Name field. Note that the Workstation name is still registered under the
previous Flagship name at this point.

AppleTalk Remote Access Network Transition Event

AppleTalk Remote Access allows you to establish an AppleTalk connection between two
Macintosh computers over standard telephone lines. If the Macintosh you dial-in to is on an

AppleTalk network, such as LocalTalk or Ethernet, your Macintosh becomes, effectively, a node

on that network. You are then able to use all the services on the new network. Given this new

capability, it is important that services running on your Macintosh are notified when new

AppleTalk connections are established and broken. For this reason, the

ATTransNetworkTransition event has been added to AppleTalk version 57. This event can be
expected under System 6.0.4 and greater.

14 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support
April 1992

Internally, both the AppleTalk Session Protocol (ASP) and the AppleTalk Data Stream Protocol

(ADSP) have been modified to respond to this transition event. When a disconnect transition event

is detected, these drivers close down sessions on the remote side of the connection.

The ATTransNetworkTransition Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent RECORD 0

ReturnAddr DS.L 1 ; address of caller

theEvent DS.L 1 ; = 5; ID of ATTransNetworkTransition

age DS.L 1 ; pointer to task record

infoPtr DS.L 1 ; pointer to the TNetworkTransition record

ENDR

The TNetworkTransition record block is passed as follows:

TNetworkTransition RECORD 0)

private DS.L 1 ; pointer used internally by AppleTalk Remote Access

netValidProc DS.L 4 ; pointer to the network validate procedure

newConnectivity DS.B 1 ; true = new connectivity, false = loss of connectivity

ENDR

Network Transition Event for AppleTalk Remote Access

Network transition events are generated by AppleTalk Remote Access to inform AppleTalk

Transition Queue applications and resident processes that network connectivity has changed. The
type of change is indicated by the NetTransPtr*.newConnectivity flag. If this flag is true, a
connection to a new internet has taken place. In this case, all network addresses will be returned as
reachable. If the newConnectivity flag is false, certain networks are no longer reachable. Since
AppleTalk Remote Access is connection based, it has knowledge of where a specific network
exists. AppleTalk Remote Access can take advantage of that knowledge during a disconnect to
inform AppleTalk Transition Queue clients that a network is no longer reachable. This information
can be used by clients to age out connections immediately rather than waiting a potentially long
period of time before discovering that the other end is no longer responding.

When AppleTalk Remote Access is disconnecting, it passes a network validation hook in the
TNetworkTransition record, NetTransPtr*.netValidProc. A client can use the validation hook
to ask AppleTalk Remote Access whether a specific network is still reachable. If the network is still
reachable, the validate function will return true. A client can then continue to check other networks
of interest until the status of each one has been determined. After a client is finished checking
networks, control returns to AppleTalk Remote Access where the next AppleTalk Transition Queue
client is called.

The information the network validate hook returns is valid only if a client has just been called as a
result of a transition. A client can validate networks only when it has been called to handle a
Network Transition Event. Note that the Network Transition Event can be called as the result of an
interrupt, so a client should obey all of the normal conventions involved with being called at this
time (for example, don’t make calls that move memory and don’t make synchronous Preferred
AppleTalk calls).

To check a network number for validity the client uses the network validate procedure to call
AppleTalk Remote Access. This call is defined using C calling conventions as follows:

pascal long netValidProc(TNetworkTransition *thetrans, unsigned long theAddress) ;

thetrans --> pass in the TNetworkTransition record given to you when your

#311: What’s New With AppleTalk Phase 2 15 of 29

Macintosh Technical Notes

transition handler was called.

theAddress --> this is the network address you want checked. The format of
theAddress is the same as AddrBlock as defined in Inside
Macintosh II, page 281:

Bytes 2 & 3 (High Word) - Network Number

Byte 1 - Node Number

Byte 0 (Low Byte) - Socket Number

Result codes true network is still reachable
false network is no longer reachable

AppleTalk Transition Queue handlers written in Pascal must implement glue code to use the
netValidProc.

Cable Range Change Transition Event

The Cable Range Transition, atTransCableChange, event informs AppleTalk Transition Queue
processes that the cable range for the current network has changed. This can occur when a router is
first seen, when the last router ages out, or when an RTMP broadcast packet is first received with a
cable range that is different from the current range. The ATTransCableChange event is
implemented beginning with AppleTalk version 57. Most applications should have no need to
process this event. This event can be expected under System 6.0.4 and greater.

The ATTransCableChange Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent RECORD 0

ReturnAddr DS.L i. ; address of caller

theEvent DS.L AL ; = 'rnge'; ID of ATTransCableChange

age DS.L 1 ; pointer to task record

infoPtr DS.L 1 ; pointer to the TNetworkTransition record

ENDR :

The TNewCRTrans record block is passed as follows:

TNewCRTrans RECORD fe)

newCableLo DS.W al ; the new Cable Lo received from RTMP

newCableHi DS.W 1 ; the new Cable Hi received from RTMP

ENDR

The cable range is a range of network numbers starting from the lowest network number through
the highest network number defined by a seed router for a network. All node addresses acquired
on a network must have a network number within the defined cable range. For non-extended

networks, the lowest and the highest network numbers are the same. If the cable range on the

network changes, for example, if the router on the network goes down, the Cable Range Change

event will be issued with the parameters described earlier in this Technical Note.

After receiving the event, a multinode application should use the new cable range to check if all the

multinodes it obtained prior to the event are still valid. For the invalid multinodes, the application

should issue the .MPP RemoveNode control call to get rid of invalid nodes. The .MPP AddNode

control call can be issued immediately after removing invalid nodes to obtain new valid multinodes

in the new cable range. This cable range change transition event will be issued only during system

task time.

16 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support April 1992

The Speed Change Transition Event

The atTransSpeedChange transition event is defined for applications that change CPU speed

without rebooting, to notify time dependent processes that such change has taken place. Such

speed change occurs when altering the cache states on the 68030 or 68040 CPU's, or with third

party accelerator cards which allow speed changes on the fly via a Control Panel device. Any

process which alters the effective CPU speed should use the ATEvent to notify processes of this

change. Issue the atTransSpeedChange event only at SystemTask time! Any process which is

dependent on changes to the CPU speed should watch for this event. The speed change transition

event will be issued only during system task time.

One time dependent routine is LocalTalk, whose low-level timer values must be recalculated when

the CPU speed changes. Note that altering the cache state on the 68030 does not affect LocalTalk,

however doing so on the 68040 does affect LocalTalk timers. This event must be sent by any

application that toggles caching on the 68040 processor on the fly. If the cache is toggled and

LocalTalk is not notified, a loss of network connection will result if LocalTalk is the current

network connection. Note that only LocalTalk implemented in AppleTalk version 57 or greater

recognizes the speed change transition event. Contact Apple Software Licensing for licensing

AppleTalk version 57.

Regarding LocalTalk on the Mac Plus, the timing values are hard-coded in ROM regardless of the

CPU speed. Vendors of accelerators for Mac Pluses should contact DTS for information on how

to make LocalTalk work for you.

The ATTransSpeedChange Transition

From Assembly language, the stack upon calling looks as follows:

ATQEvent RECORD 0

ReturnAddr DS.L 1 ; address of caller

theEvent DS.L 1 ; = 'sped'; ID of ATTransSpeedChange

age DS.L 1 ; pointer to task record

ENDR

To notify LocalTalk that a change in processor speed has taken place, use the ATEvent procedure.
Pass ATTransSpeedChange as the event parameter and a nil pointer as the infoPtr parameter.
This event must be issued only at System Task time.

Sample Pascal Source to LAPMegrExists Function

It is important to check whether the LAP Manager exists before making LAP Manager calls like
LAPAddATQ. The LAP Manager is implemented beginning with AppleTalk version 53. Rather
than check the low memory global LAPMgrPt,, it is preferable to check for it's existence from a
higher level. The following Pascal source demonstrates this technique.

FUNCTION GestaltAvailable: Boolean;

CONST

_Gestalt = SA1AD;

BEGIN

GestaltAvailable := TrapAvailable(_ Gestalt);
{ TrapAvailable is documented in Inside Macintosh Volume VI, page 3-8 }

#311: What’s New With AppleTalk Phase 2 17 of 29

Macintosh Technical Notes

END;

FUNCTION AppleTalkVersion: Integer;

CONST

versionRequested = 1; { version of SysEnvRec }

VAR

refNum: INTEGER;

world: SysEnvRec;

attrib: LONGINT;

BEGIN

AppleTalkVersion := 0; { default to no AppleTalk }

IF OpenDriver('.MPP', refNum) = noErr THEN { open the AppleTalk driver }

IF GestaltAvailable THEN

BEGIN

IF (Gestalt (gestaltAppleTalkVersion, attrib) = noErr) THEN

AppleTalkVersion := BAND(attrib, SOOQOOO0FF) ;

END

ELSE { Gestalt or gestaltAppleTalkVersion selector isn't available }

IF SysEnvirons(versionRequested, world) = noErr THEN

AppleTalkVersion := world.atDrvrVersNum;

END;

FUNCTION LAPMgrExists: Boolean;

BEGIN

{ AppleTalk phase 2 is in AppleTalk version 53 and greater }

LAPMgrExists := (AppleTalkVersion >= 53);

END;

Sample AppleTalk Transition Queue Function

A sample AppleTalk Transition Queue function has been implemented in both C and Pascal. These
samples have been submitted as snippet code to appear on the Developer CD. Since Transition
Queue handlers are called with a C style stack frame, the Pascal sample includes the necessary C
glue.

Sample AppleTalk Transition Queue Function in C

The following is a sample AppleTalk Transition Queue handler for C programmers. To place the
handler in the AppleTalk Transition Queue, define a structure of type myATQEntry in the main
body of the application. Assign the SampleTransQueue function to the myATQEntry.CallAddr
field. Use the LAPAddATQ function to add the handler to the AppleTalk Transition Queue.
Remember to remove the handler with the LAPRmvATQ function before quitting the application.

Warning: The System 7 Tuner extension will not load AppleTalk resources if it detects that

AppleTalk is off at boot time. Remember to check the result from the LAPAddarTg function to
determine whether the handler was installed successfully.

The following code was written with MPW C v3.2.

file: TransQueue.h

#include <AppleTalk.h>

/*

* Transition queue routines are designed with C calling conventions in mind.

* They are passed parameters with a C style stack and return values are expected

a S—

18 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support
April 1992

* to be in register DO.

wy,

#define ATTransOpen 0 /* .MPP just opened x/

#define ATTransClose 2 /* .MPP is closing */

| #define ATTransClosePrep 3 /* OK for .MPP to close? */

#define ATTransCancelClose 4 /* .MPP close was canceled */

| #define ATTransNetworkTransition 5 /* .MPP Network ADEV transition */

| #define ATTransNameChangeTellTask 6 /* Flagship name is changing */

| #define ATTransNameChangeAskTask 7 /* OK to change Flagship name */

#define ATTransCancelNameChange 8 /* Flagship name change was canceled */

#define ATTransCableChange 'rnge' /* Cable Range Change has occurred */

#define ATTransSpeedChange 'sped' /* Change in processor speed has occurred */

/* cee eee ee eee eee ee es ee ee See een SS 5 68 6 6 6 SS SST

NBP Name Change Info record

wee ee ee eee ee ee on on oo oo nr a rrr rrr rrr x/

typedef struct NameChangeInfo {

| Str32 newObjStr; /* new NBP name */

Ptr name; /* Ptr to location to place a pointer to Pascal string of */

/* name of process that NAK'd the event */

}

| NameChangeInfo, *NameChangePtr, **NameChangeHdl;

| /*----------------------------
------------ = --- $52 oe nnn nn

Network Transition Info Record
woe ee ee ee ee ee ee ee rrr x/

| typedef struct TNetworkTransition {

Ptr private; /* pointer to private structure */

| ProcPtr netValidProc; /* pointer to network validation procedure */

Boolean newConnectivity; /* true = new connection, */
| /* false = loss of connection */

TNetworkTransition , *TNetworkTransitionPtr, **TNetworkTransitionHdl;

| typedef pascal long (*NetworkTransitionProcPtr) (TNetworkTransitionPtr netTrans, \

unsigned long theNet);

/* —----- - +--+ ee ee ee

Cable Range Transition Info Record
Sooo S anes ee ee eee ee eee a eee he ee eee x/

typedef struct TNewCRTrans {

| short newCableLo; /* the new Cable Lo received from RTMP */

short newCableHi; /* the new Cable Hi received from RTMP */

}
| TNewCRTrans , *TNewCRTransPtr, **TNewCRTransHdl;

/* we we ee

AppleTalk Transition Queue Element
pe a a ae ee x/

| typedef struct myATQEntry {

| Ptr qLink; /* -> next queue element */

short qType; /* unused */

ProcPtr CallAddr; /* -> transition procedure */

Ptr globs; /* -> to user defined globals */

}

myATQEntry, *myATQEntryPtr, **myATQEntryHdl;

|

| Di ee ee a

file: TransQueue.c

#include <Memory.h>

#311: What’s New With AppleTalk Phase 2 19 of 29

Macintosh Technical Notes

#include <AppleTalk.h>

#include "TransQueue.h"

long SampleTransQueue(long selector, myATQEntry *q, void *p)
{

long returnVal = 0; /* return O for unrecognized events */
NameChangePtr myNameChangePtr;

TNewCRTransPtr myTNewCRTransPtr;

TNetworkTransitionPtr myTNetworkTransitionPtr;
NetworkTransitionProcPtr myNTProcPtr;

StringPtr newNamePtr;

long checkThisNet;

char eet

short myCableLo, myCableHi;

/*

* This is the dispatch part of the routine. We'll check the selector passed into
* the task; its location is 4 bytes off the stack (selector).

af

switch(selector) {

case ATTransOpen:
/*

* Someone has opened the .MPP driver. This is where one would reset the

* application to its usual network state (i.e., you could register your

* NBP name here). Always return 0.

*/
break;

case ATTransClose:
/*

* When this routine is called, .MPP is going to shut down no matter what we

* do. Handle that type of situation here (i.e., one could remove an NBP

* name and close down all sessions); 'p' will be nil. Return 0

* to indicate no error.

*/

break;

case ATTransClosePrep:
/*

This event gives us the chance to deny the closing of AppleTalk if we

* want. Returning a value of 0 means it's OK to close; nonzero

* indicates we'd rather not close at this time.
*

* With this event, the parameter 'p' actually means something. 'p' in

* this event is a pointer to an address that can hold a pointer to a

* string of our choosing. This string indicates to the user which task

* would rather not close. If you don't want AppleTalk to close, but you

* don't have a name to stick in there, you MUST place a nil value in

* there instead.
*

* (We're doing this all locally to this case because it's C and we can, so

* there.)

Ewa
newNamePtr = (StringPtr) NewPtr (sizeof (Str32));

/*

* Assume Ptr allocation successful.

ei

newNamePtr = "\pBanana Mail"; /* this will either be an Ax reference or PC

* relative depending on compiler and options */

/*

* get a new reference to the address we were passed (in a form we can use)

ef

i EE EETEEITIEIENEEESEEEEE EEE EEE

20 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support April 1992

t = (char **) p;
/*

* place the address of our string into the address we were passed

mf

*t = (char *)newNamePtr;

/*

* return a nonzero value so that AppleTalk knows we'd rather not close

*/
returnVal = 1;

break;

case ATTransCancelClose:
/*

* Just kidding, we didn't really want to cancel that AppleTalk closing

* after all. Reset all your network activities that you have disabled

* here (if any). In our case, we'll just fall through. 'p' will be nil.

=f

break;

case ATTransNetworkTransition:
/*

* A Remote AppleTalk connection has been made or broken.

* 'p' is a pointer to a TNetworkTransition record.

* Always return 0.

my

myTNetworkTransitionPtr = (TNetworkTransitionPtr) p;
/*

* Check newConnectivity element to determine whether

* Remote Access is coming up or going down

af
Lf (myTNetworkTransitionPtr->newConnectivity) {

/*

* Have a new connection

xf

}
else {

/*

* Determine which network addresses need to be validated

* and assign the value to checkThisNet.

mil :
checkThisNet = 0x1234FD80; /* network 0x1234, node OxFD, socket Ox80 */

myNTProcPtr = (NetworkTransitionProcPtr) myTNetworkTransitionPtr->netValidProc;

if ((*myNTProcPtr) (myTNetworkTransitionPtr, checkThisNet)) {
/*

* Network is still valid

xs

}
else {

/*

* Network is no longer valid

ay

}

}
break;

case ATTransNameChangeTellTask:
/*

* Someone is changing the Flagship name and there is nothing we can do.

* The parameter 'p' is a pointer to a Pascal style string which holds new

* Flagship name.

bf

newNamePtr = (StringPtr) p;

/*

* You should deregister any previously registered NBP entries under the

#311: What’s New With AppleTalk Phase 2 21 of 29

Macintosh Technical Notes

* 'old' Flagship name. Always return 0.

*/

break;

case ATTransNameChangeAskTask:

/

Someone is messing with the Flagship name.

With this event, the parameter 'p' actually means something. 'p' is

a pointer to a NameChangeInfo record. The newObjStr field contains the

new Flagship name. Try to register a new entity using the new Flagship name.

Returning a value of 0 means it's OK to change the Flagship name.
+ OF OF OF OF OO /

myNameChangePtr = (NameChangePtr)p;

/*

* If the NBPRegister is unsuccessful, return the error. You must also set

* p->name pointer with a pointer to a Pascal style string of the process

* name.

x/
break;

case ATTransCancelNameChange:
/*

* Just kidding, we didn't really want to change that name after

* all. Remove new NBP entry registered under the ATTransNameChangeAskTask

* Transition. In our case, we'll just fall through. 'p' will be nil. Remember

* to return 0.

*/

break;

case ATTransCableChange:
/*

* The cable range for the network has changed. The pointer 'p' points

to a structure with the new network range. (TNewCRTransPtr) p->newCableLo

is the lowest value of the new network range. (TNewCRTransPtr) p->newCableHi

* is the highest value of the new network range. After handling this event,

* always return 0.

*/

myTNewCRTransPtr = (TNewCRTransPtr)p;

myCableLo = myTNewCRTransPtr->newCableLo;

myCableHi = myTNewCRTransPtr->newCableHi;

break;

*

case ATTransSpeedChange:
/*

* The processor speed has changed. Only LocalTalk responds to this event.

* We demonstrate this event for completeness only.

* Always return 0.

A

break;

default:
/*

* For future transition queue events. (and yes, Virginia, there will be more)

af

break;

} /* end of switch */

/*

* return value in register DO

ef

return returnVal;

22 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support April 1992

Sample AppleTalk Transition Queue Function in Pascal

The following is a sample AppleTalk Transition Queue handler for Pascal programmers. AppleTalk

Transition Queue handlers are passed parameters using the C parameter passing convention. In

addition, the 4 byte function result must be returned in register DO. To meet this requirement, a C

procedure is used to call the handler, then to place the 4 byte result into register DO. The stub

procedure listing follows the handler.

To place the handler in the AppleTalk Transition Queue, define a structure of type myATQEntry in

the main body of the application. Assign the CallTransQueue C procedure to the

myATQEntry.CallAddr field. Use the LAPAddATQ function to add the handler to the AppleTalk

Transition Queue. Remember to remove the handler with the LAPRmvATQ function before

quitting the application.

Warning: The System 7 Tuner extension will not load AppleTalk resources if it detects that

AppleTalk is off at boot time. Remember to check the result from the LAPAddaTQ function to

determine whether the handler was installed successfully.

The following code was written with MPW Pascal and C v3.2.

(FR RII RII TOI RI ITT RI III IR IIE IKE EIR EKER RK KIA HEE EER ESHER EKER EEK EERE EERE

file: TransQueue.p
CeO I I RR I I III I I IIE I I I I I I II II I I II II I I I I IE IE}

UNIT TransQueue;

INTERFACE

USES MemTypes, QuickDraw, OSIntF, AppleTalk;

CONST

(* Comment the following 4 constants since they are already defined in the AppleTalk unit

ATTransOpen = 0; { .MPP is opening }

ATTransClose = 2; { .MPP is closing }

ATTransClosePrep = 3; { OK for .MPP to close? }

ATTransCancelClose = 4; { .MPP close was canceled }
*) .

ATTransNetworkTransition = 5; { .MPP Network ADEV transition }

ATTransNameChangeTellTask = 6; { Flagship name is changing }

ATTransNameChangeAskTask = 7; { OK to change Flagship name }

ATTransCancelNameChange = 8; { Flagship name change was canceled }

ATTransCableChange = 'rnge'; { Cable Range Change has occurred }

ATTransSpeedChange = 'sped'; { Change in processor speed has occurred }

TYPE

NameChangeInfo = RECORD

newObjStr : Str32; { new NBP name }

name SPER { Ptr to location to place a pointer to Pascal string of }

{ name of process that NAK'd the event }

END;

NameChangePtr = “NameChangelInfo;

NameChangeHdl = *NameChangePtr;

#311: What’s New With AppleTalk Phase 2 23 of 29

Macintosh Technical Notes

TNetworkTransition = RECORD

private : Ptr; { pointer to private structure }

netValidProc : ProcPtr; { pointer to network validation procedure }

newConnectivity : Boolean; { true = new connection, }

{ false = loss of connection }

END;

TNetworkTransitionPtr

TNetworkTransitionHdl

“TNetworkTransition;

“TNetworkTransitionPtr;

{ The netValidProc procedure has the following C interface. Note the }

{ CallNetValidProc C function, which follows. The C Glue routine allows the Pascal }

{ handler to make the call to the netValidProc function. }

{
typedef pascal long (*NetworkTransitionProcPtr) (TNetworkTransitionPtr netTrans, \

unsigned long theNet) ;

TNewCRTrans = RECORD

newCableLo : INTEGER; { the new Cable Lo received from RTMP }

newCableHi : INTEGER; { the new Cable Hi received from RTMP }

END;

TNewCRTransPtr = *“TNewCRTrans;

TNewCRTransHdl = “TNewCRTransPtr;

myATQEntry = RECORD

qlink : Ptr; { -> next queue element }

qType : INTEGER; { unused }

CallAddr : ProcPer; { -> transition procedure }

globs s Ptr; { -> to user defined globals }

END;

myATQEntryPtr = “myATQEntry;

myATQEntryHdl = “myATQEntryPtr;

FUNCTION SampleTransQueue (selector :LONGINT; q :myATQEntryPtr; p :Ptr) : LONGINT;

{
Transition queue routines are designed with C calling conventions in mind.

They are passed parameters with a C style stack and return values are expected

to be in register DO. Note that the CallTransQueue C glue routine is used

to reverse the C style stack to Pascal style before calling the handler. The

procedure CallTransQueue follows this listing. To install this Trans Queue

handler, assign CallTransQueuve to the CallAddr field, NOT SampleTransQueue.

+ + 4 OF

~~ «6%

FUNCTION CallNetValidProc(p : ProcPtr; netTrans : TNetworkTransitionPtr;

theNet : LONGINT) : LONGINT;

CallNetValidProc is used to call the netValidProc passed in the TNetworkTransition *

* record. Since Pascal cannot call the ProcPtr directly, a C glue routine is

* used. This routine is defined following this listing.

}

IMPLEMENTATION

FUNCTION SampleTransQueue (selector :LONGINT; q :myATQEntryPtr; p :Ptr) : LONGINT;

ee VGKee@—v

24 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support
April 1992

VAR

returnVal : LONGINT;

myNameChgPtr : NameChangePtr;

myTNewCRTransPtr : TNewCRTransPtr;

myTNetworkTransitionPtr : TNetworkTransitionPtr;

newNamePtr : StringPtr;

processNameHdl : StringHandle;

myCableLo, myCableHi : INTEGER;

shortSelector : INTEGER;

checkThisNet : LONGINT;

BEGIN

returnVal := 0; { return 0 for unrecognized events)

{
* This is the dispatch part of the routine. We'll check the selector passed into

* the task; its location is 4 bytes off the stack (selector).

}
IF ((selector <= ATTransCancelNameChange) AND (selector >= ATTransOpen)) THEN

{
* Check whether a numeric selector is being used whose known values are between

* 8 and 0 so that we can implement a CASE statement with an INTEGER var.

}
BEGIN

shortSelector := selector;

CASE shortSelector OF

ATTransOpen:

BEGIN

{
* Someone has opened the .MPP driver. This is where one would reset the

* application to its usual network state. (i.e., you could register your

* NBP name here). Always return 0.

}

END;

ATTransClose:

BEGIN

{
* When this routine is called .MPP is going to shut down no matter what we

* do. Handle that type of situation here (i.e., one could remove an NBP

* name and close down all sessions). 'p' will be nil. Return 0 to

* indicate no error.

}

END;

ATTransClosePrep:

BEGIN

{

* This event gives us the chance to deny the closing of AppleTalk IF we

* want. Returning a value of 0 means it's OK to close; nonzero

* indicates we'd rather not close at this time.
*

* With this event, the parameter 'p' actually means something. 'p' in

* this event is a pointer to an address which can hold a pointer to a

* string of our choosing. This string indicates to the user which task

* would rather not close. If you don't want AppleTalk to close, but you

* don't have a name to stick in there, you MUST place a nil value in

* there instead.

}

{

* Get a new reference to the address we were passed (in a form we can use)

* (We're doing this all locally to this case because we can, so

* there.)

}

processNameHd] := StringHandle (NewHandle (sizeof (Str32)));

#311: What’s New With AppleTalk Phase 2 25 of 29

Macintosh Technical Notes

{
* place the address of our string into the address we were passed
}

:= 'Banana Mail';

Ptr(p) := Ptr (processNameHdl) ;

{
*«

}

returnVal := 1;

END;

return a nonzero value so AppleTalk knows we'd rather not close

ATTransCancelClose:

BEGIN

* Just kidding, we didn't really want to cancel that AppleTalk closing

* after all. Reset all your network activities that you have disabled here

* (IF any). In our case, we'll just fall through. 'p' will be nil.

}
END;

ATTransNetworkTransition:

BEGIN

{
* A Remote AppleTalk connection has been made or broken.

* 'p' is a pointer to a TNetworkTransition record.

- Always return 0.

}

myTNetworkTransitionPtr := TNetworkTransitionPtr (p);

{
* Check newConnectivity element to determine whether

* Remote Access is coming up or going down

}
if (myTNetworkTransitionPtr*.newConnectivity) THEN

BEGIN

{
* Have a new connection

}
END

ELSE

BEGIN

{
* Determine which network addresses need to be validated

* and assign the value to checkThisNet.

}
checkThisNet = $1234FD80; /* network $1234, node SFD, socket $80 */

if (CallNetValidProc(myTNetworkTransitionPtr®.netValidProc,

myTNetworkTransitionPtr, checkThisNet) <> 0) THEN

BEGIN

{
* Network is still valid

}

END

ELSE

BEGIN

{
* Network is no longer valid

ATTransNameChangeTellTask:

BEGIN

{

ee

26 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support
April 1992

* Someone is changing the Flagship name and there is nothing we can do.

* The parameter 'p' is a pointer to a Pascal style string which holds new

* Flagship name.

}
newNamePtr := StringPtr (p);

{

:

* You should deregister any previously registered NBP entries under the

* ‘'old' Flagship name. Always return QO.

END;

ATTransNameChangeAskTask:

BEGIN

{
* Someone is messing with the Flagship name.

* With this event, the parameter 'p' actually means something. 'p' is

* a pointer to a NameChangeiInfo record. The newObjStr field contains the

* new Flagship name. Try to register a new entity using the new Flagship

* name. Returning a value of 0 means it's OK to change the Flagship name.

}
myNameChgPtr := NameChangePtr (p);

{
* If the NBPRegister is unsuccessful, return the error. You must also set

* p->name pointer with a pointer to a string of the process name.

}
END;

ATTransCancelNameChange:

BEGIN

{
* Just kidding, we didn't really want to cancel that name change after

* all. Remove new NBP entry registered under the

* ATTransNameChangeAskTask Transition. 'p' will be nil.

* Remember to return 0.

}
END;

OTHERWISE

returnVal := 0;

{
* Just in case some other numeric selector is implemented.

}

END; { CASE }

END

ELSE IF (ResType(selector) = ATTransCableChange) THEN

BEGIN

{
The cable range for the network has changed. The pointer 'p' points

to a structure with the new network range. (TNewCRTransPtr) p->newCableLo

is the lowest value of the new network range. (TNewCRTransPtr) p->newCableHi

is the highest value of the new network range. After handling this event,

always return 0. + + % %

myTNewCRTransPtr := TNewCRTransPtr(p);

myCableLo := myTNewCRTransPtr®.newCableLo;

myCableHi := myTNewCRTransPtr%®.newCableHi;

returnVal := 0;

END

ELSE IF (ResType(selector) = ATTransSpeedChange) THEN

BEGIN

{

The processor speed has changed. Only LocalTalk responds to this event.

* We demonstrate this event for completeness only.

* Always return 0.

#311: What’s New With AppleTalk Phase 2 27 of 29

Macintosh Technical Notes eS

}

returnVal := 0;

END; { IF }

SampleTransQueue := returnVal;

END;

FUNCTION CallNetValidProc(p : ProcPtr; netTrans : TNetworkTransitionPtr;
theNet : LONGINT) : LONGINT; EXTERNAL;

END. { of UNIT }

[RII OI III I III III II III III III III I IIE ese de de

file: CGlue.c
ZUCCICICCIC CIC CICCCICCIICICCCICI CI UICIICIUITIOICUI III IG SISI SSIS I CI II SII II I IOI II III I II I I /

#include <AppleTalk.h>

/* nn rn a =

Network Transition Info Record
SS sssR es ce ces ass as Sesser se Sooo sence ee eee Sok ee eee eee ns */

typedef struct TNetworkTransition {

Ptr private; /* pointer to private structure */

ProcPtr netValidProc; /* pointer to network validation procedure */

Boolean newConnectivity; /* true = new connection, */

/* false = loss of connection */

TNetworkTransition , *TNetworkTransitionPtr, **TNetworkTransitionHdl;

typedef pascal long (*NetworkTransitionProcPtr) (TNetworkTransitionPtr netTrans, \

unsigned long theNet) ;

/* ti it eye i se a ss Sei a cn en Va ea nm Sa cS a fe ee ee

AppleTalk Transition Queue Element
Getustecteee ase es ece tere oleate et ete eee eee eb seuss e ease */

typedef struct myATQEntry {

Ptr qLink; /* -> next queue element */

short qType; /* unused */

ProcPtr CallAddr; /* -> transition procedure */

Ptr globs; /* -> to user defined globals */

}
myATQEntry, *myATQEntryPtr, **myATQEntryHdl;

/* aaa Sasa oS See eee ewe ee See eee ee eee ees we we Kee eee Sees

Prototypes
wee ee ee ee en = = = ee x/

pascal long SampleTransQueue (long selector, myATQEntry *q, void *p);

long CALLTRANSQUEUE(long selector, myATQEntry *q, void *p);

/* Capitalize CALLTRANSQUEUE so that linker can match this entry with */

/* the pascal call */
pascal long CallNetValidProc(ProcPtr p, TNetworkTransitionPtr netTrans, long theNet);

long CALLTRANSQUEUE(long selector, myATQEntry *q, void *p)

/* CallTransQueue sets up the pascal stack for the SampleTransQueue handler */

/* then puts the result into DO */

{

return (SampleTransQueue(selector, gq, p));

}

pascal long CallNetValidProc(ProcPtr p, TNetworkTransitionPtr netTrans, long theNet)

/* CallNetValidProc is used to call the netValidProc pointed to by ProcPtr p. */

{
NetworkTransitionProcPtr myNTProcPtr;

ce

28 of 29 #311: What’s New With AppleTalk Phase 2

Developer Technical Support April 1992

myNTProcPtr = (NetworkTransitionProcPtr) p;

| fy’ return ((*myNTProcPtr) (netTrans, theNet));

Further Reference:
¢ Inside AppleTalk, Second Edition, Addison-Wesley

Inside Macintosh, Volume II, The AppleTalk Manager, Addison-Wesley
Inside Macintosh, Volume V, The AppleTalk Manager, Addison-Wesley
Inside Macintosh, Volume VI, The AppleTalk Manager, Addison-Wesley
Macintosh AppleTalk Connections Programmer s Guide, Final Draft 2, Apple Computer,
Inc. (M7056/A)
AppleTalk Phase 2 Protocol Specification, Apple Computer, Inc. (C0144LL/A)
Macintosh Portable Developer Notes (DTS)
AppleTalk Remote Access Developer’ s Toolkit, Apple Computer, Inc. (RO128LL/A)
Technical Note #250, AppleTalk Phase 2, (DTS)
Alternate AppleTalk for System 7.0, (DTS)

oe ie

eee @

a

- — 7

rr SS

#311: What’s New With AppleTalk Phase 2 29 of 29

i

LS PRR oy ee ee eee

C)

C

Macintosh 4

Technical Notes | §

Developer Technical Support

#312: Fun With PrJobMerge

Revised by: Matt Deatherage May 1992

Written by: Scott “Zz” Zimmerman and Matt Deatherage March 1992

This Technical Note discusses some interesting behavior you’ll encounter while using PrJobMerge

with the 7.0 and 7.1 versions of the LaserWriter driver.

Changes since March 1992: Corrected the Vulcan-like “THPring” typo to correctly read

“THPrint,” and changed a comment in the code to mean what I originally meant.

Like many Printing Manager calls, Pr JobMerge is implemented by the currently chosen printer
driver. This makes sense after consideration—since the printer driver may store job-specific
information anywhere in the print record, only the printer driver can correctly merge this into a
destination print record.

The LaserWriter driver’s implementation of PrJobMerge has a few bugs in versions 7.0 and
Toke

Fun Thing #1

Historically, PrJobMerge hasn’t worked correctly in the LaserWriter driver. The driver does not
correctly merge all job-related data (like the number of copies requested) into the destination print
record, so printing multiple copies of multiple documents from the Finder isn’t really possible with
the LaserWriter driver.

The only possible workaround is to present a different job dialog for each document to be printed,
but this isn’t recommended—especially since the job dialog doesn’t tell you which document
you’re about to print.

Fun Thing #2

As if this wasn’t enough excitement for one driver, in versions 7.0 and 7.1 of the LaserWriter

driver Pr JobMerge actually manages to destroy all the job-specific information in the source
print record after it doesn’t copy it into the destination print record.

There is a workaround for this problem—make a copy of the source print record and pass the copy
to PrJobMerge. If you pass the copy to PrJobMerge, you can just replace PrJobMerge with
your own routine that makes a copy, merges it into the destination, and disposes of the copy. This
bine work for all printer drivers, although it’s necessary only with version 7.0 of the LaserWriter

ver.

#312: Fun With PrJobMerge 1 of 2

Macintosh Technical Notes

Such a procedure might look like this in Pascal:

PROCEDURE NewPrJobMerge (hPrintSrc,hPrintDst: THPrint);

VAR

copyError: OSErr;

hPrintTemp: THPrint;

BEGIN

hPrintTemp := hPrintSrc; (make our own copy of the print record handle}
copyError := HandToHand (Handle (hPrintTemp));

END;

Don’t

PrSetError(copyError); {so we can get it later}

IF copyError = noErr THEN BEGIN

{hPrintTemp is now a copy of the original source record}
PrdobMerge (hPrintTemp,hPrintDst); {This messes up hPrintTemp, but we don't care}

END; {if copyError = noErr}

IF hPrintTemp <> NIL THEN DisposHandle (Handle (hPrintTemp)) ; {only a copy, remember! }

Go Overboard Trying to Solve This

Although the bugs in PrJobMerge in versions 7.0 and 7.1 of the LaserWriter driver make certain
kinds of printing multiple documents impossible without device-specific workarounds, we
strongly encourage you not to implement such code. Any code that tries to replicate the function of
PrJobMerge must by nature depend on how the LaserWriter driver stores information in the
print record, and this is a Bad Thing. The road to Compatibility Hell is paved with good intentions.

If you write your code as described in this Note, it will behave properly when the bug is fixed
without change on your part. If you go overboard trying to write your own PrJobMerge
function, your application is a prime candidate for compatibility problems.

Further Reference:
* Inside Macintosh, Volume II, The Printing Manager

2 of 2 #312: Fun With PrJobMerge

Macintosh re
Technical Notes @

Developer Technical Support

#313: Performance Tuning with Development Tools

Written by: Kent Sandvik May 1992

This Technical Note is a collection of useful ideas and suggestions to help you decrease the time

required to compile and link under MPW. Some of the issues are even relevant to any development

tools running under the Macintosh environment. The Tech Note will also clarify what performance

tunings work, and which are marginal or may not work at all.

so

Introduction

This Technical Note contains information that will help you improve both compilation and linking

times, and also point out about performance tricks that are marginal, or may not work at all. Most

likely this information will be updated and modified as we gain more knowledge of how to speed

up compilations and link stages. This Note is biased towards the MPW environment. However,
there are many ideas that can be used with any other Macintosh development platforms. The issues
are ordered from hardware- or system-related issues to specific MPW and MPW tool issues, and
these are not listed in any particular order of efficiency.

Many of these ideas are benchmarked and the results are marked with a special note at the end of
the paragraph . The equipment/environment consisted of:

¢ Macintosh 900 Quadra, 160Mb internal hard disk, 20Mb physical RAM memory, no VM
(unless stated)

¢ System 7.0.1 + TuneUp
¢ MPW 3.2 4Mb application heap, 256k file cache
¢ No extensions loaded, no network
¢ MacApp 3.0 Calc application source, C++ (when applicable)

Hardware Issues

Accelerator Cards

We at DTS have had mixed input about using CPU accelerator cards. In general they speed up
number-crunching. However, they don’t help with file I/O bottleneck situations. Also they can
cause compatibility problems with the tools, so we strongly recommend taking out the card for
testing if you encounter weird problems during compilation or linking.

Before you buy a card, contact the appropriate accelerator card tech support group, and ask about
the compatibility of their card with various Macintosh development systems. Try to borrow a card
for a quick test to figure out if buying the card is justified or not and if it works with the particular
development tools needed. Remember that accelerator cards based on NuBus™ can easily congest

eee

#313: Performance Tuning with Development Tools 1 of 13

Macintosh Technical Notes Macintosh Technica Notes

the NuBus bus (which has a 10 MB/sec limit on data transf i i i execution could be lost in the NuBus transfers. eave ale ei ree

SCSI I/O Cards and Hard Disk Access Times UO

File I/O is one of the known bottlenecks that affect MPW perf it’ performance (however, it’s not the onl bottleneck). Faster NuBus SCSI cards (like SCSI-2 cards) should certainly improve the file 10. how much depends on the file I/O access figures. Also, shop around for hard disks with fast
access times.

System Issues

Background Processes

Every background process, including the Finder, takes CPU cycles that could be used for
compilation and linking. Try to limit the background tasks on your compiling system. If possible
turn off any unnecessary inits and drivers.

External Sources of Interrupts

You should be aware that the development machine connected to a network will receive outside
interrupts as part of the network protocol handling (as in AppleTalk), and this will also consume
needed CPU cycles. For example, System 7 Personal FileShare requires a lot of attention from the
system itself. This is also true of any other background communication protocol handling. The best
possible case is a standalone development system. However, for practical reasons (like accessing
common volumes) a developer can seldom afford to configure a standalone environment. If
possible, minimize the network access on the development system. VU

If a server is connected to the system and is not used, the Finder still attempts to keep its desktop in
synch with the server. This consumes CPU cycles. If the server and the network are busy then the
machine is stuck waiting. If possible, always remove servers from the desktop when they are no
longer needed.

A System in network + initst = 404s, no-network System = 379s, savings 6.25%.

t mail services, 4 servers on desktop, 1 application in memory

File Cache

We suggest that you experiment with your particular system configuration, there is no magic value

which we could recommend. There's however a difference between System 6.0.x and 7.x. Large

cache sizes in System 6 will not improve the performance due to a bug, which is fixed in System

7. If your development tool is mostly in memory during the execution, many of the resources and

data files may be cached in memory between the execution stages. Following is a test where we

changed the cache size between 32k and 4096k while compiling the same sources. As shown we

didn't directly find an optimal value, so the 96k value is a good approximation.

a

2 of 13 #313: Performance Tuning with Development Tools

Developer Technical Support May 1992

Do
ne)
c
Q
Oo
®

2
®

=
=

Cache (kB)

Figure 1 - cache size vs. compilation time

System 7 Virtual Memory

The use of virtual memory is recommended when you would like to have many development tools
running at the same time. However, VM is much slower than real memory; it constantly needs to
read/write to the much slower hard disk. One exception is the IIci with its built-in video. IIci has a
non-contiguous memory map, and uses the MMU to map the logical addresses. The algorithms
used by the ROM are slower thant the ones used by VM. However the access gtes slower if a page
fault occurs.

Note also that 32-bit mode runs faster than 24-bit mode.

A VM ont = 481s, VM off = 400s, savings 16.8%.

+12 Mb VM

Compiler Issues

Compiler Flags

Eliminate any compiler flags that are not necessary for the code compilation. For example,
optimization flags take more CPU cycles, and in many cases the code produced without
optimization is OK for a quick syntax or functionality test. Read the manuals carefully; they should
indicate which flags are default ones. Note also that the MacApp has its own Startup file where
many compiler flags are defined. ;

The -sym on/full flag will trigger . Sy™ file information generation, and this takes time. If
possible avoid symbolics generation until you really need to debug.

Selected #include File Handling

A larger percent of a typical compile is spent readin g the header files, so reading them only once
for each source file compilation is a win. We are talking about cases where various source files
each want to include the same header file. The MPW C compiler has a special pragma called
#pragma once, which will make sure that each source file with this statement at the top of the file

—SSSeSeFeeeeeeeeSSSSSSSFSSSSSSSSSSSSSSSeeeeee

#313: Performance Tuning with Development Tools 3 of 13

Macintosh Technical Notes

will be read in only once. However this will not work with other languages - like C++ - so the
following guidelines are useful:

In your individual source files, bracket your C++ include files so that they are not read more than

once during a compilation of a source file:

//Utilities.cp

#ifndef UTILITIES
#include "Utilities.h"

#endif UTILITIES_

// code....

Of course, you also need to put bracketing into your local include files so that things don’t go

haywire if you do include the same file twice (note that we recommend using only one underline,

because ANSI C has reserved the use of two underlines):

// Utilities.h

#ifndef UTILITIES_

#define _UTILITIES |

// definitions

#endif _UTILITIES _

// place the line above at the end of the file

One trick is to define a global IncludeFiles.h file, which contains all files needed for the

other header files, and include it on demand inside the other header files, using the #ifndef

trick. A #pragma once statement placed first in a C header file provides the same functionality.

However, we can’t guarantee that the pragma once statements in C++ code end up in the

right places with the generated C code, so don’t use this with C++.

A No #include labels = 183s, include labels = 174s, savings 6.45%.

C / C++ Compiler Issues

Load/Dump

load/dump is described in the MPW C++ Release Notes. It provides the biggest single

performance improvement possible when using MPW C++. Use the -load and -dump flags

instead of the MPW C #pragma load/dump statements, because they work differently.

#pragma loadand #pragma dump placed directly in C++ may have Cfront generate code

that appears before the pragma and thus could cause the Load/dump to work incorrectly.

MPW C also has this feature, implimented using #pragma load and #pragma dump - compile time

savings are similar to those found in C++. For more information on how to use this feature,

please refer to the MPW C 3.0 release notes, pages 40-41.

Tradeoffs Between Compiling Small and Large Files

Each time CPlus is triggered, MPW will load in resources needed for the compiler. This also

happens when CPlus triggers the C compiler. In the case of a compilation of 10 files, the C++ and

C resources are loaded 10 times in a row.

NN $$

4 of 13 #313: Performance Tuning with Development Tools

Developer Technical Support May 1992

There are cases where a huge file compilation is faster than compiling a number of smaller files.

The overall trick is to create dependencies (Makefiles) where as few files as possible are

recompiled when something changes.

Pascal Compiler Issues

Limit Symbol Table Generation

The -p switch on the Pascal compiler is useful to determine where the compiler is spending its
time. For example, with MacApp the compiler should spend a lot of time inside the MacApp units
and in the PInterfaces files when discarding predigested symbol resources on the interface
files and reanalyzing the source.

The goal is to to configure a standard set of interface files so that we can use the precompiled
symbol information. Changing the order of includes or USES statements could cause these
resources to be rebuilt, taking extra time.

Here is a possible strategy to help you analyze the information from the compiler and define
strategies that will minimize the need for resources and make the compilation faster:

1. ALL units should use Types, QuickDraw, Packages, SANE, and
Printing (if needed).

2. When additional units are required, always use units from the newer, smaller groupings:
Events, Controls, Desk, Windows, TextEdit, Dialogs, Fonts, Lists,
Menus, Resources, Scrap, and ToolUtils {instead of TooliIntf}
OSUtils, Files, Devices, DeskBus, DiskInit, Disks, Errors, Memory,
OSEvents, Retrace, SegLoad, Serial, ShutDown, Slots, Sound, Start and
Timer {instead of OSInt f}
and
Script, Palettes, Picker, Perf, DisAsmLookup, AppleTalk

Note that if you mix references to newer and older files it will take longer to compile.

3. Always use units in the same order. The Apple units set compile flags that must be identical the
next time a unit is used or the compiler will not use the symbolic resources.

4. The MacApp units also set compile flags, so they should appear after the
MPW: Interfaces:PInterfaces units and always in the same order.

5. Keep your Own units in a consistent order in each USES statement, especially if you use
compiler variables in your source.

6. Adjust your build scripts to build units in the same order they are listed in your USES
statements.

7. As you clean up the units, compile them in a full build with the -p compiler option to verify
the results of your work. The output will indicate when the compiler uses the resources.

If you clean up your files in the order in which the units are built, you will begin to accumulate
Savings as you go along. However, don’t expect to see a tremendous difference until nearly all
ee eeeseseseeSaesesese

#313: Performance Tuning with Development Tools 5 of 13

Macintosh Technical Notes

your USES statements have been cleaned up. When an uncleaned unit is compiled, the consistency
of the symbol resources is spoiled and the compiler starts parsing resources again. Moreover, it
leaves the units in this inconsistent state, so the next build must begin by rebuilding the resources VU
in a consistent manner.

Once the cleanup is complete, your application should build at its optimum rate. If you are already
pretty clean in your USES statements, you should be getting near optimal performance.

If you haven’t already done so, consider switching to the 3.0/C-style separate interfaces instead of
using OSIntf or ToolIntf. Unless you use almost all the files included by these old-style
units, you should use the files as separate units, and get only what you need.

In all cases use Types .p instead of MemTypes.p and Packages.p instead of PackIntf.p.

Try not to rely blindly on the auto-inclusion feature of the new interfaces. If you let Packages
include Types in one file and then use Types before using Packages in the next file,
you’ll get “symbol table churning”: compile-time variables will be different and the symbol table
resources will have to be rebuilt each time.

Structure your Make file so that the units that come first in your USES clause get compiled before
later units and the main program. The symbol table resources for a unit are always rebuilt when the

unit is compiled. So if you change a unit and the main program, and your Make file builds the
main program first, the symbol table resources for the unit will get built when the program is
compiled, and again when the unit is compiled.

Use the -p option every now and then to see how things are going. Maybe you have compile-time

variables that are causing symbol table churning, or maybe the resource fork of a file has become :

corrupt. Maybe you don’t have enough memory to create the symbol table resource (MacApp CT]

needs more than a 4 MB partition, and use -mf with all tools if possible). Most of the possible

inefficiencies in reading or writing symbol table resources can be displayed only by use of the -p

option

If you use MacApp and switch between versions often (Debug/noDebug and so on), you can put

the directive {SK $$Shell(Ob jApp) } before the first unit in your USES clauses. This will

create the symbol table resources in files in the same directory as the program’s object files. So as

you switch from : .Debug Files: to:.Non-Debug Files: the right set of symbol table

resources will already be built.

Precheck the Pascal Syntax

You might precompile the code using Pasmat before the Pascal compiler is used, which could be

helpful for quickly finding syntax errors in the code without the penalty of running the full

compiler. You might define a command key that performs the operation, as in the following:

AddMenu MyMenu 'Pasmat {Active}.§/m' 'd

(Pasmat <"{Active}.§" >"{TemporaryFile}" 2 "{ErrorsFile}" Q

&& Catenate "{TemporaryFile}" > "{Active}.§" 3d

Delete -y "{TemporaryFile}" @

) |] Alert <"{ErrorsFile}"'

You might also use the -c flag with the Pascal compiler for syntax checking only.

Oo
A

6 of 13 #313: Performance Tuning with Development Tools

Developer Technical Support May 1992

Linker Issues

Limit Symbol Table Generation

In general it takes a lot of time for the linker to build the final SYM file. Try to avoid building

symbol files unless needed (like when stuck with a problem in the source code). In many cases the

-msg full (or -Names flag in MacApp) compiler flag for MacsBug name generation might be

OK for a test of where the application crashes.

You might also create a limited set of SYMBOLIC (.SYM) information. Here’s an example from

MacApp 3.0 of how this could be achieved (in the case of general C++ code, just specify “~sym

on’ in the C++ compiler for those files that you need for debugging). This technique will also

save both RAM and disk space.

HEEHHHHE HHH HHH HEEEERRRHHEEEER HEE ERR TRR RRR HEE EEE EH

LIBRARY DEPENDENCIES

HEEHHHHHHHHHHHHEEEHH HERE EE RRR ERRRRR RRR RRR RHR EET HH HH HE
"{ObjApp} {LibName} "ff d

{LibObjs}

IF {MacAppLibrary} || {LibName} !~ /MacApp.lib/ # Special trick to keep

MacApp libraries from building

{MAEcho} {EchoOptions} "“Libbing: {LibName}"

SET XToolStartTime “DATE -n°

{MALib}) @
{LibOptions}) @

{OtherLibOptions} @
{LibObjs} a
-o "{ObjApp}{LibName}"

execute "Skinny Lib" <+++++++++ new script file

ae Sb te te te

File: Skinny Lib <-<-<<-=<<---=--<-=<<<<-==-<<=

directory "{malibraries}.nodebug names sym nosys7:"

delete -i macapp.lib

lib -mf -w -sym off -o macapp.nosym 0

Geometry.cp.o PascalString.cp.o Toolbox.cp.o UAppleEvents.cp.o UAssociation.cp.o 0

UBusyCursor.cp.o UClipboardMgr.cp.o UCPlusTool.cp.o UDebug.a.o UDebug.cp.o @

UDeskScrapView.cp.o UEditionDocument.cp.o UErrorMgr.cp.o UFailure.a.o UFloatWindow.cp.o @
UGeometry.cp.o UGrabberTracker.cp.o UKeySelectionBehavior.cp.o UMacAppGlobals.cp.o 0

UMacAppUtilities.cp.o UMemory.a.o UMenuMgr.cp.o UMenuView.cp.o UPascalTool.p.o @
UPatch.cp.o USection.cp.o USectionMgr.cp.o UStream.cp.o USynchScroller.cp.o @
UProjFileHandler.cp.o UScroller.cp.o UTabTEView.a.o UTabTEView.cp.o @
UTearOffMenuView.cp.o UTECommands.cp.o UTEView.cp.o UTranscriptView.cp.o @
UDependencies.cp.o UDesignator.cp.o UTabBehaviors.cp.o

#lib -mf -w -sym off,NoLabels,NoLines,NoVars -o macapp.justTypesd lib -mf -w -sym off
macapp. justTypesd

UCommand.cp.o UCommandHandler.cp.o MacAppTypes.cp.o UAdorners.cp.o UBehavior.cp.o re)
UDrawingEnvironment.cp.o UEvent.cp.o UFile.cp.o UFileHandler.cp.o UMemory.cp.o 0
UIterator.cp.o UPopup.cp.o UViewBehavior.cp.o UViewServer.cp.o

-O

lib -mf -w -sym on -o macapp.lib macapp.nosym macapp. justTypesd
UApplication.cp.o UControl.cp.o UDialog.cp.o UDialogBehavior.cp.o UDocument.cp.o @
UEventHandler.cp.o UFailure.cp.o UFileBasedDocument.cp.o UGridView.cp.o @
UList.cp.o UObject.cp.o UPascalObject.a.o UPascalObject.cp.o UPrintHandler.cp.o @
UPrinting.cp.o UView.cp.o UWindow.cp.o

delete macapp.nosym macapp. justTypes

A -SYM generated = 379s, no .SYM generated = 276s, savings 27.2%.

eee

#313: Performance Tuning with Development Tools 7 of 13

Macintosh Technical Notes

Use Libraries If Possible

The linker will perform much faster if you link together library files (created by the Lib tool) than
if you separately compile .o files. Consult the latest MPW documentation which describes various
ways of using the Lib tool with projects.

CODE Resources

If you have code resources that do not make any intersegment calls (such as standalone code and
XCMD style code resources), you can use the Rez tool to add these resources directly to the binary
instead of using the link tool. This should save some time; how much depends on the actual
project.

Global Data

The link tool will build a complete image of the globals to be initialized. If the global area is large,
this might take a long time. Try to avoid extensive and unneeded use of global data.

C++ Code Issues

Smaller Files Compile Faster

Split huge source and header files into smaller modules and create dependencies in the Makefile
that will trigger compilations only when a particular file has changed. A known caveat with C++ is
the vtable consistency. Sometimes the vtables have to be created from scratch in order to
synchronize the vt able information. If the compilation and linking phase has generated a binary,
but when you are running the application it has problems, try to recompile most or maybe all
sources for a quick test in order to see if the problem has to do with vtables.

Don’t Include All Class Headers

If possible place include statements with C++ classes internally used in the .cp file instead of in the
header (.h) file. When developers are using a particular header file, they don’t need to include class

headers that are not needed, and this saves some time. In general try to avoid unnecessary

inclusions of classes.

C++ Dump/Load

One problem with compiling object-oriented programs has to do with the parsing of header files.

Generally, 80% of the compile time is spent parsing header files. However, most header files

remain unchanged for long periods of time during the programming phase. So the header files are

reread and reparsed, time after time.

C++ dump/load solves this problem by dumping the header file information to a single file. During

compilation of class methods, the compiler loads from this dump file each time it needs the header

file information. You can get even more speed by placing all the dump and object files on a RAM

disk.

To use dump/load you need to decide which header files are static and not subject to change. For

MacApp, the obvious choice is the MacApp class header files. For other complex frameworks,

consider only the most stable header files for the dump file. If you alter header files often, the

compiler has to create a new dump file, and the dumping process takes a long time.

nn — TTT

8 of 13 #313: Performance Tuning with Development Tools

Developer Technical Support May 1992

For more general C++ dump/load guidelines, please consult the MPW C++ Release Notes.

MacApp Code Issues

Using Dump/Load With MacApp

MABuild has a flag called -CcP lusLoad. When this is present, the C++ compiler dumps the
MacApp header file information to a folder called Load Files inside the MPW folder. This
happens during the first compile only. A dump file can take 1 to 2 MB of space, so check your
disk space before doing the dump. Also remember that if you have many release versions of the
same header files that are dumped, you need to delete the earlier dump files; otherwise you will
encounter mysterious bugs.

Dump/load requires lots of heap space for the tools, so now is the time to start using the -mf
option with CP lus, Link, and Lib. Or increase the MPW application heap size—depending on
the size of your sources, up to 4 MB or more. If the CFront tools don’t have enough memory for
the memory-consuming part of the parsing, error messages such as “free store exhausted” will be
displayed.

MacApp has a special startup file in the MacApp folder where you can specify default settings. One
of the variables defined in this file is MABuildDefaults:

SET MABuildDefaults “{MABuildDefaults} -PasLoad -CPlusLoad”

Uncomment this line and restart MPW, or select and execute the command. The next time you
build your MacApp application, MABuild will automatically use the MacApp header files to create
a dump file inside the ‘MPW: Load Files’ folder. Note that this is now the default case with
MacApp 3.0.

You can go one step further and specify that additional header files should be dumped. To do this,
edit the MacApp:Tools file called ‘Build Rules and Dependencies.’ Here’s an
excerpt from that file:

Load/Dump files must be kept current for C++ too

{CPlusLoadFiles} f {MacAppCPlusIntf}

{MAEcho} {EchoOptions} “C++ Load/Dump: UMacApp.h.dump”

IF ‘EXISTS {CPlusLoad}* != ”

Delete {CPlusLoad}

END

{MACPlus} @
{CPlusOptions} @

{OtherCPlusOptions} @

-i “{SrcApp}” @

-i “{MACIncludes}” @
“{MACIncludes}UMacApp.h” @
-mf 0

Any other files you want to include in the dump

could go here @

-dumpc {CPlusLoad} || (Delete {CPlusLoad})

If you’re sure that you will repeatedly include certain additional header files in the MacApp dump
file, you can add them to this file. Any building block headers (U~.h files) that are likely to be
stable are good candidates.

#313: Performance Tuning with Development Tools 9 of 13

Macintosh Technical Notes

You can also define build rules for dump/load files in the MAMake file for each MacApp project.
This way you can have different dump/load definitions for various permutations of source code
and header code combinations. Writing your own MAMake dump rules gives you better control
over what is to be dumped. Instead of generically dumping all MacApp header files, you can dump
only those MacApp and application header files actually used— you don’t have to dump all the
MacApp header files as MacApp’s default C++ dump does. This saves time and disk space.

This works well for handling header files that are part of your own project as long as you don’t
frequently change the header files, which triggers a costly dump operation. Here are some
guidelines:

* You must create a header file dependency rule for the dump file if you want dependencies
operating on the header file changes.

* Use {SrcApp} prefixes for the application source code file names, and {ObjApp} prefixes for
the application object code file names.

* You will be overriding most of the basic building rules, so if you want the MPW shell to show
what it is doing, add an Echo statement as in the original rules.

The C++ Release Notes discuss in great detail how to build the dump file header file. Once again,
the trick is to move all static header files to one single file, and call it “MyAppDump.h” or

something similar. In all the other header files, include the following:

#ifndef | MYAPPDUMP__

#include “MyAppDump.h”

#endif | MYAPPDUMP__

Do the same ifndef trick with the included header files in the dump header file, so that the
compiler won’t need to include the file many times. Build a rule for dumping the MyAppDump .h
file, or do it by compiling the header from the MPW command line.

Sometimes a header file is static; then suddenly you are tearing your object framework apart in a
frenzy, making incremental changes. A good way to support this would be to use multiple dump
files, where sometimes you dump and load from many files, but other times you load from only
one dump file, allowing the compiler to parse the header file that is subject to change. (This would
be faster when header files are changing, because the dump phase takes a long time.)

Alas, it’s not likely that there will ever be support for multiple dump files in MPW C++ because
dump files contain structures that are hard to merge. You can achieve a similar functionality using
flags inside the header files. You could instruct MABuild to dump your own header files in
addition to the basic header files. This is done with a programmer-defined MABuild option:

MABuild -d qOwnDump=TRUE ...

This qOwnDump flag controls use of dump files within the header files via a simple #ifdef
qOwnDump directive (see sample code in the Snippets collection (Developer CD, ETO CD,
AppleLink, ftp.apple.com). By using this directive, you can exclude your header files from the
dump phase while incrementally changing header files; when again working with method
implementations, so that headers are static, you can again dump your header files.

A No dump files = 818s, dump filet = 660s, savings 19.3%.

tTaken from earlier MacApp 2.0.1 load/dump testing with DemoText

10 of 13 #313: Performance Tuning with Development Tools

Developer Technical Support May 1992

MPW Issues

More RAM Memory

More memory means more application heap space, and this means less segment loading in cases
where segments are purged out of memory in memory-tight situations. If the MPW memory
partition is big enough most tools could stay in the MPW heap, and this improves the performance,
but not much! Note that you don’t need to go overboard with the application heap space. The peak
parts of memory use could be handled with the -mf Mult iFinder temporary memory flag
which is implemented with our compilers, linker, and Lib tools. For instance a 4Mb MPW
partition is suitable for MacApp programming if the -mf flag is defined for the compilers linker
and Lib.

A 4Mb heap = 379s, 12Mb heap = 379 s, difference 0%.t
+ 5 test runs each!

RAM Disks

To avoid file I/O bottlenecks you might think about using a RAM disk. The following order is
based on the list of the most important folders/files, and if you have more RAM disk space you
could include more from this list until you have most of the development environment and the
sources on the RAM disk (the most extreme case). In some cases, like the first three examples, all
you need to do is to redefine the exported value in an MPW startup file (the last one!), as in:

Set CPlusScratch “RAMDisk:”

Export CPlusScratch

In other cases you need to copy the files/folders to the RAM disk, and add the paths to the new
folder in such a way that the MPW environment will look into the particular folder first , as in:

Set Commands "RAMDisk:Tools:, {Commands}"

Export Commands

Here’s the recommended list:

{MATemporaries} temporary folder for files that MacApp MaBuild creates
{CPlusScratch} temporary folder for files that MPW C++ creates
{MALoadFiles} MacApp dump/load files folder
MPW:Tools tools (like compilers) for faster load into memory
MPW:Scripts scripts, for faster load into memory
{Libraries} general MacOS libraries, for faster load
{CLibraries} or
{PLibraries} general C/Pascal libraries for faster load
{MALibraries} MacApp libraries (.lib, .rsrc files)

... your own project files . . .

Any other possible additions are MPW and MacApp header files and the actual MPW shell itself,
including any other development tools. However, these take a lot of space, so we are talking about
a huge RAM disk. If you have a +50 MB RAM disk, you might even place the whole MPW and
MacApp folders on the RAM disk, which is the quickest way to get the benefits of such a large
RAM disk. However, you then need a RAM disk utility which will save and restore the contents if
the system is shut down.

_ oo eeEEeEeeEeEeeSSSSSSSSSSSSSMMMMMSMMsssee

#313: Performance Tuning with Development Tools 11 of 13

Macintosh Technical Notes

A No RAM disk = 379s, 4Mb RAM diskt = 342s, savings 9.8%.

t{MATemporaries}, {CplusScratch}, {MALoadFiles}

Testing

The following MPW script is useful for testing purposes:

Echo -n > "{MPW}Dump" # specify output file/window

Open “{MPW}Dump"

for cases in1l23 45 # define how many tests

Echo "Test Number “{cases}

set StartTime ‘Date -n*

set exit 0
MaBuild -debug -sym Calc YY "{MPW}Dump" # place whatever job here
delete -y *Debug= # clean up afterwards

set exit 1

set TimeNow ‘Date -n*

set Elapsed ‘Evaluate {TimeNow}-{StartTime}~

set Elapsed "‘Date -c {Elapsed} -t*"

If "{Elapsed}" =~ /12:([0-9]+:[0-9]+)®1 [AP]M/

Set Elapsed "0:{®1}"

Else If "{Elapsed}" =~ /0* ({0-9] +: [0-9] +: [0-9]+)®1 [AP]M/

Set Elapsed "{®1}"

End

Echo “dt Build time: {Elapsed}"
End

Conclusion

The four most valuable performance improvements are:

if RAM disk use (the more you could place on the RAM disk, the better performance)

II. Don't compile and link with the -sym on option unless needed

II. — Use libraries
IV. Avoid compiling/linking, use tools which will postpone unneeded compilation and linking

Use common sense and consider whether a particular scheme will require more resources and/or

memory. Carefully follow Apple announcements about new tools and development environments

that might fix bugs that have caused slower performance, or brand-new tools that address

performance issues.

Credits

Thanks to the following contributors (listed in a twisted order, where the sort algorithm is an NP-

complete problem): Jack Robson, Keith Rollin, Larry Rosenstein, Bryan Stearns, Blue Meanies,

Chris Knepper, Rich Norling, Karl Goiser, Pete Richardson, Greg Robbins, Jim Reekes,

programmers on MacApp.Tech$, Jeff Sandvik.

NN —

12 of 13 #313: Performance Tuning with Development Tools

Developer Technical Support
May 1992

Further Reference:

* MPW Documentation

NuBus™ is a trademark of Texas Instruments.

—_——— i

#313: Performance Tuning with Development Tools 13 of 13

Macintosh 4

Technical Notes is

Developer Technical Support

#314: OmegaSANE

Written by: Dave Radcliffe and Colin McMaster May 1992

System 7.0.1 introduced a new version of SANE (the Standard Apple Numerics Environment)
known as OmegaSANE. This Note discusses the features of OmegaSANE and the associated
compatibility risks. This note covers:

¢ OmegaSANE features, including:
¢ Correctly rounded binary « decimal conversions
¢ Faster transcendental functions
¢ Backpatching of Pack 4 SANE traps for faster package entry

* Compatibility risks due to backpatching

Introduction

System 7.0.1 introduced a new version of the Standard Apple Numerics Environment (SANE)
package referred to as OmegaSANE (QSANE). While it improves the performance of SANE,
it is not without compatibility risks, which are detailed below. New binary ~ decimal

AEN conversions have been included that are correctly rounded across the entire range of double
extended. This will result in incompatibility with previous conversion algorithms for a variety
of input values; the results of the QSANE conversions are uniformly more accurate, and will be
compatible with future releases of SANE.

QSANE Features

The QSANE release provides a number of performance enhancements while maintaining
conformance with SANE. The following enhancements have been implemented:

¢ Correctly rounded binary ~ decimal conversions
¢ Faster transcendental functions
* Backpatching of SANE traps for faster package entry

Tables showing the performance of QSANE are given below. A key aspect of the performance
gain is the “backpatching” of SANE traps. This mechanism will be discussed below under
“Pitfalls.”

The version of QSANE supplied with System 7.0.1 installs only on machines equipped with a
Macintosh IIci ROM or later and also equipped with an FPU. For example, it installs on a
Macintosh IIsi running System 7.0.1 and equipped with an FPU, but not on one without an
FPU. On the Macintosh Quadras and the PowerBook 140/170 it is in ROM, although it doesn’t
load on the PowerBook 140 unless it has an optional FPU. On machines where the FPU is
optional, addition of an FPU may require re-installation of System 7.0.1 before the FPU
version of QSANE will load.

ne ER ee ee ee ee

#314: OmegaSANE 1 of 6

Macintosh Technical Notes

Table 1 presents configuration information concerning the versions of SANE which may be
installed by System 7.0.1. Information in this table is subject to change. The FPU column
States whether the machine has an FPU or if it is optional. The column labeled “Correctly
Rounded Bin «+ Dec” shows whether improved versions of the binary + decimal conversion
routines (discussed below) are available, and which version (V.1 or V.2) is supplied. The
“QSANE FPU Version” column states whether QSANE will load on a given configuration.

Note: The information in this table will undoubtedly change in the future. Developers
should not assume that any particular machine/system software combination does or
does not have QSANE.

Table 1 SANE Configurations

Macintosh CPU

Mac Classic

FPU orrectly ANE
Rounded FPU Version
Bine Dec

N | No
N = ae

tional | V.2inROM | w/ 7.0.1 & FPU

Mac L Optional | V.1inROM | w/ 7.0.1 & FPU

oO

Z| fo

o}

io}

i tional V.1inROM | w/ 7.0.1 & FPU

oO

fe)

Mac SE/30 Yes oO

oO

oO

Mac II ; 3

— a

Yes

es

es V.2 with 7.0.

Yes V.2 with 7.0.

PowerBook 10¢ Yes No be Oe
PowerBook 140| Optional | V.2inROM | w/7.0.1 & FPU

PowerBook 170 Yes V.2 in ROM

Quadra 700 Yes V.2 in RO

Quadra 900 Yes V.2 in ROM Se oa

PU optional systems may require reinstallation of System 7.0.1
after installation of an FPU before the QSANE FPU version will load.

N

N

N

Mac IlIcx N

Mac IIci
0 | NO

w/ 7.0.1

w/ 7.0.1

<

No

No

No

No

No

No

No

No

es

Yes

=}, 9! Cc

There is no way programmatically to disable QSANE in System 7.0.1, nor is it a user option.
There is also no way to reliably detect that QSANE is present.

Binary ~— Decimal Conversions

QSANE includes binary «+ decimal conversion routines that may produce results that differ
from previous versions of SANE. Versions of these routines have been in some machine
ROMs since the Macintosh IIsi, and an improved version (V.2) is in the newest ROMs, as well

as QSANE. Refer to Table 1 for current configuration information. As a result of these

improved conversion routines, floating-point constants that are used in the body of source code

will compile differently in the presence of QSANE than with older SANE engines. The results

are uniformly better, but may cause unexpected variances from test suites (for instance).

2 of 6 #314: OmegaSANE

Developer Technical Support May 1992

Ga» Therefore, care must be given to the arithmetic environment in which compilations are made.

One can tell which version of the binaryodecimal conversions is currently in use by performing

the following computation on the Calculator DA: 45/100 — 0.45. On older versions of SANE,

the result is —2.71051E-20. With QSANE, the result is 0 as expected.

Performance Improvements

QSANE can significantly improve the performance of many floating-point SANE operations. It

does this by replacing _FP68K trap calls with JSR instructions directly into the appropriate

SANE code. This is discussed in more detail under “Pitfalls.” 7.0.1 QSANE does not alter
_Elems68K trap calls, but internal code improvements are used to increase the performance of
transcendental functions. Finally, QSANE does not affect the performance of code compiled to
use the FPU directly, although some library routines used with such code (such as the
CSANELib881.0 routines NextAfter, Classify, Scalb, and Remainder) will be backpatched by
QSANE because they call _FP68K.

Table 2 shows typical performance improvement using QSANE on a Macintosh Ici. Of
course, actual performance depends on how heavily you use SANE and the mixture of SANE
operations you use.

Table 2 SANE Performance

Pitfalls

QSANE achieves most of its performance improvement through use of a technique known as
“backpatching.” Use of backpatching introduces a number of compatibility implications. To
implement backpatching, the front end of toolbox SANE has been altered to have multiple entry
points corresponding to the most important operations, and your RAM-based application code
is modified on the fly replacing traps with speedier JSRs to the appropriate entry point.
Subsequent execution causes the code to bypass the trap dispatcher and call SANE directly. For

é ») example, an archetypal SANE package call looks like this:

ee ae ee ee eee

#314: OmegaSANE 3 of 6

| Macintosh Technical Notes

pea fooSre *; Push address of the source operand
pea barDst * Push the address of the destination operand
move .w #OpCode, - (sp) + Push a SANE opcode word
_FP68K ; Trap to SANE

Notice that the last two instructions occupy three words, just enough for the desired JSR
QSANE modifies the RAM-image of the application resulting in code like the following:

pea fooSre + Push address of the source operand
pea barDst 7 Push the address of the dest. operand

jsr ‘SANE entry point’ ; JSR to appropriate SANE entry point

Herein lies a potential problem. There is nothing to guarantee that the instruction immediately
prior to the FP 68x trap was actually executed. A program control operation, such as a BRA,
could have caused control to be passed to the _FP 68K operation without executing the preceding
move .w. For instance, an execution sequence such as the following:

pea subSrc ; Push source for subtract

pea subDst Push destination for subtract

Se!

move #$0002,-(sp) Push subtract extended opcode word

bra @1 Branch to _FP68K trap

pea addSrc2 Push source for add

move #$0000,-(sp) Push add extended opcode word

pea addDst2 ; Push destination for add

@1 _FP68K ; Trap to SANE

would have the unseemly result of “backpatching” a gsr to the extended add entry point, and
future executions of the subtraction code would branch to the middle of a gsr causing an illegal
instruction error (the illegal instruction error might not occur right away). Note, however, that
the following similar code sequence works correctly in the presence of backpatching:

pea addSrce ; Push source for add

pea addDst ; Push destination for add

bra @1 ; Branch to _FP68K trap

pea addSrc2 Push source for add

pea addDst2 ; Push destination for add

@1 move #$0000, -(sp) ; Push add extended opcode word

_FP68K ; Trap to SANE

The type of code sequence that is problematic for backpatching (as above) cannot be emitted by

the current MPW C and Pascal compilers or by current Think™ compilers. It also cannot occur
with code generated using the macros contained in SANEMacs.a.

Warning -- Although the current generation of MPW compilers create QSANE-safe

code, the earlier, MPW C 2.0.2 compiler may, under limited circumstances, generate

code that has problems with QSANE. This is discussed in more detail below.

Additionally, if you have hand coded assembly or code which has been otherwise optimized to

use common _FP68K trap instructions you may be at risk from backpatching. We recommend

you adjust your code to conform to the prototypical sequence above as there is no performance

penalty involved.

a ——S__

4 of 6 #314: OmegaSANE

Developer Technical Support
May 1992

Cy Another common programming practice is illustrated in the following example:

move .W #$0000, D0 ; Move extended add opcode word to DO

bra @1 ; Branch to shared backend for SANE trap call

modes #$0002,D0 ; Move extended subtract opcode word to DO

bra @1 ; Branch to shared backend for SANE trap call

@1 oe DO,-(SP) ; Push SANE opcode word on stack

FP68K ; Trap to SANE

This code operates correctly in the presence of QSANE, but is clearly not backpatchable. If you

have code that does this, you might consider rewriting it to obtain the performance increase, but

the code will work as is.

MPW C 2.0.2

The MPW C 2.0.2 compiler may, under limited circumstances, generate code that works
incorrectly under QSANE. Apple recommends that all developers use the latest development
tools, but as conversion of source may be difficult and time consuming in some cases, below is
a description and workaround for the problem. Again, this only affects code compiled without
the -mc68881 option.

(i The following code demonstrates the problem

struct foo {

double data;

float num;

ye

foobar (f,b)

struct foo *f;

unsigned char b;

{

extended num;

num = 3.14159;

if (b)

f->data = num; /* FP operation ends block */

else

f->num = num; /* Another FP operation ends block */

return;

}

The critical combination of events occurs when more than one block in an if-else or switch
statements ends with a floating-point operation or conversion. The compiler tries to optimize the
final floating-point operation by pushing a selector on the stack then branching to a common
_FP68K trap. This is a classic example of code, like that cited above, that ks i
under QSANE. o ve, that works incorrectly

ran The workaround is to eliminate the final floating-point operation. Here is one way to do this:

a eee ee ee a ee ee ee ee

#314: OmegaSANE 5 of 6

Macintosh Technical Notes

foobar (f,b)

struct *f;

unsigned char b;

{

extended num;

int idummy;

num = 3.14159;

if (b) {

f->data = num;

idummy = 1; /* End if block with a non-FP operation */
} else {

f->num = num;

idummy = 0; /* End else block with a non-FP operation */
}

return;

}

In this case, each floating-point operation gets its own _FP68x trap so there are no problems.

Other Pitfalls

The backpatching performed by QSANE can have other implications for developers. For
example, applications that checksum their code segments (perhaps to check for viruses) will
detect that the segment has been modified. Such applications should checksum segments only at
application startup or when the segments are loaded, not after they have been executed.

Likewise, an application must not create a situation which will cause the Resource Manager to
write a code segment out to disk after it has been executed. If such a segment been modified by
QSANE, it can fail when subsequently loaded into memory. Since CloseResFile is called
when the application quits it will automatically write out changed resources (i.e. if the
resChanged attribute is true) when closing the file.

Further Reference:
¢ Apple Numerics Manual, Second Edition

a

6 of 6 #314: OmegaSANE

@
4

Macintosh A
Technical Notes -

Developer Technical Support

#315: Resolving Alias Files Quietly

Written by: | Greg Robbins May 1992

ResolveAliasFile always presents the user identity dialog when mounting remote volumes.
This Technical Note offers an alternative function, ResolveAliasFileMountOption, which
uses the previously undocumented FollowF inderAlias trap to resolve alias files only if their
target is on an already mounted volume. Also included is an ISAliasFile routine for
identifying alias files.

Introduction

Finder alias files are one aspect of the Macintosh human interface considered “reserved for users.”
The internal format of Finder alias files is intentionally undefined because it is subject to change
and because Finder alias files should be neither created nor altered by applications. The Finder is
the user’s domain, and Finder alias files are a user convenience.

Most applications do not need to take special steps to accommodate Finder alias files. They are
resolved by the Finder before they are passed to an application in an Open Documents Apple event,
as well as by the Standard File Package when it creates the reply record. Occasionally an
application may need to resolve alias files manually. That is normally done by calling
ResolveAliasFile, as documented in Chapter 9 of Inside Macintosh Volume VI.

If a Finder alias file resolves to an item on an unmounted remote volume, ResolveAliasFile
will attempt to mount the volume to resolve the alias. For servers, this will bring up the user
identity dialog box shown on page 7-24 of Inside Macintosh Volume VI. For removable volumes,
this will raise the “Please insert...” dialog. Presentation of a dialog may be inappropriate for the
application. For example, a Standard File hook procedure that quietly opens the selected file in
order to offer a preview of its contents would not want the dialog presented whenever the user
selects an alias to a remote item.

Keeping Quiet

The ResolveAliasFileMountOpt ion function listed below allows an application to resolve
a Finder alias file only if the alias file’s target is on a currently mounted volume. If the target is
unavailable and the mountRemoteVols parameter is false, ResolveAl iasFileMountOption
returns the error nsvErr. ResolveAliasFi leMountOption operates like
ResolveAliasFile if mountRemoteVols is true. ResolveAliasFi leMountOption
updates the alias file if necessary, and returns fnfErr if the alias file is part of a circular chain.

ResolveAliasFileMountOption uses the previously undocumented trap
FollowFinderAlias to resolve the alias file’s 'alis' resource. This is preferable to passing
the 'alis' toMatchAlias because it makes no assumptions about how the alias was created or
i eeeeeeeeeSSSSSFSSSSSSSSSSSSSSSSSssseeseseseseseesesese

#315: Resolving Alias Files Quietly 1 of 9

Macintosh Technical Notes

how it should be resolved. Finder aliases may actually be relative aliases rather than direct aliases.
In any case, FollowF inderAlias will take the steps necessary to resolve them properly.

FollowFinderAlias should not be used except when necessary to resolve the 'alis'
resource of a Finder alias file. Aliases created by applications should be resolved with the Alias
Manager calls ResolveAlias and MatchAlias.

Note: FollowFinderAlias is used internally by Apple Computer, Inc. It has not been
tested for use by application software. While we do not anticipate any problems, it
is the responsibility of the developer to ensure that it operates appropriately and
reliably for their application.

ResolveAliasFileMountOption uses the function IsAliasFile, also listed below, to

determine if a file is an alias file. In keeping with the interface of ResolveAliasFile,

IsAliasFile will indicate if the specified item is a folder rather than a file.

Quiet Calls

To determine if an FSSpec points to an alias file, a folder, or neither, use IsAliasFile.

FUNCTION IsAliasFile(fileFSSpec: FSSpec;

VAR aliasFileFlag: BOOLEAN;

VAR folderFlag: BOOLEAN): OSErr;

IsAliasFile simply calls PBGetCat Info to check if the FSSpec’s target has its directory or
isAlias bits set. These are described in Jnside Macintosh Volume IV, page 122, and Inside
Macintosh Volume VI, page 9-36.

To resolve an alias file without any dialogs appearing, use ResolveAliasFileMount-

Option.

FUNCTION ResolveAliasFileMountOption(VAR fileFSSpec: FSSpec;

resolveAliasChains: BOOLEAN;

VAR targetIsFolder: BOOLEAN;

VAR wasAliased: BOOLEAN;

mountRemoteVols: BOOLEAN): OSErr;

The first four parameters of ResolveAliasFileMountOption are the same as those of

ResolveAliasFile. fileFSSpec is the specification for a file, alias file, or folder. resolveAliasChains

should be true if the resolution should follow down a chain of alias files. targetIsFolder is a return

parameter that is set if the fileFSSpec points to or resolves to a folder. wasAliased returns true if

the input fileFSSpec was for an alias file.

If the mountRemoteVols parameter is true, ResolveAliasFileMountOption will attempt to

mount a volume if necessary to resolve an alias file, making the call equivalent to

ResolveAliasFile. If mountRemoteVols is false and the file spec is for an alias file that

resolves to a volume not currently mounted, the call will return nsvErr rather than attempt to

mount it.

nn. ——$

2 of 9 #315: Resolving Alias Files Quietly

UO

Developer Technical Support
May 1992

The Fol lowF inderAl1ias trap is intended only for resolving alias records obtained from Finder

O alias files.

FUNCTION FollowFinderAlias(fromFile: FSSpecPtr;

alias: AliasHandle;

logon: BOOLEAN;

VAR target: FSSpec;

VAR wasChanged: BOOLEAN): OSErr;

INLINE $700F,$A823; { MOVEQ #SOF,D0; _AliasDispatch; }

fromFile is a pointer to a file for a first attempt at a relative resolution; pass a pointer to the alias

file’s FSSpec for this. alias is a handle to the alias record taken from the alias file’s resources. If

logon is true, the alias manager will attempt to mount a volume if necessary to complete the

resolution. target will be the FSSpec found by the resolution. If wasChanged is true following the

call, FollowFinderAlias has updated the alias record, and the caller should call

ChangedResource and WriteResource if the updated record is to be saved in the resource

file.

FollowFinderAlias does a single resolution; it does not follow a chain of alias files.

FollowFinderAlias returns the same errors as MatchAlias.

MPW Pascal

(@ FUNCTION IsAliasFile(fileFSSpec: FSSpec;

VAR aliasFileFlag: BOOLEAN;

VAR folderFlag: BOOLEAN): OSErr;

{ sets aliasFileFlag if the FSSpec points to an alias file;

sets folderFlag if the FSSpec points to a folder }

CONST

kAliasFileBit = 15; { bit of FInfo.fdFlags indicating alias file }

kDirBit = 4; { bit of CInfoPBRec.ioFlAttrib indicating directory }

VAR

myCInfoPBRec: CInfoPBRec;

retCode: OSErr;

BEGIN

{ if called from C we could accidentally be passed nil parameters }

IF (@fileFSSpec = NIL) OR (@aliasFileFlag = NIL) OR (@folderFlag = NIL) THEN

BEGIN

IsAliasFile := paramErr;

Exit (IsAliasFile);

END;

aliasFileFlag := FALSE;

folderFlag := FALSE;

{ get the item's catalog information }

WITH myCInfoPBRec DO

BEGIN

ioCompletion := NIL;

ioNamePtr := @fileFSSpec.name;
C) ioVRefNum := fileFSSpec.vRefNum;

ioFDirIndex := 0;

eee

#315: Resolvi ias Fi i esolving Alias Files Quietly 3 of 9

Macintosh Technical Notes

ioDirID := fileFSSpec.parID;
ioFVersNum := 0; { MFS compatibility; see Tech Note #204 }

END;

retCode := PBGetCatInfoSync (@myCInfoPBRec) ;

IF retCode = noErr THEN

{ set aliasFileFlag if the item is not a directory and the
aliasFile bit is set }

BEGIN

IF BTst (myCInfoPBRec.ioFlAttrib, kDirBit) THEN
folderFlag := TRUE

ELSE IF BTst (myCInfoPBRec. ioFlFndrInfo.fdFlags, kAliasFileBit) THEN
aliasFileFlag := TRUE;

END;

IsAliasFile := retCode;

END;

FUNCTION ResolveAliasFileMountOption(VAR fileFSSpec: FSSpec;

resolveAliasChains: BOOLEAN;

VAR targetIsFolder: BOOLEAN;

VAR wasAliased: BOOLEAN;

mountRemoteVols: BOOLEAN): OSErr;

{ ResolveAliasFileMountOption operates identically to ResolveAliasFile,
except that if mountRemoteVols is false, no attempt will be made to

resolve aliases that point to items on non-local volumes }

{ if mountRemoteVols is false, ResolveAliasFileMountOption returns nsvErr if

fileFSSpec points to an unmounted volume }

{ this routine requires the Alias Manager, available under System 7 }

CONST

kAliasFileBit = 15; { bit of FInfo.fdFlags indicating alias file }

kMaxChains = 10; { maximum number of aliases to resolve before giving up }

VAR

myResRefNum, chainCount: INTEGER;

alisHandle: Handle;

initFSSpec: FSSpec;

updateFlag, foundFlag, wasAliasedTemp, specChangedFlag: BOOLEAN;

retCode: OSErr;

FUNCTION FollowFinderAlias(fromFile: FSSpecPtr;

alias: AliasHandle;

logon: BOOLEAN;

VAR target: FSSpec;

VAR wasChanged: BOOLEAN): OSErr;

INLINE $700F,$A823; { MOVEQ #SOF,D0O; AliasDispatch; }

{ FollowFinderAlias resolves an alias taken from a Finder alias file,

updating the alias record (but not the alias resource in the file) if

necessary.

Warning: This trap is used internally by Apple Computer, Inc.

It has not been tested for use by application software.

While we do not anticipate any problems, it is the responsibility

of the developer to ensure that it operates appropriately and

4 of 9 #315: Resolving Alias Files Quietly

Developer Technical Support
May 1992

reliably for their application.

ile for a first attempt at a relative search

alias is a handle for the alias record

the alias manager will attempt to mount

wasChanged is set

fromFile is a pointer to a f

(pass the alias file's FSSpec) ;

taken from the file's resources;

a volume if logon is TRUE; target is the found FSSpec;

to TRUE if the alias record needs updating.

FollowFinderAlias does a single resolution; it does not follow a chain of

alias files.

FollowFinderAlias returns the same errors as MatchAlias. }

BEGIN { ResolveAliasFileMountOption }

{ check parameters }

IF (@fileFSSpec = NIL) OR (@targetIsFolder = NIL) OR (@wasAliased = NIL) THEN

BEGIN

ResolveAliasFileMountOption := paramErr;

Exit (ResolveAliasFileMountOption);

END;

initFSSpec := fileFSSpec; { so FSSpec can be restored in case of error }

chainCount := kMaxChains; { circular alias chain protection }

targetIsFolder := FALSE;

foundFlag := FALSE;

specChangedFlag := FALSE; { in case of error, restore file spec if it changed }

myResRefNum := -1; { resource file not open }

{ loop through chain of alias files }

REPEAT

chainCount := chainCount - 1;

{ check if FSSpec is an alias file or a directory }

{ note that targetIsFolder => NOT wasAliased }

retCode := IsAliasFile(fileFSSpec, wasAliased, targetIsFolder) ;

IF (retCode <> noErr) OR (NOT wasAliased) THEN Leave; { break from loop }

{ get the resource file reference number }

myResRefNum := FSpOpenResFile(fileFSSpec, fsCurPerm);

retCode := ResError;

IF myResRefNum = -1 THEN Leave;

{ the first ‘alis' resource in the file is the appropriate alias }

alisHandle := GetlIndResource(rAliasType, 1);

retCode := ResError;

IF alisHandle = NIL THEN Leave;

{ load the resource explicitly in case SetResLoad(FALSE) }

LoadResource(alisHandle) ;

retCode := ResError;

IF retCode <> noErr THEN Leave;

retCode := FollowFinderAlias(@fileFSSpec, AliasHandle(alisHandle),

mountRemoteVols, fileFSSpec, updateFlag);

{ FollowFinderAlias returns nsvErr if volume not mounted }

IF retCode = noErr THEN

BEGIN

IF updateFlag THEN

{ the resource in the alias file needs updating }

BEGIN

{ we don't care if these cause errors, which they may

do if we don't have write permission }

ii

#315: Resolving Alias Files Quietly 5 of 9

Macintosh Technical Notes

ChangedResource(alisHandle);
WriteResource(alisHandle) ;

END;

specChangedFlag := TRUE; { in case of error, restore file spec }

retCode := IsAliasFile(fileFSSpec, wasAliasedTemp, targetIsFolder);

IF retCode = noErr THEN

{ we're done unless it was an alias file and we're
following a chain }

foundFlag := NOT (wasAliasedTemp AND resolveAliasChains) ;
END;

‘

CloseResFile (myResRefNum) ;
myResRefNum := -1;

UNTIL (retCode <> noErr) OR (chainCount = 0) OR (foundFlag) ;

{ return file not found error for circular alias chains }
IF (chainCount = 0) AND (NOT foundFlag) THEN retCode := fnfErr;

{ if error occurred, close resource file and restore the original FSSpec }

IF myResRefNum <> -1 THEN CloseResFile(myResRefNum) ;
IF (retCode <> noErr) AND (specChangedFlag) THEN fileFSSpec := initFSSpec;

ResolveAliasFileMountOption := retCode;

END;

pascal OSErr IsAliasFile(const FSSpec *fileFSSpec,

Boolean *aliasFileFlag,

Boolean *folderFlag)

/* sets aliasFileFlag if the FSSpec points to an alias file;

sets folderFlag if the FSSpec points to a folder */

CInfoPBRec myCInfoPBRec;

OSErr retCode;

if (fileFSSpec == nil || aliasFileFlag == nil || folderFlag == nil)

return paramErr;

*aliasFileFlag = *folderFlag = false;

/* get the item's catalog information */

myCInfoPBRec.hFileInfo.ioCompletion = nil;

myCInfoPBRec.hFileInfo.ioNamePtr = &fileFSSpec->name;

myCInfoPBRec.hFileInfo.ioVRefNum = fileFSSpec->vRefNum;

myCInfoPBRec.hFileInfo.ioDirID = fileFSSpec->parID;

myCInfoPBRec.hFileInfo.ioFVersNum = 0; /* MFS compatibility, see TN #204 */

myCInfoPBRec.hFileInfo.ioFDirIndex = 0;

retCode = PBGetCatInfoSync (&myCInfoPBRec) ;

/* set aliasFileFlag if the item is not a directory and the

aliasFile bit is set */

i

6 of 9 #315: Resolving Alias Files Quietly

Developer Technical Support
May 1992

if (retCode == noErr) {

/* check directory bit */

bi ((myCInfoPBRec.hFileInfo.ioFlAttrib & ioDirMask) != 0)

*folderFlag = true;

/* check isAlias bit */

else if ((myCInfoPBRec.hFileInfo.ioFlFndriInfo.fdFlags & 0x8000) != 0)

*aliasFileFlag = true;

}

return retCode;

pascal OSErr FollowFinderAlias(const FSSpec *fromFile,

AliasHandle alias,

Boolean logon,

FSSpec *target,

Boolean *wasChanged)

= {Ox700F, 0xA823}; /* MOVEQ #SOF,D0; AliasDispatch; */

/* FollowFinderAlias resolves an alias taken from a Finder alias file,

updating the alias record (but not the alias resource in the file) if

necessary.

Warning: This trap is used internally by Apple Computer, Inc.

It has not been tested for use by application software.

While we do not anticipate any problems, it is the responsibility

of the developer to ensure that it operates appropriately and

reliably for their application. */

pascal OSErr ResolveAliasFileMountOption(FSSpec *fileFSSpec,

Boolean resolveAliasChains,

Boolean *targetIsFolder,

Boolean *wasAliased,

Boolean mountRemoteVols)

{

/* maximum number of aliases to resolve before giving up */

#define MAXCHAINS 10

short myResRefNum;

Handle alisHandle;

FSSpec initFSSpec;

Boolean updateFlag, foundFlag, wasAliasedTemp, specChangedFlag;

short chainCount;

OSErr retCode;

if (fileFSSpec == nil || targetIsFolder == nil || wasAliased == nil)

return paramErr;

initFSSpec = *fileFSSpec; /* so FSSpec can be restored in case of error */

chainCount = MAXCHAINS; /* circular alias chain protection */

myResRefNum = -1; /* resource file not open */

*targetIsFolder = foundFlag = specChangedFlag = false;

EE

#315: Resolving Alias Files Quietly 70f9

Macintosh Technical Notes

/* loop through chain of alias files =f
do {

chainCount--;

/* check if FSSpec is an alias file or a directory */
/* note that targetIsFolder => NOT wasAliased */

retCode = IsAliasFile(fileFSSpec, wasAliased, targetIsFolder);
if (retCode != noErr || !(*wasAliased)) break;

/* get the resource file reference number */
myResRefNum = FSpOpenResFile(fileFSSpec, fsCurPerm);
retCode = ResError();

if (myResRefNum == -1) break;

/* the first 'alis' resource in the file is the appropriate alias */
alisHandle = GetlIndResource(rAliasType, 1);

retCode = ResError();

if (alisHandle == nil) break;

/* load the resource explicitly in case SetResLoad(FALSE) */

LoadResource(alisHandle) ;

retCode = ResError();

if (retCode != noErr) break;

retCode = FollowFinderAlias(fileFSSpec, (AliasHandle) alisHandle,

mountRemoteVols, fileFSSpec, &updateFlag) ;

/* FollowFinderAlias returns nsvErr if volume not mounted */

if (retCode == noErr) {

if (updateFlag) {

/* the resource in the alias file needs updating */

ChangedResource(alisHandle) ;

WriteResource(alisHandle) ;

specChangedFlag = true; /* in case of error, restore file spec */

retCode = IsAliasFile(fileFSSpec, &wasAliasedTemp, targetIsFolder) ;

if (retCode == noErr)

/* we're done unless it was an alias file and we're following a chain */

foundFlag = !(wasAliasedTemp && resolveAliasChains) ;

}

CloseResFile (myResRefNum) ;

myResRefNum = -1;

} while (retCode == noErr && chainCount > 0 && !foundFlag);

/* return file not found error for circular alias chains */

if (chainCount == 0 && !foundFlag) retCode = fnfErr;

/* if error occurred, close resource file and restore the original FSSpec */

if (myResRefNum != -1) CloseResFile (myResRefNum) ;

if (retCode != noErr && specChangedFlag) *fileFSSpec = initFSSpec;

return retCode;

a

8 of 9 #315: Resolving Alias Files Quietly

Developer Technical Support
May 1992

Further Reference:

* Inside Macintosh, Volume VI, Alias Manager

3) * Inside Macintosh, Volume VI, Finder Interface, pp. 9-29 to 9-32

rn

#315: Resolving Alias Fil 1 g iles Quietly 9 of 9

C)

Macintosh 4
Technical Notes Lg

Developer Technical Support

#316: Data Access Extensions

Written by: | Chuq Von Rospach and Dan Strnad May 1992

This Technical Note discusses coding data access extensions that provide an interface between the
Data Access Manager and remote data sources. Each of the functions that a data access extension
must implement is described.

Introduction

A data access extension is a program that provides an interface between the Data Access Manager
and the remote data source. The data access extension implements all of the low-level functions and
handles network communication for the Data Access Manager. Because the data access extension
implements the low-level Data Access Manager functions, it must return appropriate result codes
and handle asynchronous execution of functions as appropriate.

Note: Each data access extension contains a flag that indicates to the Data Access Manager
whether the data access extension supports asynchronous execution of routines. If an
application attempts to make an asynchronous call to a data access extension that has the
first bit (bit 0) of the flags field cleared to 0, the Data Access Manager returns a result code
of rcDBAsyncNot Supp and terminates execution of the routine. To ensure compatibility
of your data access extension with all applications, your data access extension should
Support asynchronous execution of functions. The data access extension flags field is
described in the next section, “Contents of a Data Access Extension.”

As soon as the data access extension begins execution of an asynchronous routine, it should return
a noErr result code for the function result and set the result field of the asynchronous parameter
block to 1. It should return control to the calling routine as quickly as possible. When it terminates
execution of the routine, the data access extension must place the return code in the result field.
Result codes for each of the data access extension routines are listed in the next section. The
asynchronous parameter block is described in “Asynchronous Execution of Routines” in the Data
Access Manager chapter of Inside Macintosh Volume VI, page 8-50.

When the data access extension has completed execution of an asynchronous routine, it must call
the application’s completion routine pointed to by the completionProc field of the asynchronous
parameter block. The completion routine is described in “Asynchronous Execution of Routines” in
the Data Access Manager chapter of Inside Macintosh Volume VI, page 8-50.

The data access extension can use the ddevRef field in the asynchronous parameter block for its
own purposes.

This Tech Note describes each of the functions that a data access extension must implement.

oo eeEeEeEeeEeeSFSSSSSSSSSSmmmmmMMhseFeFeFeFFSSSSSSseeeeeSeeee

#316: Data Access Extensions 1 of 13

Macintosh Technical Notes

Contents of a Data Access Extension

A data access extension consists of a file of type ‘ddev’, located in the Extensions Folder. The data ee
access extension file must contain these resources:

‘'ddev' (function; resource ID is 128)

'STR ' (name of data access extension; resource ID is 128)

‘dflg' (version number and flags; resource ID is 128)

The 'ddev' resource contains a function that implements all of the low-level Data Access Manager
functions. The Data Access Manager calls the ddev function whenever the manager needs to
execute a low-level function.

Here is a function declaration for a ddev function.

FUNCTION MyDDev(params: DDEVParams) : OSErr;

The params parameter is a parameter block that includes a routine selector. The data access
extension parameter block is described in the next section, “Data Access Extension Parameters.”

You must set bit 6 of the resource attribute byte to 1 for the ‘'ddev' resource so that the resource is

read into the system heap. Resource attributes are discussed in the Resource Manager chapter of of

Inside Macintosh Volume I.

the name of the data access extension. Under tsystem 7.0 or later, the data access extension is

assumed to reside in the "Extensions" folder within the System folder. The data access extension

name is a parameter to the DBInit function.

The 'STR ' resource must contain a character string of not more than 63 characters that specifies)

The ‘dflg' resource contains two 4-byte fields, as follows:

TYPE DDEVFlags =

RECORD

version: LongInt; {data access extension format}

flags: LongInt {data access extension flags}

END;

The version field indicates the version of the data access extension format used for this data access

extension. It must be set to 0 for the version 7.0 Data Access Manager.

The flags field specifies flags that the data access extension must set. At present, only the least

significant bit is defined; all other bits must be cleared to 0. Set the flags field to the constant

kAsyncSupported (that is, set the least significant bit to 1) if this data access extension

supports asynchronous calls, or to 0 if it does not. If an application attempts to make an

asynchronous call to a data access extension that has the flags field cleared to 0, the Data Access

Manager returns a result code of rcDBAsyncNot Supp.

oO

2 of 13 #316: Data Access Extensions

Developer Technical Support May 1992

Data Access Extension Parameters

This section describes the parameter block that the Data Access Manager passes to a data access
extension. The section “Data Access Extension Messages” specifies which parameters are
significant for each type of routine and whether each value is passed to the data access extension or
returned by the data access extension.

The Data Access Manager passes a parameter block to a data access extension. The parameter block
is defined as a DDEVParams record.

TYPE DDEVParams =

RECORD

message: Integer; {routine selector}

ddevStorage: LongInt; {storage for use by }

{ data access extension}

asyncPB;: DBAsyncParmBlkPtr;

{pointer to asynch }

{ parameter block}

sessID; LongInt; {session ID}

returnedID: LongInt; {session ID returned}

version: LongInt; {version number}

start: LongInt; {session start time}

host: StringPtr; {name of remote system}

user: StringPtr; {user name}

password: StringPtr; {user password}

connStr: StringPtr; {connection string}

network: StringPtr; {name of the network}

buffer: Ptr; {data buffer}

errl: LongInt; {primary error code returned}

err2: LongInt; {secondary error code }

{ returned}

item1: StringPtr; {pointer to object of error }

{ message}

item2: StringPtr; {pointer to object of }

{ error message}

errorMsg: StringPtr; {pointer to error message}

timeout: LongInt; {timeout value for DBGetItem}

dataType: DBType; {data type}

sessNum: Integer; {session number}

state: Integer; {status of the data source}

len: Integer; {length of data item}

places: Integer; {decimal places in data item}

flags: Integer; {flags}

abort: Boolean {flag for DBBreak}

END;

Field Descriptions

message The routine selector that tells the data access extension which function to
execute. For the values for this field and descriptions of the routines, see
the next section, “Data Access Extension Messages.”

#316: Data Access Extensions 3 of 13

Macintosh Technical Notes

ddevStorage

asyncPB

sessID

returnedID

version

start

host

user

password

connStr

network

buffer

errl

err2

iteml

item2

errorMsg

ee

4 of 13

Reserved for use by the data access extension. The Data Access Manager
sets this field to 0 when it calls the data access extension with the
DBOpen message. The data access extension can store any value in this
field at that time, and the Data Access Manager retains that value on all
subsequent calls to the data access extension. The value of this field does
not depend on the session ID; it is the same for all sessions that are using
the same data access extension.

Pointer to the asynchronous parameter block. If the application is making
a synchronous call, this field is NIL. The asynchronous parameter block
is described in “Asynchronous Execution of Routines” in the Data Access
Manager chapter of Jnside Macintosh Volume VI.

The session ID. The data access extension returns the session ID to the
DBlInit function; all other Data Access Manager functions pass the session
ID to the data access extension.

The purpose of the session ID is to provide applications with a unique
identifier for each active session. The Data Access Manager reads the
session ID returned by the data access extension, and then assigns a

unique session ID to each session. The Data Access Manager performs
the mapping between the session IDs that it provides to applications and
the ones used by each data access extension.

The session ID returned by the DBGetConnInfo function.

The version number of the data access extension assigned by the
developer of the data access extension. It is not the same as the version
number in the ‘dflg' resource of the data access extension, which

indicates the format of the data access extension.

The time at which the session was opened, in ticks.

The name of the remote system on which the data source is located.

The name of the user who is establishing a session.

The password associated with the user name.

A connection string needed to establish a session.

A string specifying the network in use for this session.

A pointer to a buffer containing the item to be sent by the DBSend or
DBSendltem functions or received by the DBGetItem function.

The primary error code returned by the data source.

The secondary error code returned by the data source.

A pointer to a NULL-terminated string that identifies the first object of the
error message returned by the data source. The use of this parameter
depends on the specific data source you are using.

A pointer to a NULL-terminated string that identifies the second object of
the error message returned by the data source. The use of this parameter
depends on the specific data source you are using.

A pointer to the error message returned by the data source.

#316: Data Access Extensions

oO

Developer Technical Support May 1992

The timeout period for the DBGetItem function, in sixtieths of seconds.

When the data access extension executes the DBGetItem function, it

requests a data item from the remote data source. If the remote data

source does not return the requested data item in the amount of time
specified by the timeout parameter, the data access extension should
cancel execution of the DBGetItem function. The timeout value cannot be
used if the DBGetItem function is called asynchronously.

timeout

dataType The data type of a requested or returned data item. Data types are
described in “Getting Query Results” in the Data Access Manager chapter
of Inside Macintosh Volume VI.

sessNum The session number. This number is assigned by the data access
extension and is unique for all current sessions for a single data access
extension only. The same session number can be assigned to concurrent
sessions that use different data access extensions.

state The status of the data source.

Value Status

noErr Execution of a query successful; ready for another
rcDBValue Output data is available
rcDBError Execution of a query ended in an error
rcDBExec Currently executing a query

len The length of the data item requested or returned.

places The number of decimal places in the data item.

flags Flags returned by the DBGetItem function or sent to the DBSendItem
function. For the DBGetItem function, if the flags field is set to
kDBLastColFlag (that is, the least significant bit is set to 1), the data item
is in the last column of the row.

There are no flags currently defined for the DBSendItem function.

abort A parameter used by the DBBreak function. The meaning of this
parameter depends on the specific implementation of the data source
communications system you are using.

Data Access Extension Messages

There are sixteen values that the Data Access Manager can pass to the data access extension in the
messages field of the data access extension parameter block. Thirteen of them correspond exactly
to the thirteen low-level functions. The other three are used by the Data Access Manager to initialize
and close the data access extension and to allow the data access extension to perform routine
periodic tasks. The messages that correspond to low-level routines are not described in this
section. Instead, only the parameters they use and the result codes they must be able to return are
listed. For descriptions of these routines, see the section “Data Access Manager Routines” in the
Data Access Manager chapter of Inside Macintosh Volume VI. The DBOpen, DBClose, and
DBId1le messages are described in detail in this section.

Each parameter in the list is preceded by an arrow that indicates how the parameter is used, as
follows:

—___—_——e—e—eeoeooooooooeeeeee

#316: Data Access Extensions 5 of 13

Macintosh Technical Notes

— The Data Access Manager passes the value of the parameter as input to the data access
extension.

«-_ The data access extension returns the value of the parameter after the routine has completed
execution.

<» The Data Access Manager provides a value for the parameter, and the data access extension
returns another value.

DBOpen

Parameter block

= 00 message word routine selector; kDBOpen

c 02 ddevStorage long storage for data access extension

When an application calls the DBInit function or the DBStart Query function (which calls the

DBInit function), it specifies a data access extension. If that data access extension is not already

in memory, the DBInit function loads it into memory and sends it the kDBOpen message. The
data access extension should allocate any memory it needs at this time. Because the data access

extension can be called by more than one application, it should allocate memory in the system heap

rather than the application heap. The data access extension can also return a value in the

ddevStorage field of the data access extension parameter block.

When the Data Access Manager calls the data access extension, the current resource file is the data

access extension file and the default directory is the Extensions Folder on the current startup disk.

The data access extension must ensure that both of these values are unchanged when it returns

control to the Data Access Manager.

Result codes
noErr 0 Data Access Extension initialized successfully

rcDBError— -—802 Error initializing data access extension

DBClose

Parameter block

= 00 message word routine selector; kDBClose

> 02 ddevStorage long storage for data access extension

When an application calls the DBEnd function, closing the last open session for a data access

extension, the Data Access Manager follows the kDBEnd message with a kDBClose message

before removing the data access extension from memory. The data access extension should free

any memory that it allocated before returning control to the Data Access Manager.

Result code
noErr 0 No error

i

6 of 13 #316: Data Access Extensions

Developer Technical Support May 1992

DBIdle

Parameter block

oad 00 message word routine selector; kDBIdle

eo 02 ddevStorage long storage for data access extension

The Data Access Manager periodically sends the kDBIdle message to each data access extension.
The data access extension can ignore this message or take the opportunity to perform periodic
tasks. Because the timing of the kDBIdle messages might not be regular, the data access
extension must not depend on receiving these messages at particular times or with a particular
frequency.

Result code
noErr 0 No error

DBInit

Parameter block

> 00 message word routine selector; kDBInit

oe 02 ddevStorage long storage for data access extension

> 06 asyncPB long pointer to asynch parameter block
- 10 sessID long session ID

> 26 host long pointer to name of remote system

- 30 user long pointer to user name

> 34 password long pointer to user password

> 38 connStr long pointer to connection string

The DBInit function initiates a session with a remote data source. See “Controlling the Session”
in the Data Access Manager chapter of Inside Macintosh Volume VI for a complete description of
this function.

Result codes

noErr 0 Noerror
rcDBError ~-802 Error initiating session

DBEnd

Parameter block

=) 00 message word routine selector; kDBEnd

oe 02 ddevStorage long storage for data access extension
> 06 asyncPB long pointer to asynch parameter block
> 10 sessID long session ID

#316: Data Access Extensions 7 of 13

Macintosh Technical Notes

The DBEnd function terminates a session with a remote data source and terminates the network
connection between the application and the remote computer. See “Controlling the Session” in the
res Access Manager chapter of Inside Macintosh Volume VI for a complete description of this
unction.

Result codes
noErr 0 No error
rcDBError -802 Error ending session

DBGetConnInfo

Parameter block

> 00 message word routine selector; kDBGetConnInfo

o 02 ddevStorage long pointer to storage for ddev

> 06 asyncPB long pointer to asynch parameter block

> 10 sessID long session ID

e 14 returned ID long session ID returned

e 18 version long version number

oa 22 start long session Start time in ticks

< 26 host long pointer to name of remote system

- 30 user long pointer to user name

e 38 connStr long pointer to connection string

<— 42 network long pointer to name of network

> 78 sessNum word session number

e 80 state word status of data source

The DBGet ConnInfo function returns information about the specified session. See “Controlling

the Session” in the Data Access Manager chapter of Inside Macintosh Volume VI for a complete

description of this function.

Result codes
noErr 0 No error

rcDBBadSessNum —808 Invalid session number

DBGetSessionNum

Parameter block

= 00 message word routine selector;

kDBGet SessionNum

o 02 ddevStorage long storage for data access extension

> 06 asyncPB long pointer to asynch parameter block

NN —— eee

8 of 13
#316: Data Access Extensions

a

Developer Technical Support May 1992

= 10 sessID long session ID

co 78 sessNum word session number

The DBGet Sess ionNum function returns a session number. See “Controlling the Session” in the
Data Access Manager chapter of Inside Macintosh Volume VI for a complete description of this
function.

Result codes
noErr 0 No error
rcDBError —802 __ Error getting session number

DBKill

Parameters used

= 00 message word routine selector; kDBKill

eo 02 ddevStorage long storage for data access extension

> 06 asyncPB long pointer to asynch parameter block

The DBKill function cancels the execution of an asynchronous call. See “Controlling the
Session” in the Data Access Manager chapter of Inside Macintosh Volume VI for a complete
description of this function.

Result codes
noErr 0 Asynchronous routine canceled successfully
rcDBError -802 Error canceling routine

DBSend

Parameter block

=> 00 message word routine selector; kDBSend

o 02 ddevStorage long storage for data access extension

=> 06 asyncPB long pointer to asynch parameter block

=> 10 sessID long session ID

> 46 buffer long pointer to data buffer

> 82 len word length of data

The DBSend function sends a query or a portion of a query to the remote data source. See
“Sending and Executing Queries” in the Data Access Manager chapter of Inside Macintosh Volume
VI for a complete description of this function.

—eee_e_aaeeeee———— Oo a — — — — — — — — —

#316: Data Access Extensions 9 of 13

Macintosh Technical Notes

Result codes
noErr 0 No error
rcDBError —802 Error trying to send text

DBSendIitem

Parameter block

= 00 message word routine selector; kDBSendItem

e 02 ddevStorage long storage for data access extension

= 06 asyncPB long pointer to asynch parameter block

= 10 sessID long session ID

> 46 buffer long pointer to data buffer

= 74 dataType long data type

- 82 len word length of data item

~ 84 places word decimal places in data item

> 86 flags word flags

The DBSendItem function sends a single data item to the remote data source. See “Sending and
Executing Queries” in the Data Access Manager chapter of Inside Macintosh Volume VI for a
complete description of this function.

Result codes
noErr 0 No error
rcDBError -802 Error trying to send item

DBExec

Parameter block

> 00 message word routine selector; kKDBExec

o 02 ddevStorage long storage for data access extension

> 06 asyncPB long pointer to asynch parameter block

=> 10 sessID long session ID

The DBExec function initiates execution of a query. See “Sending and Executing Queries” in the

Data Access Manager chapter of Inside Macintosh Volume VI for a complete description of this

function.

Result codes
noErr 0 Execution has begun
rcDBError —-802 Error trying to begin execution

a

10 of 13 #316: Data Access Extensions

Developer Technical Support
May 1992

DBState

C) Parameter block

> 00 message word routine selector; kDBState

~ 02 ddevStorage long storage for data access extension

— 06 asyncPB long pointer to asynch parameter block

> 10 sessID long session ID

The result code returned by the DBSt ate function indicates the status of the remote data source.
See “Sending and Executing Queries” in the Data Access Manager chapter of Jnside Macintosh
Volume VI for a complete description of this function.

Result codes
noErr 0 No error; ready for more text

rcDBValue_ -801 Output data available
rcDBError —802 Execution ended in an error
rcDBExec -806 Currently executing query

DBGetErr

Parameter block

(> > 00 message word routine selector; kDBGetErr

—_ o 02 ddevStorage long storage for data access extension

- 06 asyncPB long pointer to asynch parameter block

> 10 sessID long session ID

- 50 errl long primary error code

€- 54 err2 long secondary error code

- 58 item1 long pointer to first object of error
message

e 62 item2 long pointer to second object of error
message

+ 66 errorMsg long pointer to error message

The DBGetErr function retrieves error codes and error messages from a remote data source. See
“Sending and Executing Queries” in the Data Access Manager chapter of Inside Macintosh Volume
VI for a complete description of this function.

Result codes
noErr 0 No error
rcDBError -802 Error retrieving error information

#316: Data Access Extensions 11 of 13

Macintosh Technical Notes

DBBreak

Parameter block YU

od 00 message word routine selector; kDBBreak

eo 02 ddevStorage long storage for data access extension

~~ 06 asyncPB long pointer to asynch parameter block

ace 10 sessID long session ID

3 88 abort byte abort flag

The DBBreak function can halt execution of a query and reinitialize the remote data source, or it
can unconditionally terminate a session with a data source. See “Sending and Executing Queries”
in the Data Access Manager chapter of /nside Macintosh Volume VI for a complete description of
this function.

Result codes
noErr 0 Execution has begun
rcDBError— —802 Break or abort attempt was unsuccessful

DBGetItem

Parameter block

=> 00 message word routine selector; kDBGet Item YU

oe 02 ddevStorage long storage for data access extension

- 06 asyncPB long pointer to asynch parameter block

=> 10 sessID long session ID

> 46 buffer long pointer to data buffer

> 70 timeout long timeout value

2 74 dataType long data type

oe 82 len word length of data item

oe 84 places word decimal places in data item

e 86 flags word flags

The DBGet Item function retrieves the next data item from the data source. See “Retrieving

Results” in the Data Access Manager chapter of Inside Macintosh Volume VI for a complete

description of this function.

Result codes
noErr 0 No error; no next data item

rcDBValue —801 A nonzero data item was successfully
retrieved

rcDBNull —800 The data item was NULL

rcDBError —802 No next data item; execution ended in an error

UO
ee

12 of 13 #316: Data Access Extensions

Developer Technical Support May 1992

rcDBBadType -803 Next data item not of requested data type

rcDBBreak —805 Timed out

DBUnGetItem

Parameter block

> 00 message word routine selector; kDBUnGet Item

o 02 ddevStorage long storage for data access extension

a 06 asyncPB long pointer to asynch parameter block

ae 10 sessID long session ID

The DBUnGet Item function reverses the effect of the last call to the DBGet Item function. See
“Retrieving Results” in the Data Access Manager chapter of Inside Macintosh Volume VI for a
complete description of this function.

Result codes
noErr 0 No error
rcDBError -8(2 Error executing function

Further Reference:

* Inside Macintosh, Volume VI, Data Access Manager chapter

eee

#316: Data Access Extensions 13 of 13

Developer Technical Support June 1992 .

FPSP Overview

The FPSP provides three basic emulation services for the 68040. First, it emulates many
MC68881/2 instructions, including all transcendental functions and some arithmetic instructions.
Second, the FPSP handles instructions that involve certain data classes (unnormalized and
denormal floating-point numbers) or the packéd decimal data format, which are not supported by
the 68040 hardware. Finally, the FPSP provides exception handlers for certain floating-point
exception conditions in order to emulate MC68881/2 behavior when user traps are either disabled
or enabled. In the latter case, after completing its exception processing, the FPSP passes control
to the user-provided handler.

On Quadra platforms executing MC68881/2 instructions, entry to the FPSP occurs automatically
by trapping via one of several low-memory exception vectors, depending on which emulation
service is required. The system installs the exception vector entries to the FPSP at boot time, and
applications should not tamper with these vectors. Because the FPSP preempts the
exception vectors for certain user-provided handlers in the MC68881/2 model, compatibility is a
problem for old user code that contains floating-point exception handlers. Later sections will
address the issues of compatibility in more detail.

Emulation of Unimplemented FPU Instructions

The following MC68881/2 arithmetic instructions are emulated by the FPSP, which produces
results and exceptions identical to MC68881/2 platforms:

FGETEXP Extract binary exponent of source
FGETMAN' Extract mantissa (significand) of source
FINT Round source to integral value, using rounding mode in the FPCR
FINTRZ Round source to integral value, using round-to-zero mode
FMOD Modulo remainder of destination + source with sign and lowest 7 bits

of quotient delivered in FP status register (FPSR) quotient byte
FMOVECR Move constant ROM to FP data register
FREM IEEE remainder of destination + source with sign and lowest 7 bits

of quotient delivered in FPSR quotient byte
FSCALE Scale (multiply) destination by 24((int) source).

The following MC68881/2 transcendental functions are emulated by the FPSP:

#317: FPU Operations on Macintosh Quadra Computers

Inverse (arc) cosine (radians) FACOS

FASIN Inverse (arc) sine (radians)

FATAN -<, Inverse (arc) tangent (radians)

FATANH Inverse (arc) hyperbolic tangent
FCOSas2n Cosine of source in radians
FCOSH Hyperbolic cosine
FETOX Base e power (e“source)

FETOXM1 e‘source - 1.0
FLOG10_ . Base 10 logarithm
FLOG2~~"* - Base 2 logarithm
FLOGN Base e (natural) logarithm -
FLOGNP1 Base e (natural) logarithm of (source + 1.0)

3 of 12

Macintosh’Technical Notes

FSIN. Sine of source in radians
FSINCOS Simultaneous sine and cosine (two destination Tegisters)
FSINH Hyperbolic sine ;
FTAN Tangent of source in radians
FTANH Hyperbolic tangent
FTENTOX 10:0source
FTWOTOX 2.0“source

The algorithms used by the FPSP to calculate transcendental functions are both accurate and. fast.
Results will not always agree with those of the MC68881/2, When they. disagree, the FPSP is
generally more precise. The performance of the 68040 FPSP on transcendental functions. is
roughly equivalent to that of a similarly clocked MC68030/MC68882 combination.

When the 68040 in a Quadra attempts to execute any of the unimplemented MC6888 1/2
instructions, it traps, via vector number 11, the unimplemented F-Line opcode exception, vector.
stored at vector offset (low-memory address) $002C to the FPSP. The corresponding exception .
handler in the FPSP saves the FPU state, decodes the instruction, fetches the operand(s),
emulates the unimplemented instruction, and restores the appropriate state to the FPU. Operands
involving unsupported data types or format are processed appropriately by this exception handler...
To the user, the emulated instructions appear as atomic operations that produce valid results and
that signal the proper floating-point exceptions. If an emulated instruction raises an enabled 9:
floating-point exception, program flow will vector to the appropriate user exception handler.

If the code executing in a Quadra contains an F-Line opcode that is undefined by the instruction
sets of both the 68040 and MC68881/2, trapping to the FPSP via vector 11 also applies. In this
case, the handler recognizes that no emulation is necessary, and it passes control. to the system t F-
Line exception handler via a secondary vector stored in low memory. ve ers

Compatibility Note

If an application, such as a development or debugging environment, needs to install its own.F-. -
Line exception handler on Quadra platforms, it must not overwrite vector 11 at offset $002C. If
it does, emulation of the unimplemented MC68881/2 instructions will be lost with disastrous -.;;
effects to the executing program. Instead, the secondary F-Line exception vector, located at
address $1FC8, should be used on Quadra platforms. As is the case on MC68881/2 platforms,
the application should save the inherited F-Line exception vector (secondary w vector in the: case of
Quadra platforms) and restore it upon termination or context switch. ot

Unimplemented Data - TypelFérmat Support in the FPSP Ps

The FPU in the 68040 does not support all of the floating-point data types, and formats ae the
MC68881/2. The following data types require FPSP support: peg Se acts Coke te

denormalized single (S), double (D), or extended (X) precision’ oprrend to an aa
instruction; and unnormalized X operand to an FPU instruction.

The following data format requires FPSP support:

packed decimal real (P) format as source or destination for an FPU instruction: .-”'

4 of 12 —— #317: FPU Operations on Macintosh Quadra Compiiters

Developer Technical Support a. June 1992

When the 68040 encounters an unimplemented data type or format in the course of executing a
hardware-supported FPU instruction, it traps, via exception vector 55, the FP unimplemented data
type exception vector stored at vector offset (low-memory address) $00DC to the FPSP. Prior to
the release of the 68040, this address was unassigned but reserved by Motorola. The -
unimplemented data type exception handler in the FPSP takes the appropriate action for the
instruction and the exceptional operand or format.

For denormal S, denormal D, and all P format source operands, the FPSP converts the values to
the normalized X equivalents, restores FPU state, and restarts the operation. If a source operand. -
is an unnormalized X that can be converted to a normalized X, the instruction is also completed as
described. If the instruction is a move out to P format in memory (FMOVE.P FPn,<ea>), the
FPSP emulates the conversion from the extended source format to P format and writes the result
to the effective address.

For denormal X operands or unnormalized X operands that reduce to denormal X values, the
FPSP converts such operands to an internal normalized format that contains an extra exponent bit,
restores state to the FPU, and restarts the operation if no exponent wrap condition will occur (for
example, division of a denormal value by another denormal value). Otherwise, the FPSP emulates
the entire instruction: ”

ae |

Denormalized values resulting from instructions executed by the 68040 hardware do not generate
the unimplemented data type exception. Instead, a non- -maskable underflow exception occurs
which invokes a handler in the FPSP. This handler rounds the internal result appropriately
according to the specified rounding precision and direction and delivers the result.

In the case of instructions that are emulated by the FPSP, the processing of unimplemented data
type/format operands is‘handled within the confines of the emulation process. That is, the 68040
traps to the FPSP’s unimplemented instruction handler, which is capable of recognizing and
dealing with such operands.

Instructions, whether emulated or not, that use the P format as either source or destination have
relatively poor performance because they require emulation of binary-to-decimal or decimal-to-
binary Conver sons: e

Idiosyncrasies

Binary: operations (source and destination operands are both inputs) with P format source. _
operands should avoid using FP] as the destination operand because a bug in the FPSP causes’
spurious results in this case. If an unimplemented data type or format occurs as input to an
operation, the exception is posted by the 68040 when the next FPU instruction is attempted. This
deferred exception handling may appear not to deliver the correct result in a debugging
environment that installs a.breakpoint prior to the second FPU instruction.

FPSP Exception Handlers

Certain floating-point exception .conditions on the 68040 require intervention by the FPSP in
order to fix up results or other state. Some of the FPSP exception handlers are non-maskable in
the sense that they are executed regardless of whether or not the exception is trap-enabled by the
user. All of the FPSP floating-point exception handlers, whether non- -maskable or not, are
vectored via Motorola-designated locations in low- -memory supervisor address space. If a user-
enabled exception occurs, the FPSP exception handler is executed first before vectoring occurs to
the user handler via a secondary vector maintained by the Quadra system. The user code must not

#317: FPU Operations on Macintosh Quadra Computers 5 of 12

Macintosh Technical Notes

modify the primary floating-point exception vectors to FPSP exception handlers. A later. section
will describe installation of user exception handlers. Ba rie Pact ien a

The following is a brief description of FPSP exception handlers:

Branch/Set on Unordered (BSUN)

This maskable handler is invoked only if the user has enabled the-BSUN exception. Entry to this

handler is via vector number 48 stored at location $00CO. This handler updates the floating-point

instruction address register (FPIAR) to contain the address of the floating-point branch/set

instruction that generated the exception. It then invokes the user’s handler via a secondary BSUN:

vector.

Inexact Result (INEX1/INEX2) OY Ad 2 wieeetaape

No FPSP handler is required. When enabled, INEX1 or INEX2 exceptions invoke the user’s

handler via vector number 49 at location $00C4. Werte ses oe Eat Pe sei he babies

Divide by Zero (DZ)

No FPSP handler is required. When enabled, the user’s DZ handler is invoked via vector umber

50 at location $00C8. Siva

Underflow (UNFL)

This non-maskable handler is entered via vector number 51 at location $OOCC. It determines and

stores the properly rounded underflow result based upon the value of the intermediate result and”

the rounding precision/direction modes stored in the FPCR. If underflow. is enabled in the FPCR, «

the user’s handler is invoked via a secondary UNFL vector.

Operand Error (OPERR)

This non-maskable handler is entered via vector number 52 at location $00DO. It provides

compatibility of results. with the MC68881/2 for B, W, and L destination formats when the source
operand is a NaN (Not-a-Number), infinity, or value too large for the integer format,-If the

OPERR exception is user-enabled, the FPSP handler invokes the user’s handler via a secondary Sa

OPERR vector. | ss

Overflow (OVFL) E

This non-maskable handler is entered via vector number 53 at location $00D4. It determines:and'
stores the propéfly rounded overflow result based on the value of the intermediate result and the

rounding modes stored in the FPCR. If overflow is enabled in the FPCR, the user’s handler is’ CNS yee

invoked via a secondary OVFL vector. na

Signaling Not-a-Number (SNAN) os sm ag ae 28 2 age ite dies

This non-maskable handler is entered via vector number 54 at location $00D8:'It provides *7: ~

compatibility of results. with the MC68881/2 for B, W, and L destination formats. If the SNAN - -

exception is user-enabled; program flow is directed to the user’s handler via a secondary vector.

60f12 | _#317: FPU Operations on Macintosh Quadra Computers

> June 1992
Developer Technical Support Sy EF

If a program enables no floating-point éxceptions in the FPCR, compatibility is not an issue. In

this case, no user exception handlers need be installed. The program traps to non-maskable FPSP

handlers as required for any fix-up of exceptional results or FPU state and then resumes

execution.

Performance degradation by non-maskable FPSP floating-point exception handling is minimal in

most cases because such. intervention is rarely needed. The most common exception, INEX2,

requires no FPSP support. Underflows and overflows are infrequent when the default extended

rounding precision is employed.-OPERR occurrences are also rare, unless many out-of-range

conversions occur from floating-point to integer formats.

User Floating-Point Exception Handlers

Users who require floating-point exception handlers in their applications running on Quadra

platforms must exercise some care in both the writing and the installation of such handlers.

Moreover, if an application also targets Macintosh computers with MC68881/2 coprocessors and t

intends to resume processing via an RTE in an exception handler, its exception handlers must

query which kind of FPU (MC68881/2 or 68040) is present and then execute hardware-specific

code based on the ‘query result. The reader is urged to consult the user manuals for the 68040 and
MC68881/2 for details not covered by this Note.

Each floating-point exception on the 68040 is reported by either the conversion unit (CU) or
normalization unit (NU) pipeline stage of the FPU. Exceptions reported by the CU are called E1
exceptions; they.are detected relatively early in the execution of an FPU instruction. Exceptions
reported by the NU are called E3 exceptions; they are detected late in the execution of FPU
instructions as the NU attempts to normalize and round the intermediate result for storage in a
destination FP register. El exceptions include all floating-point exception types. The only E3
exceptions are OVFL, UNFL, and INEX2 occurring on opclass 0 (register-to-register) and
opclass 2 (memory-to-register) instructions. If both E3 and El exceptions exist at the same time,
the E3 exception should be handled first, allowing the 68040 to subsequently trap to handle the
pending El exception.

There are two FSAVE stack frames for floating-point exceptions on the 68040. El exceptions
produce the unimplemented instruction FPU state frame, and E3 exceptions produce: the: busy
FPU state frame. Both of these frames begin with a 1-byte version number followed by a 1-byte |
frame length. The version number for Quadra 68040s is $41. For this version of the 68040, the -
frame length for El exceptions is $30, making the unimplemented instruction FPU state frame 52
bytes in size (counting the 4-byte header). The busy frame for E3 exceptions has a frame length of
$60 and total size of 100 bytes.

Both 68040-floating-point exception FSAVE stack frames contain information that may be of use
to the user’s exception handler. There are two 12-byte fields containing the source and destination . ..
operands in extended precision. There are two 3-bit tag fields which classify the source and
destination operands as to whether they are normalized, denormalized, zero, infinite, or
NaN.There are 2 bits (E1 and E3) which, if set, indicate which pipeline stage of the FPU (CU or
NU) detected the pending exception(s). Both FSAVE frames encode the command word of the . .
exceptional floating-point instruction, albeit in different fields. ~

As a minimum, user floating-point exception handlers on 68040 platforms must issue an FSAVE
instruction as the first FPU operation, clear the exception state of the FPU, and resume
processing via the RTE instruction. For E3 exceptions, the E3 bit in the FSAVE stack frame must
be cleared and the FRESTORE instruction must be issued prior to the RTE instruction. For El
exceptions, the minimum requirement is to throw away the FSAVE stack-frame and to resume

#317: FPU Operations on Macintosh Quadra Computers 7 of 12

Macintosh Technical Notes ae

processing via RTE. Another method of clearing the exception state for E1 exceptions isto clear... :
the El bit in the FSAVE stack frame and issue the FRESTORE prior to-the RTE. The E] and E3
bits are bits 2 and 1 (bit position 0 representing the least significant bit), respectively, of the byte
which is located 28 bytes below the high-address end of either FSAVE frame.

Minimum Floating-Point Exception Handler for the MC68881/2 and Quadra
shirg tie. k

The following code sequence serves as a minimum handler for all enabled floating-point
exceptions except BSUN on both’ with MC68881/2 platforms and Quadra computers. This’:
handler simply clears the exceptional condition in the FPU ‘and resumes -execution without »:)
attempting to modify any other FPU state. A minimal BSUN handler would require additional
intervention (via one of four methods outlined in the user manuals for the 68040: and the

MC68881/2) to prevent infinite looping on the BSUN trap. oe 2 a ee
or Hin

eK KK IK I I KK KK I KI eo ek ee gai oie a oo a eae ee I EK Re ci

; or SNAN floating-point exception on either MC68881/2 or ae tages

; Macintosh Quadra platforms.

; NOTE: For enabled DZ, OPERR, and SNAN exceptions for instructions

; Minimum user handler for enabled INEX, DZ, UNFL, OPERR, OVFL, lee ce oh Sa eae

pot

; with FP register destinations, no result is delivered at all to the

; destination register. ae

F Te II III III II III III II III III II OI I III III III IOI IO II TOE 1 te I I at

HANDLER: ss = SH CUS GD Mriccy Soh)

FSAVE -(SP) ; save interrial FPU state ” sau aa at ont gk S30

MOVE .L _ DO, -(SP) _ # save DO, STACK: DO save < FSAVE frame

MOVEQ #0,D0 “; zero DO py ae Swe sya

MOVE.B 4(SP),DO0 ~~ ; NULL franie? BES REN Glee AS

Se ere Pane deaslele

BEQ.B @NULL ; yes, restore DO and FPU state “% : : :

CMPI.B #$41,D0 a Quadra (68040). ID? : Ee ee TB pes

BNE.B @COPROC ; no, assume MC68881/2
ats eat

; Quadra FSAVE frame

- MOVE.B 5(SP),DO ; DO <- frame size ttf SOU Pe yt

‘a BBO.8 @NULL: ; restore state if 68040 IDLE,frame -. | 3- o3- ape m yx
fer. RS hes

; Quadra UNIMPLEMENTED INSTRUCTION or BUSY FSAVE frame

~SUBI.B . #20,D0 ; DO <- offset of E1/E3 byte from (SP) -7 =

BCLR.B #1, (SP, DO) ; test and clear £3 byte : Sanne, eee -
ae N 0 g

BNE.B @NULL ; restore state if E3 was set : a w Foe

BCLR.B . #2, (SP,D0) El exception,’ clear El byte Fv art SRE
ee fe 3h gia oe ey BA ame

; Restore state and resume execution * an as a a As ae

@NULL: MOVE.L (SP)+,D0 ; restore DO, STACK: FSAVE frame ee “potas

FRESTORE (SP) + ; restore FPU state

RTE ; resume processing =f

‘2 - - #317: FPU Operations on-Macintosh Quadra Computers -...

YO

r Technical Support ee June 1992

; MC68881/2 IDLE FSAVE frame

@COPROC: MOVE.B : 5 (SP) DOE. ; DO <-- IDLE frame size 4

ADDQ.B #4,D0.". + 2 . ¢ compensate for DO save value on stack

BSET.B < #3, “SP, D0)... + %s-set bit 27 of BIU

BRA.B @NULL z ; restore state

Installation of User Floating-Point Exception Handlers

Current MPW language libraries(MPW 2.0.2 or later releases and Language Systems FORTRAN

version 3.0) provide for:the vectoring of user floating-point exception handlers in a consistent and

portable fashion for both Quadra and MC68881/2 Macintosh platforms. The C functions

settrapvector and gett rapvector, the Pascal procedures Set TrapVector and

GetTrapVector, and the Language Systems FORTRAN subroutines Set TrapVector and

GetTrapVector allow users to install and read vectors to their floating-point exception

handlers via the use of the TrapVector structure. The relevant interface files for these

operations are {CIncludes}SANE.h, {PInterfaces}SANE.p, and

{FIncludes}SANE.f.

A TrapVector structure is composed of seven 4-byte fields that represent the entry-point

addresses of the user’s BSUN, INEX, DZ, UNFL, OPERR, OVFL, and SNAN exception

handlers, respectively. Get TrapVector routines read the current floating-point exception

vectors into a TrapVector structure. In order to install their own exception handlers, users

must first initialize a TrapVector structure with entry points of their handler routines and then

invoke a Set TrapVector routine with that structure as the operand.

Get TrapVector and Set TrapVector routines involve privileged operations because they

access Motorola low-memory vector table locations. For Quadra platforms, the situation is further

complicated by the fact that five of the seven user floating-point exception vectors are stored by
the system in secondary locations because the FPSP has preempted the original vector table
locations. Get TrapVector and SetTrapVector implementations circumvent these

difficulties by calling a system utility, PrivTrap, which does all of the work of querying or

installing the user’s vectors.

The PrivTrap Mechanism

PrivTrap is implemented as a system trap, $A097. Upon entry, it expects a selector value in
register DO.W anda TrapVector structure address in address register AO. The

Get TrapVector operation requires a selector value of 1; in this case, PrivTrap reads the

current floating-point exception vectors into the TrapVector structure at (AO) . The selector

value of 2 invokes the Set TrapVector operation; the user’s exception vectors in the
TrapVector structure at (AQ) are installed appropriately in the system. In either case, registers
AO and Al are modified upon exit.

As of the drafting of this Note, only the Quadra and Powerbook 170 platforms running System

7.0.1 have the PrivTrap mechanism built into their systems. Individual MPW library functions

that require PrivTrap functionality first query if PrivTrap is installed. If it is not, the library

routines will install and call a version of the trap appropriate for an MC68881/2 platform.

Implementation Notes

Since MultiFinder under System 6.0.x and Finder under current versions of System 7 do not

‘include user exception vectors among the FPU state which is saved and restored at context |

a

#317: FPU Operations on Macintosh Quadra Computers 9 of 12

Macintosh Technical Notes

eee

switch, it is the responsibility of an application that enables floating-point éxceptions 0 save
inherited user exception vectors and to restore them upon termination or context switch. The
inherited vectors may be read using the Get TrapVector operation. The application installs its YW
floating-point exception handlers via the Set TrapVector operation. At context.switch. or
program termination, Set TrapVector should be used to restore the appropriate exception
vectors. If the above regimen is followed, the application’s TrapVector structure may contain
arbitrary values for vectors corresponding to disabled exceptions. . . 0, ws 8 egy

Performance Issues ‘ fe 8 SES dark Peas

In order to extract the maximum floating-point performance on a Quadra, an.application.should . 2»
avoid invoking emulation by the FPSP whenever possible. Unfortunately, FPU, instruction,;,
sequences that optimize Quadra performance often degrade performance to some extent.on ..._,,
MC68881/2 platforms. Programmers must always weigh the performance réequiréments of their,

various target platforms when writing floating-point code. . Pa oe ee ee

Transcendental Functions

Although all FPU transcendental function instructions are emulated by the FPSP on Quadra..;. 5
platforms, performance is comparable to a similarly clocked platform using the MC68882.. eS pa Bis

Unimplemented Arithmetic Functions e | = oe - tt ne

If deemed desirable for performance reasons on Quadra platforms, workarounds can readily be

devised for most of the arithmetic FPU instructions that are emulated by the FPSP. The FMOD

and FREM instructions are the notable exceptions since they involve an iterative algorithm in their WW

most general cases. The functionality of the remaining unimplemented arithmetic instructions can

be emulated as follows: ye MR bei aide”
~

tt

FGETEXP If the argument is a NaN or zero, return the argument. If.the argumentiis.q:”
infinite, return a NaN and signal OPERR. Otherwise, write the floating-point argument. to; = («+

stack, extract, and unbias the exponent using integer operations, and deliver the result to.FPa +.)

usitig FMQOVE.L <ea>,FPn. >

FGETMAN If the argument is a NaN or zero, return the argument. If the argument is

infinite, return a NaN and signal OPERR. Otherwise, write the floating-point argument tothe::9

stack in extended format, normalize the significand (mantissa) if necessary, set,the exponent s:00n

bits to $3FFF, retain the original sign bit, and deliver the result to FPn using FMOVE.X

<ea>,FPn. 3 vo OP Sega Gated ang astiageil

FINT If the argument is zero or if the exponent of the argument is greater than'62;return-<? ©
the argument. If the exponent of the argument is less than 31, round the argument to integral’ #)-

value by conversion to integer format via FMOVE.L FPn,<ea> followed by conversion

back to X format via FMOVE.L <ea>,FPm. Othéfwise, decompose the ‘argument into an

integral part (via integer operations on the X format on the stack) and a fractional part (via

subtraction of the integral part from the’argumient), convert the fractional part to an integer via

FMOVE.L FPn,<ea>, and add the integer to the integral part. =" =

“10 of 12 #317: FPU Operations on Macintosh Quadra Computers

Sx enann SA aR mm ON EE

Developer Technical Support as June 1992 if
pes OIE LA TNL RNC EA te SO NTN SN TT MEE

round 6 operation.

FMOVECR ’ Store desired constant in extended format in the code segment of program and

load i it via _FMOVE. x <ea>, FPn._

FSCALE Convert the integral source operand n to a floating-point factor 2.0n on the ©
stack. Obtain the scale result via multiplication of that factor with the destination operand.

FINTRZ and Floating-Point — Integer Conversions

The most common cOmpiler-generated unimplemented arithmetic FPU instruction is FINTRZ
during-conversions of floating-point \ values to various signed integer formats in C or FORTRAN
source code. For example, to convert the value in FPn to 32-bit integer value at <ea>, a compiler
will generaté the following code sequence: is

FINTRZ FPn,FPm ; truncate to integral value

FMOVE.L FPm, <ea> ; convert to integral format

If the application i is running | in (EEE 754) default mode (FPCR = -$00000000: no exceptions are
enabled, rounding precision is extended, rounding direction is round-to-nearest), the following
code sequence will accomplish the same conversion with optimal performance on a Quadra and
with minimal performance degradation on an MC68881/2 platform:

EMOVE. Ee o ©, -#$00000010, FPCR | ; set round-to-zero mode
MOVE. L’ ee “ FPn,<ea> ; truncate to integral format

FMOVE. Le a iat vocng alee FPCR ; restore default modes

If fhe user’s : FPCR setting is not the default, the last sequence must be modified to save and
restore the user’s FPCR setting at the cost of several instructions and some temporary storage.
Throughput for these conversions may be enhanced if the application requires an array of floating-
point values to‘be converted; because the FPCR needs to be modified only once before and once
after all conversions ate done-via the FMOVE.L FPn,<ea> step. Out-of-range source values
result in degraded performance on Quadra computers due to nonmaskable vectoring to the
OPERR handler i in the cron.

Workarounds for: conversions ; from floating- point vale: to the unsigned integer formats of Cc are
more complicated and of necessity slower than those to signed i integer formats.

Miscellaneous Pertontiatice Tips for Quadra Applications

In order to-minimize trapping to the FPSP for handling of exceptional sicaaaua de data TYPES: or
data formats, the: followin ig hints may prove useful:

ri U cuplcanens: should run with extended rounding precision set in the FPCR.

. Temporary storage for intermediate floating- point results should be in extended format
and preferably in FP registers. os

¢ Applications should avoid the generation of unnormalized extended format values via
integer operations with subsequent reliance on the FPU to normalize the results.

#317: FPU Operations on Macintosh Quadra Computers 11 of 12

Macintosh Technical Notes

¢ Applications should avoid the extensive use of the Motorola packed decimal (P) data
format.

MPW QRé6 Libraries

The MPW QR6 folder in the E.T.O. #6 Developers CD contains C and Pascal libraries that have

been performance-tuned. In particular, some of the -mc 68881 mode implementations have been
modified to obtain better performance on Quadra platforms. Included among the new
implementations are conversions from floating-point to the unsigned integer formats of C.

Unfortunately, conversions to signed integer formats are generated in-line by the C compiler and

thus still include the FINTRZ instruction, which is emulated by the FPSP in Quadra platforms.

Summary

FPU operations on Quadra platforms are performed by a combination of circuitry in the 68040

microprocessor and emulation code in the FPSP. The 68040 provides very fast implementations

of most of the basic floating-point arithmetic functions in the MC68881/2 instruction set. The

FPSP emulates all transcendental functions and some arithmetic functions. In addition, the FPSP
handles instructions that involve certain data types/formats that are unsupported by the 68040

hardware and fixes up state when certain exceptional conditions arise during processing.

Compatibility of results relative to MC68881/2 platforms holds for all FPU arithmetic

instructions, whether or not they are emulated on Quadra computers. Results for transcendental

FPU instructions may differ, and they are generally more precise on the Quadra.

FPU applications that run with no floating-point exceptions enabled in the FPCR and that do not)

install an unimplemented F-Line Opcode handler will run without modification on both

MC68881/2 and Quadra platforms. User unimplemented F-Line exception handlers are installed

via vector 11 at address $002C on MC68881/2 platforms and via a secondary vector at address

$1FC8 on Quadra platforms. Similarly, installation of user floating-point exception handlers for

enabled exceptions must take care not to overwrite entry points to the FPSP on Quadra platforms.

MPW libraries provide high-level installation procedures for user floating-point exception

handlers. If such handlers are to run on all FPU platforms, they must take into account the

differences in FSAVE state frames for Quadra and MC68881/2 platforms.

Optimizing FPU performance on Quadra computers is largely a matter of understanding the

conditions under which the FPSP is invoked and then avoiding such conditions via workarounds

whenever possible. Code sequences thus optimized for Quadra computets will often provide less

than optimal performance on MC68881/2 platforms.

Further Reference:
* MC68881/MC68882 Floating-Point Coprocessor User’s Manual
* MC68040 32-Bit Microprocessor User’ s Manual
* MC68040 Designer’s Manual, Section 3: Floating-Point Emulation
¢ M68000 Family Programmer’ s Reference Manual .

+ IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)

12 of 12 #317: FPU Operations on Macintosh Quadra Computers

om
Macintosh

Technical Notes

4

Developer Technical Support

#318: Serial PollProc

Written by: — Rich “I See Colors” Collyer & Dave Wong June 1992

This Technical Note discusses how to make a PollProc for your MIDI (Musical Instrument Digital
Interface) driver on the Macintosh PowerBook 140 and 170.

For MIDI Consumption Only

You are writing your own MIDI driver and your driver does not fully work on the PowerBook
170/140. The PollProc support that might help solve your problem has been undocumented until
now because it has a bug in it which if ever fixed would cause major problems with every PollProc
ever made. The bug is in the way that the PollProc mechanism handles data errors - it doesn't. At
some point this might get fixed and an fix would require changes to any existing PollProcs. We are
only documenting this now because we (Apple) would like to see high MIDI data transfers
working on the PowerBook 170/140, and the PollProc support is the only solution we have been
able to come up with. If you do use this information, be aware that the PollProc mechanism may
change in the future and when it does your PollProc will need to change. We do not recommend
the use of PollProc mechanisms on any other Macintosh computers.

What the Problem Is

When doing a large data dump, such as downloading MIDI instruments or sampled sounds, MIDI
data overruns the input serial port on the PowétBook 170/140.

Background

* MIDI developers and users have been reporting problems that occur on PowerBodk 170/140.
The specific problem described by the developers is that data ovetruh errots dccur (that is, serial
data is lost). MIDI data is serial data that is transrtiitted at 31.25 Kbaud. This fi€ans that one byte
of data is transmitted approximately every 200 usée.

* The setial port has a three-byte FIFO, which means that three bytes of data could be stored
temporarily before a data overrun (data loss).

« The MIDI functioned OK on the original portable, but just barely. The overhead of
commiuriicating to the power manager mictoprocessor seems to interfere with MIDI.

* The 170/140 hardware required certain changes to the power managéthent softwate because of
changes it the hatdware. In particular, the hardware changes required changes to the protocol uséd
to communicate to the powef manager microprocessor.

¢ The 170/140 has software backlight controls that cause constant comrfitnication between the
68030 and the power thafiager microprocessor (evéty 200 msec).

#318: Serial PollProe 1 of 4

Cg.

3 &

Macintosh Technical Notes

Findings

* The MIDI driver loses data. The 170/140 has a real-time problem and is not able to keep up with

sustained MIDI data rates. The culprit is the communication between the 68030 and the power

manager microprocessor. During this communication, interrupts must be disabled for a certain

amount of time.

* On the 170/140, the protocol for this communication was changed from that of the portable. The

170/140 can cause interrupt blackouts up to 6 msec as compared to approximately 500-700 usec on

the portable (estimation only). Assuming the worst case, during the 6 msec blackout as many as 30

MIDI data bytes could have been sent. Since the FIFO on the serial port is only 3 deep, this means

that as many as 27 bytes could have been lost (remember these are ballpark figures only).

+ The problem is aggravated by increased power manager communications for backlight controls.

What the Solution Is

* Changing the protocol to the power manager microprocessor (given the hardware constraints) is

not practical since the problem is not completely solved and could cause other system problems.

¢ At the moment, no Apple-only solution is possible.

- A developer-only solution is possible. Currently an internal mechanism exists to keep up with

high data rates on the modem port. This mechanism, called PollProc (Polling Procedure), will

allow the ROM code to handle the serial port during known interrupt blackout windows, which

helps prevent data loss. The power manager communication software currently checks for such a

routine and will use it automatically if it is present. In addition to correcting this problem, this will

also allow MIDI to perform during floppy activity (which has similar real-time problems) since the

floppy driver also checks for PollProc.

In the code which is included at the end of this Tech Note, there is a extra Procedure which is call

ProcessByte. In the sample this routine does nothing. The reason for the sample not doing

anything is due to the nature of the routine. What the routine does is completely dependent on

what the serial driver is doing or wants to do with the data as it is read into the machine. This

routine might be used to decompress data, compress data, decoded the data, or do any other kind

of alteration you wish to do to it. The Macintosh OS does not do anything to the data, so this

routine is not needed, but your application might need this routine - it is up to you, just don't do to

much at this time. It is important to remember that you need to get in and out of the PollProc as

fast as possible.

What Is a PollProc and How Does It Work?

A PollProc is a routine that a serial driver implements so it can still get data when the OS turns

interrupts off for a significant amount of time. Although PollProc mechanisms work for generic

serial drivers, it is recommended that you use this feature in your MIDI driver only on the

PowerBook 170/140. When the MIDI driver is opened and supports PollProc mechanisms, it

needs to place a pointer to this routine in the low-memory global—PollProc. When the OS (such as

the Power Manager and floppy driver) turns off interrupts, it checks to see if the low-memory

global is nil or not. If the global is not nil, then it the OS will poll the SCC for incoming data and

stuff the data into a buffer. Then just before the OS turns the interrupts back on, it calls the

eee hittin

2 of 4 #318: Serial PollProc

oO

June 1992 Developer Technical Support

PollProc and passes the buffer to it. The PollProc will be able to handle the data as if it were

coming in via the serial port.

The PollProc is supported only on port A. Port B PollProcs are not supported.

The comments in the following code give more detail about how to implement the PollProc.

PollProc Sample Code

,

;InputPollData - process SCC input data

;This routine is called via the low-memory vector PollProc by system code

;that had interrupts disabled for a long enough period of time that SCC

j;data may have been lost. The system code will poll the scc for data during

;the time it had interrupts disabled and call this routine right before

jinterrupts are reenabled. The address of the InputPollData routine should

;be written into the "PollProc" low-memory vector when the SCC channel A

;driver is opened. The "PollProc" low-memory vector should be zeroed

;when the driver is closed.

;The InputPollData routine will be called with data to be processed on the

;stack. This routine should process the data as if it had been received by

jthe driver's receive data interrupt routine.

;Note: PollProc mechanisms are not necessary on SCC IOP based machines and should

not be used.

,

7Input: a6.1 = SCC channel A data pointer

;Output: none

;allowed to trash: a0-al/a3-a4

PollStack equ $13A ; SCC poll data start stack location [pointer]

PollProc equ $13E ; SCC poll data procedure [pointer]

RxCA equ 0) ; Bit zero of SCC RRO indicates receive char avail.

InputPollData

movea.1 _ (sp) +,a4 ; Save return address.

movea.1 PollStack, a3 ; a3 = ptr to beginning of data on stack.

;First empty all the data from the SCC. This may not be needed, but it is

;here for completeness. The drivers that will use the PollProc mechanism

jwill already have similar code to this, so whether you implement this or

snot is more of a personal call. Our recommendation is that you try to go

jwithout the code, and if you find you do need it, then implement it.

@Empt ySCc |
movea.1 SCCRd, a0 ; base addr of SCC read register 0 from low mem

addq.w #2,a0 ; Add offset to get to channel A registers.

btst.b #RxCA, (a0) ; Test if SCC data is available.

beq.s @ProcessData ; no additional SCC data

move .b (a6) ,-(sp) ; Move SCC channel A data onto stack.

bra.s @Empt ySCC

#318: Serial PollProc 3 of 4

Macintosh Technical Notes

;Process all the SCC data on the stack’as if it were read in normally by

;the SCC driver's receive interrupt routine. There is stack data starting

;from the address in the low-mem PollStack, to the current stack pointer.

@ProcessData

> emp.1 sp,a3 ; Have we processed all the stack data?

beg.s @Done ; We are done.

subq.w #1,a3 ; Skip over garbage byte because stack pushes words.

move .b (a3)+,d0 ; Get the saved data byte.

bsr.s ProcessByte 7; Call driver routine to process the data byte.

bra.s @Empt ySCC ; Check for SCC data before processing next saved byte.

;Done - cleanup stack of saved data

@Done
move.1 PollStack, sp ; Set stack ptr to pop saved data.

jmp (a4) ; Jump to the return address.

;ProcessByte - process saved SCC input data

;This routine is a stub example routine that will process a saved data

;byte as if the driver had read in the byte normally.

,

;Input: dad0.b = SCC channel A data byte

;Output: none

ProcessByte

;Fill in necessary code.

rts

Al 7 Nn

mea + ae ~ en coe ~ = ~ -

4of4 pe 89" yg 78. lgeriat PollProc

é. THE SOUND MANAGER

See Also Macintosh Technical Notes #168, and #208

Audio Interchange File Format specification
Macintosh Audio Compression/Expansion specification

Written By Jim Reekes October 2nd, 1988

SOUND ADVICE

This document describes the System 6.0.2 Sound Manager. The original
chapter describing the Sound Manager is ambiguous, inaccurate, and often
contradicts itself. This chapter hopefully will clear up the confusion and get
developers using the Sound Manager as was originally intended. This
document replaces the Sound Manager chapter originally published in Inside
Macintosh Volume V.

The Sound Manager is a replacement for the older Sound Driver documented
in Inside Macintosh Volume II. The abilities of the Sound Driver are
currently supported by the Sound Manager and it will utilize future hardware
improvements. The Sound Manager offers more flexible ways of doing
things and, includes new features and options, all requiring less
programming effort. Many applications do not require the use of sound and
therefore do not need to be concerned with the Sound Manager. Refer to the
Human Interface Guideline: The Apple Desktop Interface when using sound.

A fundamental knowledge of music and sound synthesis is presumed in this
document. There are utilities available from third parties that aid in the
development of creating sampled sound resources. Creating wave table data
or discussing the abilities of wave synthesis versus sampled sound synthesis
is not covered in this document. Two good reference books are Computer
Music, Synthesis, Composition, and Performance by Charles Dodge and
Thomas A. Jerse, and Principles of Digital Audio by Ken Pohlman.

This document contains an overview of the Sound Manager, and a detailed
description of sound resources, routines and commands. All of the known
bugs and limitations are collected into one section, “The Current Sound
Manager”. A bug icon is used to point out information contained in this
section that is relative to the text being read. For example, when reading
about a sound command if a bug icon is shown, make sure you have read the
“Current Sound Manager” section regarding that command.

The Sound Manager

TABLE OF CONTENTS

EN TRO DUCTION oossttsssccosiacsasebecdsssenseiecestecestsasauesssetestsissoseadesesegteussesseevoeessseseoveuteess 3
USING THE SOUND MANAGERccscsessesssssssecescnsesssccsscececececeseecececeseseeseeaeeeeoes 4

The System BeeP..............ccccccscccccssccsecsssecscssesscsesenccesscecccsesssessnssesseseseosssssnsnaseses 5
The Note Synthesizercccccccsccceccececececececececececcececececesececececesesececacanananen essen sees 5
The Wave Table Synthesizer...........ccccccccsecececececececececcecesecececeseeesecaneeasanesenesseesees 5

Figure 1 Graph of a Wave Tableccccccssssssssnsecececceensnsssnsceeceseseeseeecesseeooes 6
The Sampled Sound Synthesizer..........scssccssssscersessecscessessersestsereesesecsenscesenseeeees 7

Figure 2 Sampled Sound Headersssssseececceseecseececceesesceeeceeseeeseeeaeaeaoseeoeees 7
Table 1 Sample Rates................s.ssscscssssssssscessscscssssscsesescscecececceceeecessenesessssesees 8

SOUND: [RESOURCES wis dics cccssisssecsccsdscescssdacciccsssscessssrssressossshouenteseesaessesssenesessecerezete 10
The: "snd" ReSOUrC@sscssistesscsscsssecsscsescsscsascscscccsesensssseueascavsuesseaascosanverestvesvesssesense 10

Figure 3 'srnd ' Resource Layout...........sssssseccceccrrssessscssceceeneeseseseeeeaeneeseeeeeaeeoes 10

Format 1. 'SIid '........cccccssssssccssscscssccccssscccssossccevoccsssnnsesssceessessccsessanerssssssscessssessoaes 12
Example Format 1 'snnd............ccccsssccsssssssssssscessssccrssenecccsssssessssscsssssnaeeesessesocees 13
FOrmat: 2 "SN ssciccsiccisscssssscsssssssssesssoossevesnssesesesevessdeedsssussenscessseeneonnannestevesssecsesss 14

Example Format 2 'snd '............csccscsscssssssssscesssesesccssccssssecensssessseseesesesssseosseseasees 14
The 'srnth' ResOurce............cccssccccsssssssccsscssscssscscccessenecececsssssssasssessssssssessssssosssoes 15

Table 2 Synthesizer Resource IDS..........:.sseccccecssssnsnensecceceneeneeeseececaeensssseceseees 15
SOUND MANAGER ROUTINEScsssssssssssecececeesssenssnececeeeessesnssssananseseseeeessosens 16

Figure 4 Sound Channel and Routinesssssseecccceeeeeesesssssreneeeeeeeeeeeseseeees 16
SNAP lay.............ssssssssssrsrsnscnccsecceeeeccececscecsesesesensessnensnsansccasseaeecseessecesessscesseaseeeees 16
SNANewChannell.............cccccccsrssescecsccccscassccssoscecnessenscacccsscncssseasescesssseessssssssssees 17
SndAGAMOGifieL..............ccccccsccccccccssscccccscssscscccsscccssssessacseesssessesssssssssssssssssssseees 18
SNADOCOMMANA.............sccccsrcsssccsssscccssssceeeceeeccesssccesessssanssssssscsessssessessesesoesoeeees 19
SNADOIMMEIate...............cccccrroscsscccccecrsrerecsessccrccerererssssssssssearesseessessensscecessseoons 19
SNACONETOL.........sccsscccssrrrsscscseserererersrscesensscecccsescccensseacsssassasssesssseseesssesssseeesooreoees 19
SndDisposeChannel.............sssscscreeseseresesersesseserssssssserenssesesseessssssesessecsssessseesseees 19

SOUND MANAGER COMMAND:::sssssssseeeeenssenenensenenensnsesessssreseneseseeeeseeeeeooes 20
Figure 5 Generic Command Formatccccesssesssseneceeeseeeecesnsenseccuseeesesesssseees 20
Figure 6 noteCmad Formatsssssesssrsececeesesensnenseccceseeessscsesseenecaeeseseseseoeees 24
Figure 7 freqCmmd format.............ssscrcsssscscscesssnnseeceecccsessnssssscecsescesesessesesseseees 25

USER ROUTINEG................ccccssscssssscsssccssssssssrcrccecesessssscnenasasseeeesessesssssseenesceacsesesoes 28
PROCEDURE CallBackscssssscscscssssscsscsscscscesceeeceeesecsseceeesoeseosssesseeseessooes 28
FUNCTION Modifiersccccccscscscsccccsscscsceccececececesesesseseccssoescesesaseeaseneeeees 29

THE CURRENT SOUND MANAGER...........ccccsscesssnseseeeceescesenssnsenneeeseseeeseeseesessstenens 31
Synthesizer Details.............ccccsccssessssesssessrsrsreesreenssessnensseessenessessnesesssesaseesseesesees 31

Sound Manager Bugs...........sssssssesssccsssesessseseecesecnseseeseceeeeeasanencessesseeesesseseseasen recess 33
SOUND MANAGER ABUSE.........ccsssscccsseccstsecenscessersesceseseeessseecsseeeeecssesessseesones 35
FREQUENTLY ASKED QUESTIONG.........cccccesecececececececeeeecececeeeeeseeeeeseeeeeeeeeseeesseeees 36
NOTE VALUES AND DURATION SGcccccccesecececececececeeneceeeeeeeeesesesseeseneseeaeeeeeseses 39

Table 3 duration.ssscccscccccesressssccscscecceececesseceeesseeeeeesescceeesenesseesseesenns 39
Table 4 moteCmad values..........ccccccsssscecesececeseseeeeeenececeneeeeeaeaeeenesenereesseseseesesens 40

SUMMARY OF THE SOUND MANAGER:::seeesseseseetestseeceseensneseessseseeeseseeeeeeeaes 41
Sound Manager Constantsssccssssssesesescececccransesseseeeseecesencesssesecensscessaneneeeces 41

Sound Manager Data Type:ssssesesecsessesseseeeseesesenesccsesnossecececsseseseseseeoeaeeoeees 42
Sound Manager Routines..........sssssscccssssessessesceeeceseneessssesesceeeeeessscsessenavecsceseseneneees 4g

2 Table of Contents

fa

T- ke Seocuw-n dy M.enca ger

INTRODUCTION

The Sound Manager is a collection of routines that can be used to create
sounds without knowledge of, or dependence on, the hardware available. By
using the Sound Manager, applications are assured of upward-compatibility
with future hardware and software releases. The Sound Manager will always
take advantage of hardware advancements. Applications using the Sound
Manager now will gain those advantages. When a command is sent to the
Sound Manager, it is really a request. For example, if sound code written to
play on a Macintosh II is being used on a Macintosh Plus or Macintosh SE
(which have slower CPU clocks and less capable audio hardware) the Sound
Manager will use synthesizers fitted best to those machine’s abilities.
Conversely, future Macintoshes may have improved audio hardware, and
that same code will be utilized by the Sound Manager to take full advantage
of these as-yet-undetermined hardwares. All of this is transparent to the
application, yet serves to make that application compatible with the full line
of Macintosh computers, present and future.

A synthesizer is very similar to a device driver. A synthesizer is the code
responsible for interpreting the most general sound commands and using the
hardware available to produce it. A synthesizer is stored as a resource which
the Sound Manager will install. Customized synthesizers are supplied for
every Macintosh configuration. Only one synthesizer can be active at any
time. Apple’s sound hardware is only supported when used with Apple’s
synthesizers. Writing synthesizers for Apple’s hardware is not supported.
Writing custom synthesizers for non-Apple hardware is beyond the scope of
this document. All references to synthesizers in this document pertain to the
Apple synthesizers that are supplied with the Sound Manager.

Modifiers are used to perform pre-processing of commands before they are
received by a synthesizer. Modifiers can ignore, alter, remove, or add
commands, or perform periodic functions. A modifier is a procedure in
memory, or a resource which the Sound Manager can install. For example, if
the application wanted to play a melody transposed up by an octave a
modifier could be used to replace notes with notes that are an octave higher.

Instructions for a synthesizer and modifier are sent through a command
queue called a sound channel. Sound channels provide a means of linking
applications to the audio hardware. The application provides a sequence of
commands which are processed through a number of modifiers (if any) and
finally through a synthesizer that creates the sound with the hardware.

Introduction 3

The Sound Manager

USING THE SOUND MANAGER

The Sound Manager code that runs on the Macintosh Plus is the same that is
used on the Macintosh SE. The code running on the Macintosh II is different,
since it has the Apple Sound Chip installed. The Apple Sound Chip was
developed to reduce the CPU’s involvement with producing sound and to
extend the capabilities of the Sound Manager.

timer T1. This conflicts with some third party MIDI
drivers. As such, it is not possible to use both the
Sound Manager and these MIDI applications.

(The Sound Manager requires the use of the VIA1

There are two types of resources used by the Sound Manager, 'snd ' and
'snth'. A'snd ' resource contains data and/or commands. A 'snth'
resource is code used as a synthesizer or modifier to interpret the commands
sent into a channel. Generally, applications only need to be concerned with
‘snd ' resources. More information on the formats of 'snd ' resources
and their use is given later.

The Sound Manager provides a range of methods for creating sound on the
Macintosh. Most applications will only need to use a few of the Sound
Manager routines. At the simplest end of the range is the use of the note
synthesizer to play a simple melody or_SndPlay. _SndPlay only requires a
proper 'snd ' resource. Such a resource will contain the necessary
information to create a channel linked to the required synthesizer and the
commands to be sent into that channel. An application can use the following
code to create a sound with this method:

myChan := NIL;

sndHandle := GetNamedResource ('snd ', 'myBeep');

myErr := SndPlay (myChan, sndHandle, FALSE) ;

For more complete control of the sound channel, an application can open a
sound channel with _SndNewChannel. The application will then send
commands to that channel with _SndDoCommand or __SndDoImmediate.

When the application’s sound is completed, the application closes the
channel with _SndDisposeChannel.

4 Using the Sound Manager

The Sound Miawager

The System Beep

The trap _SysBeep is a call to the Sound Manager. The sound of the System

Beep is selected by the user in the Control Panel using the Sound 'cdev'.
Except for the “Simple Beep”, _SysBeep will be performed by the Sound
Manager. If this sound is selected on a Macintosh that doesn’t have the Apple
Sound Chip (i.e. the Macintosh Plus and SE), the beep will be generated by the
original ROM code. This has the benefit of bypassing the Sound Manager and
the potential conflict of third party MIDI drivers which both use the VIA1
timer T1. Thus, this conflict over the timer can be avoided by setting the
System beep to the “Simple Beep” using the Sound 'cdev' in the Control
Panel.

If an application has an active synthesizer, then SysBeep may not generate
any sound. This is because only one synthesizer can be active at any time.
On a Macintosh without the Apple Sound Chip (i.e. the Plus and SE) when
the “Simple Beep” is selected the beep will be heard, since it bypasses the
Sound Manager. Applications should dispose of their channels as soon as
they have completed making sound, allowing the _SysBeep to be heard.

_SysBeep cannot be called at interrupt time since
the Sound Manager will attempt to allocate
memory and load a resource.

Refer to the section “Current Sound Manager”
regarding SysBeep ona Macintosh Plus and SE.

The Note Synthesizer

The note synthesizer is the simplest of all the synthesizers supplied with the
Sound Manager. The sound produced by this synthesizer is based upon a
square wave. An application cannot play back a wave form description or
recorded sound when using this synthesizer. Very little set up is required to
use this synthesizer. It also has the advantage of using little CPU time. It can
be used for creating simple monophonic melodies.

The Wave Table Synthesizer

The wave table synthesizer will produce sounds based on a description of a

single wave cycle. This cycle is called a wave table and is represented as an
array of bytes describing the timbre (tone) of a sound. Applications may use
any number of bytes to represent the wave, but 512 is the recommended

Using the Sound Manager 5

The Sound Manager

length since the Sound Manager will re-sample it to this length. A wave table .
can be pulled in from a resource or computed by the application at run time.
To install a wave table in a channel, use the waveTableCmd. Up to four wave
table channels can be opened at once allowing an application to play chords,
melodies with harmonies and polyphonic melodies.

[+ single wave cycle —————_}

SFF

i)
oO
=
rom
&
<

$80

$00

+ Packed Array of Bytes ————-

of ay DZ

Figure 1 Graph of a Wave Table

A wave table is a sequence of wave amplitudes measured at fixed intervals.
Figure 1 represents a sine wave being converted into a wave table by taking
the value of the wave’s amplitude at every 1/512th interval. A wave table is
represented as a PACKED ARRAY [1..512] OF BYTE. Each byte may contain
the value of $00 through $FF inclusive. These bytes are considered offset
values where $80 represents a zero level of amplitude, $00 is the largest
negative value, and $FF is the largest positive value. The wave table
synthesizer loops through the wave table for the duration of the sound.

regarding the wave table synthesizer on the
= Refer to the section “Current Sound Manager”

Macintosh Plus and SE.

6 Using the Sound Manager

The Souwuwwnd. Mean a ger

The Sampled Sound Synthesizer

The sampled sound synthesizer will play back digitally recorded (or
computed) sounds. These sampled sounds are passed to the synthesizer in
the form of a sampled sound header. This header can be played at the
original sample rate, or at other rates to change its pitch. The sampled sound
can be installed into a channel and then used as an instrument to play a
sequence of notes. Thus a sampled sound, such as a harpsichord, can be used
to play a melody. This synthesizer is typically used with pre-recorded sounds
such as speech, songs or special effects. Developers concerned with saving
sampled sound files need to refer to the Audio Interchange File Format
available from the Apple Programmer’s and Developer’s Association. Figure
2 shows the structure of the sampled sound header used by the sampled
sound synthesizer.

Name Type

samplePtr Pointer

LongInt

Fixed

LongInt

LongInt

Byte

Byte

Packed Array
[1..n] OF Byte

Figure 2 Sampled Sound Header

The first field of a sampled sound header is a POINTER. If the sampled sound
is located immediately in memory after the baseNote, this field is NIL,
otherwise it will be a pointer to the sample sound data. The length field is
the number of bytes in the PACKED ARRAY [l..n] OF BYTE containing the
sampled sound, n being this length.

Using the Sound Manager rg

Tie Sonn d Maen ag er

Table 1 Sample Rates

The sampleRate is the rate at which the sample was originally recorded.

These unsigned numbers are of type FIXED. The approximate sample rates

are shown in Table 1.

The loop points contained within the sample header specifies the portion of

the sample to be used by the Sound Manager when determining the

duration of anoteCmd. These loop points specify the byte numbers in the

sampled data used as the beginning and ending points to cycle through while

playing the sound.

regarding the noteCmd and looping with a sampled
= Refer to the section “Current Sound Manager”

sound header.

The encode option is used to determine the method of encoding used in the

sample. The current encode options are shown below.

stdSH = $00 {standard sound header}

extSH = $01 {extended sound header}

cmpSH = $02 {compressed sound header}

The extended sample header (ext SH) is the in-memory implementation of

the Audio Interchange File Format standard expected by the Sound Manager.

The AIFF standard specifies up to 32 bit sample sizes, up to 128 channels per

file, and much more. Refer to the AIFF documentation for more details. The

compressed sample header (cmpSH) is the compressed sample counter-part of

the extended sample header. Refer to the Macintosh Audio Compression and

Expansion documentation for further information.

Developers are free to use their own encode

B options with values in the range 64-127. Apple

reserves the values 0 - 63.

The baseNote is the pitch at which the original sample was taken. If a

harpsichord were sampled while playing middle C, then the baseNote is

8 Using the Sound Manager

The Sound Mianager

middle C. The baseNote values are 1 through 127 inclusive. (Refer to
Table 4.) The baseNote allows the Sound Manager to calculate the proper
play back rate of the sample when an application uses the not eCmd.
Applications should not modify the baseNote of a sampled sound. To use
the sample at different pitches, send the noteCmd or freqCmd.

Refer to the section “Current Sound Manager”
regarding limitations with the noteCmd and
freqCmd.

Each byte in the sampleArea data is similar in value to those in a wave table
description. Each byte is a value of $00 through $FF inclusive; $80 represents
a zero level of amplitude, $00 is the largest negative value, and $FF is the
largest positive value.

The Sound Manager Summary contains the description of the data format to
be used with 16 bit sampled sounds. Developers wishing to write custom
synthesizers for their hardware are encouraged to use this data format. This
data structure is intended to complement the use of the AIFF standard.

Using the Sound Manager 9

The Sound Manager

SOUND RESOURCES

The 'snd ' Resource

z
= snd format

Dae cana

-_

3)
=
a boccccc ccc
_

5
=

po E init option
8S =| forsynth

ee
5 | last modifier

= resource ID

we init option
S =| for modifier

LS a cainiaeiae

-_

S)
=

= 8
20S,
i A

Eight Bytes

sound data

(optional) 222?

‘snd ' Format 1

d Word

Bytes Word Wor Eight

Eight Bytes

222?

these fields may be
absent if “number of
synth/modifiers” is 0

snd format

number of

sound commands

first sound

command

last sound

command

sound data
(optional)

'snd ' Format 2

Figure 3 'snd ' Resource Layout

10 Using the Sound Manager

The Sound Manager

Sound resources are intended to be simple, portable, and dynamic solutions
for incorporating sounds into applications. Creating these 'snd ' or sound
resources, requires some understanding of sound synthesis to build a sampled
sound header, wave table data, and sound commands. There are two types of
"snd ' resources, format 1 and format 2. Figure 3 compares the structures of
both of these formats. These resources should have their purgeable bit set or
the application will need to call _HPurge after using the 'snd '.

The format 1 'snd_ ' was developed for use with the Sound Manager. A
format 1 'snd_ ' may be a sequence of commands describing a melody
without specifying a synthesizer or modifier and without sound data. This
would allow an application to use the _SndP lay routine on any channel to
play that melody. A format 1'snd_ ' resource may contain a sampled sound
or wave table data.

The format 2 'snd_ ' was developed for use with HyperCard. It is intended
for use with the sampled sound synthesizer only. A format 2 simply contains
a sound command that points to a sampled sound header.

‘snd ' resources incorrectly labeled as format 1.
= HyperCard (versions 1.2.1 and earlier) contain

Refer to Macintosh Technical Note #168.

Numbers for 'snd ' resources in the range 0
through 8191 are reserved for Apple. The 'snd '
resources numbered 1 through 4 are defined to be
the standard system beep.

A sound command contained in a 'snd ' resource with associated sound
data is marked by setting the high bit of the command. This changes the
param2 field of the command to be an offset value from the resource’s

beginning, pointing to the location of the sound data. Refer to Figure 5
showing the structure of a sound command. To calculate this offset, use one
of the following formulas below.

For aformat1'snd ' resource, the offset is calculated as follows:

offset = 4 + (number of synth/mods * 6) + (number of cmds * 8)

For a format 2''snd ' resource, the offset is calculated as follows:

offset = 6 + (number of cmds * 8)

a
Sound Resources lil

The Sowtnd Manriger

The first few bytes of the resource contain 'snd ' header information and are

a different size for either format. Each synthesizer or modifier specified in a

format 1 'snd ' requires 6 bytes. The number of synthesizers and/or

modifiers multiplied by 6 is added to this offset. The number of commands

multiplied by 8 bytes, the size of a sound command, is added to the offset.

Format 1 'snd ' Resource

Figure 3 shows the fields of a format 1 'snd ' resource. This resource may

also contain the actual sound data for the wave table synthesizer or the

sampled sound synthesizer. The number of synthesizer and modifiers to be

used by this 'snd_ ' is specified in the field number of synth/modifiers.

The synthesizer required to produce the sound described in the 'snd ' is

specified by the field synth resource ID. If any modifiers are to be

installed, their resource IDs follow the first synthesizer. Any synthesizer or

modifier specified beyond this first one will be installed into the channel as a

modifier.

For every synthesizer and modifier, an init option can be supplied in the

field immediately following the resource ID for each synthesizer or

modifier. The number of commands within the resource is specified in the

field number of sound commands. Each sound command follows in the

order they should be sent to the channel. If a command such as a buf ferCmd

is contained in this resource, it needs to specify where in the resource the

sampled sound header is located. This is done by setting the high bit of the

bufferCmd and supplying the offset in param2. Refer to the section “Sound

Manager Commands”.

The 'snd_ ' resource may be only a sequence of commands describing a

melody playable by any synthesizer. This allows the 'snd_' to be used on any

channel. In this case the number of synth/modifiers should be 0, and

there would not bea synth resource IDnorinit optioninthe 'snd '.

a aU UU EEUU EEE EEE

12 Sound Resources

Thee Sound, Moauagest

Example Format 1 'snd '

The following example resource contains the proper information to create a
sound with _SndPlay and the sampled sound synthesizer.

HEX Size Meaning

{beginning of snd resource, header information}

$0001 WORD format 1 resource
$0001 WORD number of synth/modifiers to be installed

{synth ID to be used}

$0005 WORD resource ID of the first synth/modifier
$0000 0000 LONG initialization option for first synth/modifier

$0001 WORD number of sound commands to follow

{first command, 8 bytes in length}

$8051 WORD bufferCmd, high bit on to indicate sound data included

$0000 WORD bufferCmd paraml
$0000 0014 LONG bufferCmd param2, offset to sound header (20 bytes)

{sampled sound header used in a soundCmd and bufferCmd}

$0000 0000 LONG pointer to data (it follows immediately}

$0000 OBB8 LONG number of samples in bytes (3000 samples)
$56EE 8BA3 LONG sampling rate of this sound (22kHz)

$0000 07D0 LONG starting of the sample’s loop point
$0000 0898 LONG ending of the sample’s loop point

$00 BYTE standard sample encoding
$3C BYTE baseNote (middle C) at which sample was taken

{Packed Array [1..3000] OF Byte, the sampled sound data}

$8080 8182 8487 9384 6F68 6D65 727B 8288

$918E 8D8F 867E 7C79 6F6D 7170 7079 7F81
$898F 8D8B...

a ee ee
Sound Resources 13

The Sound Manager

Format 2 'snd ' Resource

The format 2 'snd ' resource is used by the sampled sound synthesizer only
and must contain a sampled sound. The _SndPlay routine supports this

format by automatically opening a channel to the sample sound synthesizer

and using the buf ferCmd.

Figure 3 shows the fields of a format 2 'snd ' resource. The field

reference count is for the application’s use and is not used by the Sound

Manager. The fields number of sound commands and the sound commands

are the same as described in a format 1 resource. The last field of this 'snd '

is for the sampled sound. The first command should be either a soundCmd

or bufferCmd with the pointer bit set in the command to specify the

location of this sampled sound header. Any other sound commands in this

'snd ' will be ignored by the Sound Manager.

Example Format 2 'snd '

The following example resource contains the proper information to create a

sound with _SndPlay and the sampled sound synthesizer.

HEX Size Meaning

{beginning of 'snd ' resource, header information}

$0002 WORD format 2 resource

$0000 WORD reference count for application’s use
$0001 WORD number of sound commands to follow

{first command, 8 bytes in length}

$8051 WORD bufferCmd, high bit on to indicate sound data included

$0000 WORD bufferCmd paraml

$0000 0014 LONG bufferCmd param2, offset to sound header (20 bytes)

{sampled sound header used in a soundCmd and bufferCmd}

$0000 0000 LONG pointer to data (it follows immediately}

$0000 OBB8 LONG number of samples in bytes (3000 samples)

$56EE 8BA3 LONG sampling rate of this sound (22kHz)

$0000 07D0 LONG starting of the sample’s loop point

$0000 0898 LONG ending of the sample’s loop point

$00 BYTE standard sample encoding

$3C BYTE baseNote (middle C) at which sample was taken

{Packed Array [1..3000] OF Byte, the sampled sound data}

$8080 8182 8487 9384 6F68 6D65 727B 8288
$918E 8D8F 867E 7C79 6F6D 7170 7079 7F81

$898F 8D8B...

Le

14 Sound Resources

The 'snth' Resource

The 'snth' resources are the routines that get linked to a sound channel

The Sound Manager

used to create sound. The calls to _SndPlay, SndNewChannel,

_SndAddModifier, and _SndControl are mapped with unique 'snth'

resources based on the hardware present on each Macintosh. The Sound

Manager first determines the type of Macintosh being used. Then, using the

id specified in one of the four routines above, adds a constant to this id. For

the Macintosh Plus and SE, a constant of $1000 is added to this id. For the

Macintosh II, $800 is added to the id. If the mapped resource ID is not

available, the Sound Manager will use the actual id value specified.

Resource ID

$0001
$0003
$0005
$0006-$00FF
$0100-$0799

$0801
$0803
$0805
$0806-$08FF
$0900-$0999

$1001
$1003
$1005
$1006-$10FF
$1100-$1199

Synthesizer

noteSynth
waveTableSynth
sampledSynth
reserved for Apple
free for developers

noteSynth
waveTableSynth
sampledSynth
reserved for Apple
free for developers

noteSynth
waveTableSynth
sampledSynth
reserved for Apple

The 'snth' resource IDs in the range 0 through 255
inclusive are reserved for Apple within the 'snth'
resource mapping range.

Target Macintosh

general for any Macintosh
general for any Macintosh
general for any Macintosh
general for any Macintosh
general for any Macintosh

Mac with Apple Sound Chip
Mac with Apple Sound Chip
Mac with Apple Sound Chip
Mac with Apple Sound Chip
Mac with Apple Sound Chip

Mac Plus and SE

Mac Plus and SE

Mac Plus and SE

Mac Plus and SE

Mac Plus and SE

Table 2 Synthesizer Resource IDs

For example, if an application requested the sampled sound synthesizer while
running on the Macintosh Plus, it uses the resource ID of 5 when calling
_SndNewChannel. The Sound Manager will then open the 'snth' resource
with the ID of $1005 since this synthesizer is specific to the Macintosh Plus.
Table 2 lists the current synthesizers and the IDs used by each Macintosh.

=
Refer to the section “Current Sound Manager”
regarding the Macintosh II 'snth' IDs.

Sound Resources 15

The Sound Manager

SOUND MANAGER ROUTINES

SndDoCommand

adds command to queue

SndNewChannel
SndDisposeChannel
creates and disposes
of the sound channel

Queue of

Sound

Commands

SndDoImmediate
bypasses the queue

SndAddModifier

installs a modifier
Modifier(s))

=e
Audio Hardware

Figure 4 Sound Channel and Routines

SndControl
returns information

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle; async: BOOLEAN)

: OSErr;

The function _SndPlay is a higher level sound routine and is generally used
separately from the other Sound Manager calls. _SndPlay will attempt to
play the sound specified in the 'snd ' resource located at sndHdl. This is the
only Sound Manager routine that accepts a 'snd_ ' resource as one of its
parameters. Ifa format 1'snd ' specifies a synthesizer and any modifiers,
those 'snth' resource(s) will be loaded in memory and linked to the
channel. All commands contained in the 'snd_ ' will be sent to the channel.
If the application passes NIL as the channel pointer, SndP lay will create a

16 Sound Manager Routines

The Sound Manager

channel in the application’s heap. The Sound Manager will release this

memory after the sound has completed. The async parameter is ignored if

NIL is passed as the channel pointer.

If the application does supply a channel pointer in chan, the sound can be

produced asynchronously. When sound is played asynchronously, a

completion routine can be called when the last command has finished

processing. This procedure is the userRoutine supplied with

_SndNewChannel. _SndPlay will call HGetState onthe 'snd ' resource

before HMoveHi and _HLock, and once the sound has completed, will restore
the state of the 'snd ' resource’s handle with HSetState.

If the format 1 'snd_ ' resource does not specify which synthesizer is to be
used, SndPlay will default to the note synthesizer. _SndPlay will also

support a format 2 'snd_ ' resource using the sampled sound synthesizer and
abufferCmd. Note that a format 1'snd ' must use havea bufferCmd in
order to be used with SndPlay and the sampled sound synthesizer.

synthesizer ID if the channel has already been
(Do not use __SndPlay witha 'snd ' that specifies a

linked to a synthesizer.

FUNCTION SndNewChannel (VAR chan: SndChannelPtr; synth: INTEGER;

init: LONGINT; userRoutine: ProcPtr) : OSErr;

When NIL is passed as the chan parameter, SndNewChannel will allocate a
sound channel record in the application’s heap and return its POINTER.
Applications concerned with memory management can allocate their own
channel memory and pass this POINTER in the chan parameter. Typically this
should not present a problem since a channel should only be in use
temporarily. Each channel will hold 128 commands as a default size. The
length of a channel can be expanded by the application creating its own
channel in memory.

The synth parameter is used to specify which synthesizer is to be used. The
application specifies a synthesizer by its resource ID, and this 'snth' resource
will be loaded and linked to the channel. The state of the 'snth' handle will
be saved with _HGetState. To create a channel without linking it with a
synthesizer, pass 0 as the synth. This is useful when using SndPlay witha

'snd ' that specifies a synthesizer ID.

Fae ee eee eee
Sound Manager Routines 17

The Sound Manager

The application may specify an init option that should be sent to the
synthesizer when opening the channel. For example, to open the third wave
table channel use initChan2 as the init. Only the wave table synthesizer
and sampled sound synthesizer currently use the init options. To
determine if a particular option is available by the synthesizer, use the
availableCmd.

initChanLeft = $02; {left channel - sampleSynth only}

initChanRight = $03; {right channel- sampleSynth only}

initChan0 = $04; {channel 1 - wave table only}

initChanl = $05; {channel 2 - wave table only}

initChan2 = $06; {channel 3 - wave table only}

initChan3 = $07; {channel 4 - wave table only}

initSRate22k = $20; {22k sampling rate - sampleSynth only}

initSRate44k = $30; {44k sampling rate - sampleSynth only}

initMono = $80; {monophonic channel - sampleSynth only}

initStereo = $C0; {stereo channel - sampleSynth only}

Refer to the section “Current Sound Manager”
regarding init options and the sampled sound

synthesizer.

If an application is to produce sounds asynchronously or needs to be alerted

when a command has completed, it uses a CallBack procedure. This routine

will be called once the cal1BackCmd has been received by the synthesizer. If

you pass NIL as the userRout ine, then any cal1Back command will be

ignored.

FUNCTION SndAddModifier (chan: SndChannelPtr; modifier: ProcPtr;

id: INTEGER; init: LONGINT) : OSErr;

This routine is used to install a modifier into an open channel specified in

chan. The modifier will be installed in front of the synthesizer or any

existing modifiers in the channel. If the modifier is saved asa 'snth'
resource, pass NIL for the ProcPtr and specify its resource ID in the
parameter id. This will cause the Sound Manager to load the 'snth'

resource, lock it in memory, and link it to the channel specified. The state of

the 'snth' resource handle will be saved with _HGetState. Refer to the

section “User Routines” for more information regarding writing a modifier.

Refer to the section “Current Sound Manager”
regarding modifier resources.

18 Sound Manager Routines

rhe’ Sonn d |\Man ager

FUNCTION SndDoCommand (chan: SndChannelPtr; cmd: SndCommand;

noWait: BOOLEAN) : OSErr;

This routine will send the sound command specified in cmd to the existing
channel’s command queue. If the parameter noWait is set to FALSE and the
queue is full, the Sound Manager will wait until there is space to add the
command. If noWait is set to TRUE and the channel is full, the Sound

Manager will not send the command and returns the error “queueFul1”.

FUNCTION SndDoImmediate (chan: SndChannelPtr; cmd: SndCommand): OSErr;

This routine will bypass the command queue of the existing channel and
send the specified command directly to the synthesizer, or the first modifier.
This routine will also override any waitCmd, pauseCmd or syncCmd that may
have been received by the synthesizer or modifiers.

FUNCTION SndControl (id: INTEGER; VAR cmd: SndCommand) : OSErr;

This routine is used to send control commands directly to a synthesizer or
modifier specified by its resource 1p. This can be called even if no channel has
been created for the synthesizer. This control call is used with the
availableCmd or versionCmd to request information regarding a
synthesizer. The result of this call is returned in cmd.

FUNCTION SndDisposeChannel (chan: SndChannelPtr; quietNow: BOOLEAN)

OSErr;

This routine will dispose of the channel specified in chan and release all
memory created by the Sound Manager. If an application created its own
channel record in memory or installed a sound as an instrument, the Sound
Manager will not dispose of that memory. The Sound Manager will restore
the original state of 'snth' resource handles with a call to _HSetState.

_SndDisposeChannel can either immediately dispose of a channel or wait
until the queued commands are processed. If quietNow is set to TRUE, a
flushCmd and then a quietCmd is sent to the channel. This will remove all

commands, stop any sound in progress and close the channel. If quietNow is
set to FALSE, then the Sound Manager will issue a quiet Cmd only and wait
until the quiet Cmd is received by the synthesizer before disposing of the
channel. In this situation SndDisposeChannel will be synchronous.

Sound Manager Routines 19

The Sound Manager

SOUND MANAGER COMMANDS

Command Descriptions

Sound commands are placed into a channel one after the other. At the end of
the channel is the synthesizer which interprets the command and plays the
sound with the hardware. All synthesizers are designed to accept the most
general set of sound commands. Some commands are specific to only a
particular synthesizer. There are some commands and options that may not

be currently implemented by a synthesizer. Refer to section “The Current

Sound Manager” for more details.

=< word —-» ~<- word» ~<——__ long word ——">

[ommend | peomt | parame
one bit (used in 'snd_ ' resources only)

Figure 5 Generic Command Format

Figure 5 shows the structure of a generic sound command. Commands are

always eight bytes in length. The first two bytes are the command number,

and the next six make up the command’s options. The format of these last six

bytes will depend on the command being used.

The pointer bit is only used by 'snd_ ' resources that contain commands
and associated sound data (i.e. sampled sound or wave table data). If the high
bit of the command is set, then param2 is an offset specifying where the
associated data is located. This offset is the number of bytes starting from the
beginning of the resource to the associated sound data. The section “Sound
Resources” shows how this offset is calculated.

emd=nullCmd param1=0 param2=0

This command is sent by modifiers. It is simply absorbed by the Sound
Manager and no action is performed. Modifiers use a nul 1Cmd to replace
commands in a channel to prevent them from being sent to a synthesizer.

20 Sound Manager Commands

The Souwnd Manager

cemd=initCmd param1=0 param2=init

This command is only sent by the Sound Manager. It will send an initCmd
to the synthesizer when an application uses the routines _SndP lay,
_SndNewChannel or _SndAddModifier. This causes a synthesizer or

modifier to allocate its private memory storage and to use the init option.

cmd=freeCmd param1=0 param2=0

This command is only sent by the Sound Manager. It is exactly opposite of
the initCmd. When an application calls __SndDisposeChannel, the Sound
Manager will send the freeCmd to the synthesizer. This causes the
synthesizer to dispose of all the private memory it had allocated.

cmd=quietCmd param1=0 param2=0

This command is sent by an application using _SndDoImmediate. It will
cause the synthesizer to stop any sound in progress. It is also sent by the
Sound Manager with the SndDisposeChannel routine.

cmd=flushCmd param1=0 param2=0

This command is sent by an application using _SndDoImmediate. It will
cause all commands in the channel be be removed. It is also sent by the
Sound Manager from _SndDisposeChannel when quietNow is TRUE.

cmd=waitCmd paraml=duration param2=0

This command is sent by an application or a modifier. It will suspend all
processing in the channel for the number of half-milliseconds specified in
duration. Aone second wait would be a duration of 2000.

cmd=pauseCmd param1=0 param2=0

This command is sent by an application or a modifier to cause the channel to
suspend processing until a tickleCmd or resumeCmd is received.

cmd=resumeCmd param1=0 param2=0

This command is sent by an application or a modifier to cause a channel to
resume processing of commands. This is the opposite of the pauseCmd.

Sound Manager Commands 21

The Sound Manager

cemd=callBackCmd paraml=user-defined
param2=user-defined

This command is sent by an application. The callBackCmd causes the Sound
Manager to call the userRout ine specified in _SndNewChannel. The two
parameters of this command can be used by the application for any purpose.

This allows an application to have a general userRout ine for any channel.

By using param1 and param2 with unique values, the CallBack procedure
can test for specific actions to take. Refer to the section “User Routines”.

This command is used as a marker for an application to determine at what
point the channel has reached in processing its queue. It is mostly used to

determine when to dispose of a channel, since the cal1BackCmd is generally

the last command sent. It can also be used to allow an application to
synchronize sounds with other actions.

cmd=syncCmd paraml=count param2=identifier

This command is sent by an application. Every syncCmd is held in the
channel, suspending any further processing until its count equals 0. The
Sound Manager will first decrement the count and then wait for another
syncCmd having the same identifier to be received on another channel.

To synchronize four wave table channels, send the syncCmd to each channel
with count = 4 giving each command the same identifier. Ifa channel
should wait for two more syncCmds, then its count would be 3. If a channel

is to wait for one more syncCmd, its count would be sent as 2.

Refer to the section “Current Sound Manager”
regarding the count parameter of a syncCmd.

cmd=emptyCmd param1=0 param2=0

This command is only sent by the Sound Manager. Synthesizers expect to
receive additional commands after a resumeCmd. If no other commands are
to be sent, the Sound Manager will send an empt yCmd.

cmd=tickleCmd param1=0 param2=0

This command is only sent by the Sound Manager to a modifier. This will
cause modifiers to perform their requested periodic actions. If the tickleCmd
had been requested by a howOftenCmd, then a tickleCmd will be sent
periodically according to the period specified in the howOftenCmd. If the
tickleCmd had been requested by an wakeUpCmd, then this command will be

a Sound Manager Commands

The Sound Manager

sent only once according to the period specified in the wakeUpCmd. A

tickleCmd command will also resume a channel suspended by a pauseCmd.

cmd=requestNextCmd paraml=count param2=0

This command is only sent by the Sound Manager in response to a modifier

returning TRUE. Refer to the section “User Routine” discussing modifiers.

Count is the number of consecutive times that the modifier has requested

another command.

cmd=how0ftenCmd paraml=period param2=pointer

This command is sent by a modifier and will instruct the Sound Manager to
periodically send a tickleCmd. Param1 contains the period (in half-
milliseconds) that a tickleCmd should be sent. Param2 contains a POINTER
to the modifier stub.

cmd=wakeUpCmd paraml=period param2=pointer

This command is sent by a modifier and will instruct the Sound Manager to
send a single t ickleCmd after the period specified (in half-milliseconds).
Param2 contains a POINTER to the modifier stub.

The howOftenCmd and the wakeUpCmd are mutually
[=) exclusive. Sending one will cancel the other.

cmd=availableCmd paraml=result param2=init

This command is sent by an application to determine if certain characteristics
specified in the init parameter are available from the synthesizer. This
command can only be used with the _SndControl routine. These init
options are documented under the SndNewChannel routine and are passed
in param2 of the availableCmd.

myCmd.cmd := availableCmd;

myCmd.paraml := 0;

myCmd.param2 := initStereo; {we’ll test for a stereo channel}
myErr := SndControl (sampledSynth, myCmd) ;

IF (myCmd.paraml <> 0) THEN stereoAvailable := TRUE;

The result is returned in param1. A result of 1 is returned if the synthesizer
has the requested characteristics. If it does not, the result is 0.

Refer to section “Current Sound Manager”
regarding limitations with the availableCmd.

Sound Manager Commands 23

The Sound Manager

cmd=versionCmd param1=0 param2=version

This command is sent by applications and the Sound Manager to determine
which version of the synthesizer is available. The versionCmd can only be
sent with the SndControl routine. The version is returned in param2.

Version 1.2 of a synthesizer would be returned as $0001 0002.

cmd=noteCmd paraml=duration
param2=amplitude + frequency

This command is sent by applications and modifiers to specify a note for
either the note synthesizer, or with an instrument installed into the channel.

The duration parameter is in half-milliseconds. A duration of 2000 would

be a duration of one second. The maximum duration is a duration of
32767 or about 16 seconds. The structure of a noteCmd is given in Figure 6.

<— word» <—- word —» ~<——__ long word ——>

Figure 6 noteCmd Format

The param2 of a noteCmd is a combination of an amplitude anda

frequency. The amplitude is passed in the high byte and the lower three

bytes are the frequency. The frequency can be specified in two ways, as a

decimal note (refer to the section “Note Values and Durations”) or a

frequency value (refer to freqCmd). The amplitude values range from $00 to

$FF inclusively. The following example demonstrates the use of a noteCmd.

amp := $FF000000; {loudest possible amplitude}

note := 60; {middle C}

myCmd.cmd := noteCmd;

myCmd.paraml := 2000; {one second duration}

myCmd.param2 := amp + note;

myErr := SndDoCommand(myChan, myCmd, FALSE);

The noteCmd will start at the beginning of a

8 sampled sound. The noteCmd uses the loop points

of the header to extend the length of the sound to

the duration specified ina noteCmd. There must

be a loop ending point specified in the header in

order for the not eCmd to work properly.

24 Sound Manager Commands

The Sound Manager

Refer to the section “Current Sound Manager”
regarding limitations with the noteCmd and using
amplitude.

cmd=restCmd paraml=duration param2=0

This command is sent by applications and modifiers to cause the channel to
rest for the duration specified in half-milliseconds.

cmd=freqCmd param1=0 param2=frequency

This command is sent by applications and modifiers. A frequency can be
sent to a synthesizer to change the pitch of a sound. It is similar to the
noteCmd in that a decimal note value can be used instead of a frequency
value. The structure of this command is shown in Figure 7. If no sound is
playing, it causes the synthesizer to begin playing at the specified frequency
for an indefinite duration. The upper byte of param2 is ignored. A frequency
value is sent in the lower three bytes of param2, where the frequency desired
is multiplied by 256. For example, to specify a frequency of 440 Hz (the A
below middle C) the frequency value would be 440 * 2560r112640.

—- word —» ~<- word -—»~<——__. long word ———»>

freqCmd jored | ‘frequency

Figure 7 freqCmd format

Refer to the section “Current Sound Manager”
regarding the limitations of the freqCmd.

cmd=ampCmd paraml=amplitude param2=0

This command is sent by applications and modifiers to change the amplitude
of the sound in progress. If no sound is currently playing, then it will affect
the amplitude of the next sound.

Refer to the section “Current Sound Manager”
regarding the use of amplitude.

cmd=timbreCmd paraml=timbre param2=0

This command is sent by applications and modifiers. It is used only by the
note synthesizer to change its timbre or tone. A sine wave is specified as 0 in

Sound Manager Commands 25

The Sound Manager

param1 and produces a flute-like sound. A value of 255 in param1 represents

a modified square wave and produces a buzzing or reed-like sound.

Changing the note synthesizer’s timbre should be done before playing the

sound. Only a Macintosh with the Apple Sound Chip will allow this

command to be sent while a sound is in progress.

cmd=waveTableCmd paraml=length param2=pointer

This command is sent by applications. It is only used by the wave table

synthesizer. It will install a wave table to be used as an instrument by

supplying a POINTER to the wave table in param.

All wave cycles will be re-sampled to 512 bytes.

cmd=phaseCmd paraml=shift param2=pointer

This command is sent by applications. It is only used by the wave table

synthesizer to synchronize the phases of the wave cycles across different wave

table channels. As an example, if two wave table channels containing the

same wave cycle were sent the same not eCmd, they could not begin exactly at

the same time. Therefore, to synchronize the wave cycles for these two

channels the phaseCmd is sent.

This prevents the phasing effects of playing two similar waves together at the

same pitch. The channel will have its wave shifted by the amount specified

in shift to correspond with the wave’s phase in the channel specified in

param2. The shift value is a 16 bit fraction going from Zero to one. The

value of $8000 would be the half-way point of the wave cycle. Generally, the

effects from this command will not be noticed.

Refer to the section “Current Sound Manager”

regarding the phaseCmd.

cmd=soundCmd param1=0 param2=pointer

This command is sent by an application and is only used by the sampled

sound synthesizer. If the application sends this command, param2 isa

POINTER to the sampled sound locked in memory. The format of a sampled

sound is shown in section “The Sampled Sound Synthesizer”. This

command will install the sampled sound as an instrument for the channel. If

the soundCmd is contained within a 'snd_ ' resource, the high bit of the

command must be set. To use a sampled sound 'snd ' as an instrument, first

obtain a POINTER to the sampled sound header locked in memory. Then pass

26 Sound Manager Commands

The Sound Manager

this POINTER in param2 of a soundCmd. After using the sound, the

application is expected to unlock this resource and allow it to be purged.

cmd=bufferCmd param1=0 param2=pointer

This command is sent by applications and the Sound Manager to play a
sampled sound, in one-shot mode, without any looping. The POINTER in

param2 is the location of a sampled sound header locked in memory. The
format of a sampled sound is shown in section “The Sampled Sound
Synthesizer”. A bufferCmd will be queued in the channel until the
preceding commands have been processed. If the bufferCmd is contained
within a ''snd_ ' resource, the high bit of the command must be set. If the
sound was loaded in froma 'snd ' resource, the application is expected to
unlock this resource and allow it to be purged after using it.

Refer to the section “Current Sound Manager”
regarding the bufferCmd.

cmd=rateCmd param1=0 param2=rate

This command is sent by applications to modify the pitch of the sampled
sound currently playing. The current pitch is multiplied by the rate in
param2. It is used for pitch bending effects. The default rate of a channel is
1.0. To cause the pitch to fall an octave (or half of its frequency), send the
rateCmd with param2 equal to one half as shown below.

myCmd.cmd := rateCmd;
myCmd.paraml := 0;

myCmd.param2 := FixedRatio(l, 2);

myErr := SndDoImmediate(myChan, myCmd) ;

cmd=continueCmd param1=0 param2=pointer

This command is sent by applications to the sampled sound synthesizer. It is
similar to the bufferCmd. Long sampled sounds may be broken up into
smaller sections. In this case, the application would use the bufferCmd for
the first portion and the cont inueCmd for any remaining portions. This will
result in a single continuous sound with the first byte of the sample being
joined with the last byte of the previous sound header without audible clicks.

Refer to the section “Current Sound Manager”
regarding the cont inueCmd.

Sound Manager Commands 27

The Sound Manager

USER ROUTINES

These user routines will be called at interrupt time

and therefore must not attempt to allocate, move or

dispose of memory, de-reference an unlocked

handle, or call other routines that do so. Assembly

language programmers must preserve all registers

other than AO-Al, and DO-D2. If these routines are

to use an application’s global data storage, it must

first reset AS to the application’s A5 and then restore

it upon exit. Refer to Macintosh Technical Note

#208 regarding setting up AS.

PROCEDURE CallBack(chan: SndChannelPtr; cmd: SndCommand) ;

The function _SndNewChannel allows a completion routine or CallBack

procedure to be associated with a channel. This procedure will be called when

a cal1BackCmd is received by the synthesizer linked to that channel. This

procedure can be used for various purposes. Generally it is used by an

application to determine that the channel has completed its commands and

to dispose of the channel. The Cal1Back procedure itself cannot be used to

dispose of the channel, since it may be called at interrupt time.

A CallBack procedure can also be used to signal that a channel has reached a

certain point in the queue. An application may wish to perform particular

actions based on how far along the sequence of commands a channel has

processed. Applications can use param] or param2 of the callBackCmd as

flags. Based on certain flags for certain channels, the call back can perform

many different functions. The CallBack procedure will be passed the

channel that received the callBackCmd. The entire cal1Back command is

also passed to the CallBack procedure.

myCmd.cmd := callBackCmd; {install the callBack command}

myCmd.paraml := 0; {not used in this example}

myCmd.param2 := SetCurrentA5; {pass the callBack our A5}

myErr := SndDoCommand (myChan, myCmd, FALSE) ;

The example code above is used to setup a cal1BackCmd. Note that param2

of a sound command is a LONGINT. This can be used to pass in the

application’s AS to the CallBack procedure. Once this command is received

by the synthesizer, the following example CallBack procedure can set A5 in

order to access the application’s globals. The function’s SetCurrentAs and

SetA5 are documented in Macintosh Technical Note #208.

 ————————

28 User Routines

The Sound Manager

Procedure SampleCallBack (theChan: SndChannelPtr; theCmd: SndCommand) ;

VAR

theA5 : LONGINT;

BEGIN

theA5 := SetA5(myCmd.param2) ; {set A5 and get current A5}

callBackPerformed := TRUE; {global flag}

theA5 := SetA5(theA5) ; {restore the current A5}
END;

FUNCTION Modifier(chan: SndChannelPtr; VAR cmd: SndCommand;

mod: ModifierStubPtr) : BOOLEAN

A modifier will be called when the command reaches the end of the queue,
before being sent to the synthesizer or other modifiers that may be installed.
Chan will contain the channel pointer allowing multiple wave table channels
to be supported by the same modifier. The Modif ierStub is a record created
by the Sound Manager during the call_SndAddModifier. A pointer to the
ModifierStub isinmod. There are two special commands that the modifier
must support, the initCmd and the freeCmd.

Refer to the section “Current Sound Manager”

regarding modifiers being saved as resources.

ModifierStub = PACKED RECORD

next Stub: ModifierStubPtr; {pointer to next stub}
code: ProcPtr; {pointer to modifier}
userinfo: LONGINT; {free for modifier’s use}
count: Time; {used internally}
every: Time; {used internally}
flags: SignedByte; {used internally}
hState: SignedByte; {used internally}

END;

The initCmd is sent by the Sound Manager when an application calls
~SndAddModifier. This is a command telling the modifier to allocate any
additional data. The ModiferStub contains a four byte field, userInfo, that
can be used as a pointer to this additional memory. The initCmad will not be
sent to a modifier at interrupt time. This allows a modifier to allocate
memory and save the current application’s a5. All memory storage allocated
by the modifier must be locked, since the modifier will be called at interrupt
time.

eee

User Routines 29

The Sound Manager

The freeCmd will be sent to the modifier when the Sound Manager is
disposing of the channel. This command will not be sent at interrupt time.
At this point the modifier should free any data it may have allocated.

A modifier will be given the current command, before the command is sent

to the synthesizer or other modifiers. The current command is sent to the

modifier in the variable cmd. A nu11Cmd is never sent to a modifier. If the

modifier wished to ignore the current command and allow it to be sent on, it

would return FALSE. To remove the current command, replace it with a

nullcCmd and then return FALSE. To alter the current command, replace it

with the new one and return FALSE. Returning FALSE means that the

modifier has completed its function.

If the modifier is to send additional commands to the channel, the function

will return TRUE and may or may not change the current command. The

Sound Manager will call the modifier again sending it a requestNextCmd.

The modifier can then replace this command with the one desired. The

modifier can continue to return TRUE to send additional commands. The

requestNextCmd will indicate the number of times this command has been

consecutively sent to the modifier.

time modifications on channels. Having too many

modifiers, or a lengthy one, may degrade

performance.

(Modifiers are short routines used to perform real-

re

30 User Routines

The«Sound Meanager

THE CURRENT SOUND MANAGER

Synthesizer Details

This section documents the details for each of the current synthesizers.

The Note Synthesizer

¢ The version shipped with System 6.0.2 is $0001 0002.

¢ Commands currently supported:
availableCmd versionCmd freqCmd

noteCmd restCmd flushCmd

quietCmd ampCmd timbreCmd

Limitations of the Note Synthesizer

e¢ Amplitude change is only supported by a Macintosh with the
Apple Sound Chip, and is not supported by a Macintosh Plus
or Macintosh SE.

¢ Only a single monophonic channel can be used.

The Wave Table Synthesizer

¢ The version shipped with System 6.0.2 is $0001 0002.

¢ Commands currently supported:
availableCmd versionCmd freqCmd

noteCmd restCmd flushCmd
quietCmd waveTableCmd

Limitations of the Wave Table Synthesizer

¢ This synthesizer is not functioning on a Macintosh Plus or
Macintosh SE.

e A maximum of four channels can be open at any time.

e Amplitude change is not supported on any Macintosh.

The Current Sound Manager 31

The Sound Manager

¢ The one-shot mode is not supported on any Macintosh.

The phaseCmd is not working.

The Sampled Sound Synthesizer

e The version shipped with System 6.0.2 is $0001 0002.

Commands currently supported:
availableCmd versionCmd freqCmd

noteCmd restCmd flushCmd
quietCmd rateCmd soundCmd

bufferCmd

Limitations of the Sampled Sound Synthesizer

Amplitude change is not supported on any Macintosh.

The current hardware will only support sampling rates up to
22kHz. This is not a limitation to the playback rates, and

samples can be pitched higher on playback.

There can only be a single monophonic channel; stereo is not
supported.

The cont inueCmd is not working.

The MIDI Synthesizer

The version shipped with System 6.0.2 is $0001 0002.

Limitations of the MIDI Synthesizer

The midiDataCmd documented in Inside Macintosh

Volume V cannot be used.

Fully functional MIDI applications cannot be written using
the current Sound Manager and were intended as a “poor

Tall man’s” method of sending notes to a MIDI keyboard.

A bug in the MIDI synthesizer code prevents it from working
after calling SndDisposeChannel.

32 The Current Sound Manager

The Sound Manager

Sound Manager Bugs

This is a list of all known bugs and possible work-arounds in the System 6.0.2

Sound Manager. Each of these issues are being addressed and are expected to
be solved with the next Sound Manager release.

Macintosh II 'snth' IDs

The System 6.0.2 'snth' resources for the Macintosh II are incorrectly
numbered. They should be $0801-$0805, but were shipped as $0001-$0005.
This does not currently present a problem for applications, since the Sound
Manager will default to these versions while running on the Macintosh II.

availableCmd

The availableCmd is returning a value of 1, meaning TRUE, even if the

synthesizer is actually no longer available. For example, after calling
_SndNewChannel for the noteSynth, the availableCmd for the noteSynth

should return FALSE since there isn’t a second one. Furthermore,
considering that only one synthesizer can be active at one time, after opening
the noteSynth the sampledSynth is not available, but this command reports

that it is. The only time the availableCmad will return FALSE is by requesting
an init option that a synthesizer doesn't support, such as stereo channels.

_SndAddModifier

A modifier resource used in multiple channels must be pre-loaded and
locked in memory by the application. There is a bug when the Sound
Manager is disposing of a channel causing the modifier to be unlocked,
regardless of other channels that may be using that modifier. If the
application locks the modifier before installing it in the channel, the Sound
Manager will not unlock it, but restores its state with _HSetState.

syncCmd

This command has a bug causing the count to be decremented incorrectly.
To synchronize four channels, the same count = 4 should be sent to all
channels. The bug is with the Sound Manager decrementing all of the count
values with every new syncCmd. In order to work around this, an application
can synchronize four wave table channels by sending the syncCmd with
count = 4. Thena syncCmd with the same identifier is sent to the second
channel, this time with count = 3. The third channel is sent a syncCmd
with count = 2. Finally, the last channel is sent with the count = 1. As

The Current Sound Manager 33

The Sound Manager

soon as the fourth syncCmd is received, all channels will have their count at
0 and will resume processing their queued commands. This bug will be fixed
eventually, so test for the version of the synthesizer being used before relying
on this.

bufferCmd

Sending a bufferCmd will reset the channel’s amplitude and rate settings.
Since the amplitude is already being ignored and the rate isn't typically
used, this problem is not of much concern at this time.

noteCmd

This command may cause the sampled sound synthesizer to loop until
another command is sent to the channel. This occurs when using a sampled
sound installed as an instrument. If a noteCmd is the last command in the
channel, the sound will loop endlessly. The work-around is to send a
command after the final noteCmd. A callBackCmd, restCmd or quietCmd

would be good.

noteCmd and freqCmd

These commands currently only support note values 1 through 127 inclusive.
Refer to Table 4 for these values.

_SysBeep

On a Macintosh Plus or SE (which do not have the Apple Sound Chip) the
Sound Manager will purge the application’s channel of its 'snth' or sound

data. The application would have to dispose of the channel at this point and

recreate a new one. This is another reason to release channels as soon as the
application has completed its sound. This bug can be avoided by selecting the

“Simple Beep” in the Control Panel’s sound 'cdev'. Applications should

dispose of all channels before allowing a_SysBeep to occur. This includes
putting up an alert or modal dialog that could cause the system beep. Since a
foreground application under MultiFinder could cause a_SysBeep while the
sound application is in the background, all applications should dispose of
channels at a suspend event.

34 The Current Sound Manager

The Sound Manager

SOUND MANAGER ABUSE

Sound channels are for temporary use, and should only be created just before
playing sound. Once the sound is completed, the channel should be disposed.
Applications should not hold on to these channels for extended periods. The
amount of overhead in _SndNewChannel is minimal. Basically, it is only a
Memory Manager call. As long as the application holds onto a channel
linked to a synthesizer, the _SysBeep call will not work and may cause

trouble for the application’s channel.

Friendly applications will dispose of all open channels during a suspend
event from MultiFinder. If an application created a channel and then gets
sent into the background, any foreground application or _SysBeep will be
unable to gain access to the sound hardware.

Applications must dispose of all channels before calling _ExitToShell.
Currently, calling _ExitToShell while generating a sound on the Macintosh
Plus and SE will cause a system crash. So, calling SndDisposeChannel
before ExitToShel1 will solve this issue. Setting quietNow to be FALSE
will allow the application to complete the sound before continuing.

Do not mix older Sound Driver calls with the newer Sound Manager
routines. The older Sound Driver should no longer be used. The Sound
Manager is its replacement, providing all of it predecessor’s abilities and
more. Note that _GetSoundVol and _SetSoundVol are not part of the
Sound Manager. They are used for setting parameter RAM, not the
amplitude of a channel. Support for the older Sound Driver may eventually
be discontinued.

The 'snd ' resource is so flexible that a warning of resource usage is needed.
Most of the problems developers have with the Sound Manager are related
more to the 'snd _ ' being used and less to the actual routines. Editing and
creating 'snd ' resources with ResEdit is difficult. Many of the issues
required in dealing with a ''snd_ ' are not supported by third party utilities. It
is best to limit the 'snd_ ' to contain either sound data (i.e. sample sound) or
a sequence of sound commands. Do not attempt to create resources that
contain multiple sets of sound data.

Be very careful with what 'snd ' resources the application is intending to
support. Test for the proper format and proper fields beforehand. An
application needs to know the exact contents of the entire 'snd_ ' in order to

The Current Sound Manager 35

The Sound Manager

properly handle it. Things can get ugly real quick considering variant records,
variable record lengths, and the pointer math that will be required.

If an application wants to use _SndP lay with an existing channel already
linked to a synthesizer, the 'snd_ ' must not contain any synth information.
With a format 1'snd ',thenumber of synth/modifiers field must be 0,

and no synth IDorinit option should be in the resource. Applications
can only call _SndPlay with a channel linked to a synthesizer using a format
1'snd ' that contains sound commands without synth information.

A format 2 'snd ' can never be used with SndPlay more than once with an
existing channel. This 'snd ' is assumed to be for the sampled sound
synthesizer and SndP lay will link this synthesizer to the channel. Ifa
channel is created before calling SndPlay with a format 2, specify synth = 0
in the call to _SndNewChannel. After calling SndPlay once, the application
will have to dispose of the channel before using a format 2 'snd_ ' again.

FREQUENTLY ASKED QUESTIONS

Q: Is there a way to determine if a sound is being made?

A: It is not possible at this time to determine if a synthesizer is currently
active or producing a sound. However, an application can use the
callBackCmd to determine when a sound has completed.

Q: How do I determine if the Apple Sound Chip is present?

A: There is no supported method for determining this. A new
_SysEnvirons record is being considered to contain this information.

Q: How can I use the Sound Manager for a metronome effect?

A: Use a modifier to send a noteCmd to the note synthesizer. The modifier
will use the howOftenCmd to cause the Sound Manager to send a tickleCmd.
Every time the modifier gets called, it can send a not eCmd to cause the click.

Q: What is the maximum number of synthesizers that can be opened at
once? Can I have the noteSynth and the sampledSynth open at the

same time and produce sound from either?

A: Only one synthesizer can be active at any time. This is because the active
synthesizer “owns” the sound hardware until the channel is disposed of.

36 Sound Manager Abuse

The Ssown d- Mean-ag evr

Q: How can I tell if more than four wave table channels are open or if

another application has already open a synthesizer?

A: It is not possible at this time to determine when more than the maximum
number of wave table channels has been allocated due to a limitation with
the availableCmd. This issue is being investigated. It is not possible to
determine if a synthesizer is in use by another application. If all applications
would dispose of their channels at the resume event, this would not be a
problem.

Q: How dol get _SndPlay to play the sound asynchronously? The Sound
Manager seems to ignore the async parameter.

A: If NIL is used for the channel, then _SndPlay does ignore the async flag.

To play the sound asynchronously, create a new channel with
_SndNewChannel and pass this channel’s pointer to _SndPlay. Again, if this
‘snd ' contains 'snth' information you must not link a synthesizer to the
channel. Pass 0 as the synth in the call to_SndNewChannel.

Q: Should we use 'snd ' format 1 or format 2 for creating sound resources?

A: The format 1 'snd ' is much more versatile. It can be used in the
_SndP lay routine for any synthesizer and requires minimal programming
effort. There is no recommendation for using either format. A format 1 has
more advantages, and may contain everything a format 2 does. A format 2 is
for a sampled sound only.

Q: I’ve opened a channel for the sampled sound synthesizer and I’m using
_SndPlay. After awhile the system either hangs or crashes. What’s wrong?

A: This is the most common abuse of the Sound Manager. The 'snd_ ' being
used has specified a 'snth' resource (a format 2''snd_ ' is assumed for the
sampled sound synthesizer). The Sound Manager will attempt to link this
'snth' to the channel with every call to _SndPlay. What's wrong is that the
synthesizer has already been installed and the Sound Manager is attempting
to install it again, only this time as a modifier. The same 'snth' code has
been install more than once in the channel. If the 'snd ' contains 'snth'
information, then _SndP lay can be used once and only once on a channel.
There two possible solutions: Do the pointer math to obtain the sampled
sound header and use the buf ferCmd, or dispose of the channel after each call
to SndPlay.

Frequently Asked Questions 37

The Sownd Man ager?

Q: How can I use a sampled sound to play a sequence of notes? |

A: Begin by opening a sampled sound channel. Load and lock the 'snd_ '
resource containing the sample sound into memory. Then obtain a pointer
to the sampled sound header. Pass this pointer to the channel using the
soundCmd. Now the sound is installed and ready for a sequence of not eCmds.
This sampled sound must contain an ending loop point or the noteCmd may
not be heard.

Q: How do I change the play back rate of asampled sound? DoI use the
freqCmd or the rateCmd?

A: It is possible to change the sampling rate contained in the sampled

sound header and then use the bufferCmd. The freqCmd currently requires
decimal note values and will not support real frequency values. The

rateCmd will only affect a sound that is currently in progress and is used for

pitch bending effects. It is possible to add a few bytes of silence to the

beginning of the sample to allow the rateCmd enough time to adjust the play

back rate without hearing the bending affect on its pitch.

Q: How can I play multiple sampled sounds to play as a single sampled sound

without the glitch that is heard between each sample on the Mac Plus?

A: On the Macintosh Plus or SE, the Sound Manager uses a 370 byte buffer

internally to play sampled sounds. If the array of sampled sound data is in

multiples of 370 bytes, the Sound Manager will not have to pad its internal

buffer with silence. Using double buffering techniques, an application can

send multiple sampled sounds using the buf ferCmd from a CallBack

procedure to create a continuous sound. Use this technique until the

cont inueCmd is supported.

Q: How can I use the MIDI synthesizers with my own keyboards?

A: They have too many limitations at this time. Don’t bother trying.

38 Frequently Asked Questions

Thé Soua.ud. Montages

NOTE VALUES AND DURATIONS

J half note

| dotted quarter note

J quarter note

) eighth note

NA dotted sixteenth note | 1500

JS sixteenth note

Table 3 duration values

Table 3 shows the duration values that are used in a waitCmd, howOftenCmd,

wakeUpCmd, noteCmd, and restCmd. Their duration is in half-millisecond

values. This chart will help in determining the actual duration used in
certain tempos. To calculate the duration use the following formula.

duration = (2000/ (beats per minute/60)) * beats per note

To calculate the duration for a note at a given tempo, divide the beats per
minute by 60 to get the number of beats per second. Then divide the beats per
second into 2000, which is the number of half-milliseconds in a second.
Multiply this ratio with the number of beats the note should receive. For
example, in a 4/4 time signature each sixteenth note receives 1/4th of a beat.
If an application is playing a song in 120 beats per minute and wanted four
sixteenth notes, each noteCmd would have a duration of 250.

Note Values and Durations 39

Sound Manager The

6

=

n
N

e
s

NAN]
ty]

O
N

S

=

=

=

a
l
 9)

cd

16.0

| 96,
108

122 | 12

Table 4 noteCmd values

P| alae]
Octave 2

107
119

Octave 7

Table 4 shows the values that can be sent with a noteCmd. Middle C is

represented by a value of 60. These values correspond to MIDI note values.

Note Values and Durations 40

The Sound Manager

SUMMARY OF THE SOUND MANAGER

Sound Manager Constants

{ sound command numbers }

{utility generally sent by Sound Manager}

{utility generally sent by Sound Manager}

{utility generally sent by Sound Manager}

{utility generally sent by Sound Manager}

{utility generally sent by Sound Manager}

nullCmd

initCmd

freeCmd

quietCmd
flushCmd

waitCmd

pauseCmd

resumeCmd

callBackCmd

syncCmd

empt yCmd

tickleCmd

requestNextCmd

howOftenCmd

wakeUpCmd

availableCmd

versionCmd

noteCmd

restCmd

freqCmd

ampCmd

timbreCmd

waveTableCmd

phaseCmd

soundCmd

bufferCmd

rateCmd

continueCmd

0;

a

2%

37

4;

10;

11;

125

13%

14;

15;

20;

21;

22°

233

24;

29;

40;

41;

42;

43;

44;

60;

61;

80;

81;

82;

83;

{sync

{sync

{sync

{sync

{sync

{sync

control sent by application or modifier}
control sent by application or modifier}

control sent by application or modifier}

control sent by application or modifier}

control sent by application or modifier}

control sent by application or modifier}

{utility sent by Sound Manager or modifier}

{utility sent by Sound Manager or modifier}
{utility sent by Sound Manager or modifier}

{utility sent by Sound Manager or modifier}
{utility sent by application}

{utility sent by application}

{basic command supported by all synthesizers}

{basic command supported by all synthesizers}

{basic command supported by all synthesizers}

{basic command supported by all synthesizers}
{noteSynth only}

{waveTableSynth only}

{waveTableSynth only}

{sampledSynth only}

{sampledSynth only}

{sampledSynth only}

{sampledSynth only}

{ synthesizer resource IDs used with _SndNewChannel }
noteSynth

waveTableSynth

sampledSynth

midiSynthIn

midiSynthOout

i

{ init options used
initChanLeft

initChanRight

initChan0

initChanl

initChan2

initChan3

initSRate22k

initSRate44k

initMono

initStereo

{note synthesizer}

{wave table synthesizer}

{sampled sound synthesizer}

{MIDI synthesizer in}

{MIDI synthesizer out}

with SndNewChannel }

$02;

$03;

$04;

$05;

$06;

$07;

$20;
$30;

$80;

$co;

{left channel - sampleSynth only}

{right channel- sampleSynth only}

{channel 0 - wave table only}

{channel 1 - wave table only}

{channel 2 - wave table only}

{channel 3 - wave table only}

{22k sampling rate - sampleSynth only}

{44k sampling rate - sampleSynth only}

{monophonic channel - sampleSynth only}

{stereo channel - sampleSynth only}

Summary of the Sound Manager 41

The

stdQLength

{ sample encoding

stdSH

extSH

cmpSH

{ Sound Manager error codes }

= 128;

options }

= $00
= $01
= $02

Sound Manager

{channel length for holding 128 commands}

{standard sound header}

{extended sound header}

{compressed sound header}

noErr = 0 {no error}

noHardware = -200 {no hardware to support synthesizer}

notEnoughHardware = -201 {no more channels to support synthesizer}

queueFull = -203 {no room left in the channel}

resProblem = -204 {problem loading the resource}

badChannel = -205 {invalid channel}

badFormat = -206 {handle to snd resource was invalide}

Sound Manager Data Types

Time = LONGINT;

SndCommand = PACKED RECORD

cmd: INTEGER; {command number}

paraml: INTEGER; {first parameter}

param2: LONGINT; {second parameter}

END;

ModifierStubPtr = *ModifierStub;

ModifierStub = PACKED RECORD

nextStub: ModifierStubPtr; {pointer to next stub}

code: ProcPtr; {pointer to modifier}

userinfo: LONGINT; {free for modifier’s use}

count: Time; {used internally}

every: Time; {used internally}

flags: SignedByte; {used internally}

hState: SignedByte; {used internally}

END;

SndChannelPtr = “SndChannel;

SndChannel = PACKED RECORD

nextChan: SndChannelPtr; {pointer to next channel}

firstMod: ModifierStubPtr; {ptr to first modifier}

callBack: ProcPtr; {ptr to call back procedure}

userinfo: LONGINT; {free for application’s use}

wait: Time; {used internally}

cmdInProgress: SndCommand; {used internally}

flags: INTEGER; {used internally}

qLength: INTEGER; {used internally}

qHead: INTEGER; {used internally}

qTail: INTEGER; {used internally}

queue: ARRAY [0..stdQLength-1] OF SndCommand;

END;

42 Summary of the Sound Manager

The Sound Manager

SoundHeaderPtr = “SoundHeader;

SoundHeader = PACKED RECORD {sampled sound header}

samplePtr: Ptr; {NIL if samples in sampleArea}

length: LONGINT; {number of samples in array}

sampleRate: Fixed; {sampling rate}

loopStart: LONGINT; {loop point beginning}
loopEnd: LONGINT; {loop point ending}

encode: BYTE; {sample's encoding option}

baseNote: BYTE; {base note of sample}

sampleArea: PACKED ARRAY [0..0] OF Byte;

END;

{refer to the Audio Interchange File Format “AIFF” specification}

ExtSoundHeaderPtr = *“ExtSoundHeader;

ExtSoundHeader = PACKED RECORD {extended sample header}

samplePtr: Ptr? {NIL if samples in sampleArea}

length: LONGINT; {number of sample frames}

sampleRate: Fixed; {rate of original sample}

loopStart: LONGINT; {loop point beginning}

loopEnd: LONGINT; {loop point ending}

encode: BYTE; {sample's encoding option}

baseNote: BYTE; {base note of original sample}

numChannels: INTEGER; {number of chans used in sample}

sampleSize: INTEGER; {bits in each sample point}

AIFFSampleRate: EXTENDED; {rate of original sample}

MarkerChunk: Ptr; {pointer to a marker info}

InstrumentChunks:Ptr; {pointer to instrument info}

AESRecording: Ptr; {pointer to audio info}

Futureusel: LONGINT;

FutureUse2: LONGINT;

FutureUse3: LONGINT;

Futureuse4: LONGINT;

sampleArea: PACKED ARRAY [0..0] OF Byte;

END;

a eee cerca
Summary of the Sound Manager 43

The Sound Manager

Sound Manager Routines

FUNCTION SndDoCommand (chan: SndChannelPtr; cmd: SndCommand;

noWait: BOOLEAN): OSErr;

INLINE $A803;

FUNCTION SndDoImmediate (chan: SndChannelPtr; cmd: SndCommand): OSErr;

INLINE $A804;

FUNCTION SndNewChannel (VAR chan: SndChannelPtr; synth: INTEGER;

init: LONGINT; userRoutine: ProcPtr): OSErr;

INLINE SA807;

FUNCTION SndDisposeChannel (chan: SndChannelPtr;

quietNow: BOOLEAN): OSErr;

INLINE S$A801;

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;

async: BOOLEAN): OSErr;

INLINE $A805;

FUNCTION SndControl (id: INTEGER; VAR cmd: SndaCommand): OSErr;

INLINE $A806;

FUNCTION SndAddModifier (chan: SndChannelPtr; modifier: ProcPtr;

id: INTEGER; init: LONGINT): OSErr;

INLINE $A802;

PROCEDURE MyCallBack (chan: SndChannelPtr; cmd: SndCommand) ;

FUNCTION MyModifier (chan: SndChannelPtr; VAR cmd: SndCommand;

mod: ModifierStub): BOOLEAN;

44 Summary of the Sound Manager

Sound Manager

INDEX

A, B, C

A5 28, 29
ampCmd 25, 31
amplitude 6, 9, 24, 25, 31, 32, 34

Apple Sound Chip 4, 5, 26, 31, 34, 36
asynchronously 17, 18
Audio Interchange File Format 7, 8, 43

availableCmd 18, 19, 23, 31, 32, 33, 37
baseNote 7, 8, 13, 14
bufferCmd 12, 14, 17, 27, 32, 34, 37, 38
CallBack procedure 18, 22, 28, 38
callBackCmd 18, 22, 28, 36

channel 6, 7, 16, 17, 18, 19, 20, 22, 28, 30,
33, 35, 36, 37

cmpSH 8
Command Descriptions 20
command's options 20
completion routine 17, 28
compressed sample header 8
Constants 41
continueCmd 27, 32, 38
control commands 19
Control Panel 5, 34
count 22, 23, 33

custom synthesizers 3

D,E,F,G

Data Types 42
default size 17

digitally recorded 7
duration 8, 24, 25, 39

emptyCmd 22
encode 8

ExitToShell 35

extended sample header 8, 43
extSH 8

flushCmd 19, 21, 31, 32

format 1 'snd ' 11, 12, 16, 17, 36, 37

format 2 'snd ' 11, 14, 17, 36

freeCmd 21, 29

freqCmd 9, 24, 25, 31, 32, 38
frequency 24, 25
Generic Command Format 20
GetSoundVol 35

H,1,J, K, L,M

heap 17
HGetState 17, 18

howOftenCmd 22, 23, 36

HPurge 11
HSetState 19, 33

HyperCard 11
identifier 22, 33

init 18, 23

init option 12, 18, 33, 36

init parameter 23
initCmd 21, 29

instrument 7, 24, 26, 34

interrupt time 5, 28, 29
loop point 8, 13, 14, 24, 38

Macintosh Audio Compression and
Expansion 8

Macintosh I] 4, 15

Macintosh Plus 4, 15, 31, 34, 38

Macintosh SE 4, 15, 31, 34, 38

memory 16, 17, 18, 19, 21, 26, 27, 28, 35

MIDI 4, 5, 32, 38, 40

midiDataCmd 32
modifier 3, 12, 18, 23, 29, 33

modifier stub 23

monophonic channel 31, 32
MultiFinder 34, 35

N, O, P,Q,R
Note Synthesizer 5, 17, 25, 31

noteCmd 8, 9, 24, 25, 26, 31, 32, 34, 36, 38
noWait 19

nullCmd 20, 30

offset 11, 12, 13, 14, 20

one-shot mode 27, 32

pauseCmd 19, 21, 23

period 22, 23
periodic actions 22
phaseCmd 26, 32
phasing effects 26
pitch 7, 8, 25, 26, 27

pointer bit 14, 20

queueFull 19

quictCmd 19, 21, 31, 32

quictNow 19, 21, 35

RATE 8, 27, 34

rateCmd 27, 32, 38

Index 45

The Sound Manager

reference count 14

requestNextCmd 23, 30

resource ID 12, 13, 15, 17, 18, 36, 41

Resource Layout 10
restCmd 25, 31, 32

resume event 37

resumeCmd 21, 22

S

sample header 8
sample rate 7, 8
sampleArea 9
sampled sound 9, 11, 14, 24, 26, 27

sampled sound header 7, 8, 11, 12, 14,

27, 37, 38

Sampled Sound Synthesizer 7, 13, 14,
17, 18, 26, 32

sampling rate 32, 38
SetA5 29

SetCurrentA5 28

SetSoundVol 35

Simple Beep 5
sine wave 6, 25

snd 4, 10, 11, 12, 13, 14, 16, 17, 20, 26, 27,

39,37

SndAddModifier 15, 18, 21, 29, 33

SndControl 15, 19, 23, 24

SndDisposeChannel 19
SndDoCommand 19

SndDoImmediate 19

SndDisposeChannel 4, 21, 32, 35

SndDoCommand 4

SndDolImmediate 4, 21

SndNewChannel 4, 15, 17, 21, 22, 23, 28,

33;.39;.37

SndPlay 4, 11, 13, 14, 15, 16, 17, 21, 36,

37

snth 4, 15, 16, 17, 18, 33, 34, 37

sound channel 3, 17, 38

sound command 19

sound data 11, 12, 20, 34, 35

sound header 27

soundCmd 14, 26, 32, 38

square wave 5, 26
stdSH 8

stereo 18, 32

suspend event 34, 35

syncCmd 19, 22, 33
synchronize 22, 26, 33

synth 12, 13, 17, 36, 37
synthesizer 3, 12, 17, 20, 23

46 Index

Synthesizer Details 31
Synthesizer Resource IDs 15
SysBeep 5, 34, 35
SysEnvirons 36
System Beep 5, 11

T, U, V, W,X, Y, Z

tickleCmd 21, 22, 23, 36

timbre 5, 25

timbreCmd 25, 31

uscrRoutine 17, 18, 22

versionCmd 19, 24, 31, 32

waitCmd 19, 21

wakeUpCmd 22, 23
wave table 5, 6, 11, 26

Wave Table Synthesizer 5, 18, 26, 31

waveTableCmd 6, 26, 31

Ul

é. THE SCRIPT MANAGER 2.0

Revised by: John Harvey February 1989
Written by: | Mark Davis & Sue Bartalo March 1988

This is an additional chapter for Inside Macintosh which documents version 2.0 of the Script
Manager. This chapter includes extended date and time utility routines, general-purpose number
formatting routines, and additional text manipulation routines.
Changes since October 1988: Fixed minor inaccuracies and added C examples.

Overview

The Script Manager 2.0 release extends the tools and capabilities of developers on the Macintosh
for three areas: text, dates and numbers. In addition, some minor bugs were fixed and
performance enhancements incorporated.

The new text routines include: lexically interpreting different scripts (e.g., in macro languages);
allotting justification to different format runs within a line; ordering format runs properly with
bidirectional text (Hebrew & Arabic); quickly separating Roman from non-Roman text, and
determining word-wrap in text processing. The international utilities text comparison routines
were significantly improved in performance, in amounts ranging from 25% to 94%.

The Macintosh date routines are extended to provide a larger range (roughly 35 thousand years),
and more information. This extension allows programs that need a larger range of dates to use
system routines rather than produce their own, which may not be internationally compatible. The
programmer can also access the stored location (latitude and longitude) and time zone of the
Macintosh from parameter RAM. The Map cdev gives users the ability to change and reference
these values.

The new number routines supplement SANE, allowing applications to display formatted numbers
in the manner of Microsoft Excel or Fourth Dimension, and to read both formatted and simple
numbers. The formatting strings allow natural display and entry of numbers and editing of format
strings even though the original numbers and the format strings were entered in a language other
than that of the final user.

Implementation Notes

Some of the following routines have parameter blocks with reserved fields. These fields must
be zeroed.

In general, the additional routines are handled by the Script Manager rather than script interface
systems. The three exceptions are FindScriptRun, PortionText, and VisibleLength
which are handled by the individual script systems (such as Roman). The version of the Script
Manager can be checked before using any of these routines, to make sure that it is Script Manager
2.0 (version is $0200 or greater). For compatibility, all Script Systems test the version of the
Script Manager and do not initialize if the major version number (first byte) is greater than they
expect.

Overview and Implementation Notes 1

Inside Macintosh C. hapter Addition

For testing only, the version number in INIT 2 can be changed in ResEdit in the resource
header to enable those systems to run; the header has the following format:

60xx Branch
XXXX Flags word
4943 Resource type (INIT)
4954
0002 Resource number (2)
02xx Script Manager version: change to 01FF for testing

For an old script, the three routines FindScriptRun, PortionText, and VisibleLength
will not work at all. In addition, the 'it14' resource (see below) for the script will not be

present, so the Int 1Tokenize and number formatting routines will not work properly for the
particular script’s features.

The results returned from the new function calls are error and status codes which are found in the
MPW 3.0 header and interface files.

Note that in the following text, the term “language” generally refers to a natural language rather
than a programming language.

'Itl4' Resource

There is a new international resource, 'it 14', which contains information used by several of
these routines and must be localized for each script (including Roman).

In Pascal:

Itl4Rec = RECORD

flags: integer;

resourceType: longInt;

resourceNum: integer;

version: integer;

resHeaderl: longInt;

resHeader2: longInt;

numTables: integer; { one-based }

mapOffset: longInt; { offsets are from record start }

strOffset: longInt;

fetchOffset: longInt;

unTokenOffset: longInt;

defPartsOffset: longInt;

resOffseté6: longInt;

resOffset7: longInt;

resOffset8: longInt;

{ the rest is data pointed to by offsets}

END;

Itl4Ptr = “Itl4Rec;

Itl4Handle = “Itl4Ptr;

The Script Manager

InC:

struct Itl4Rec {

short flags;

long resourceType;

short resourceNum;

short version;

long resHeaderl;

long resHeader2;

short numTables; /*one-based*/

long mapOffset; /*offsets are from record start*/

long strOffset;

long fetchOffset;

long unTokenOffset;

long defPartsOffset;

long resOffset6;

long resOffset7;

long resOffset8;

e

#ifndef — cplusplus

typedef struct Itl4Rec Itl4Rec;

#fendif

typedef Itl4Rec *Itl4Ptr, **Itl4Handle;

Text

The new text routines include: lexically interpreting different scripts (e.g., in macro languages);
allotting justification to different format runs within a line; ordering format runs properly with
bidirectional text (Hebrew & Arabic); quickly separating Roman from non-Roman text, and
determining word-wrap in text processing. The international utilities text comparison routines
were significantly improved in performance, in amounts ranging from 25% to 94%.

Parse Table

In Pascal:

Type

CharByteTable = Packed Array [0..255] of SignedByte;

Function ParseTable(table: CharByteTable): Boolean;

typedef char CharByteTable[256];

In C:

pascal Boolean ParseTable(CharByteTable table);

Double-byte characters have distinctive high (first) bytes, which allows them to be distinguished
from single-byte characters. The ParseTab1e routine can be used to traverse double-byte text
quickly. It does this by filling a table of bytes with values which indicate the extra number of bytes
taken by a given character. This array can then be used instead of making function calls on each
byte. As with the other script-specific routine calls, the values in the table will vary with the script
of the current font in thePort, so you must make sure to set the font correctly.

Ttl4’ Resource 3

Inside Macintosh C hapter Addition

An entry in the table is set to 0 for a single-byte character and 1 for the first byte of a double-byte
character. (With a single-byte script, the entries are all zero.) The return value from the routine
will always be true. This routine has always been present in the Script Manager, but was not
documented until now. Also note that script systems will never require more than two bytes per
character, so you can safely assume that there are only single-byte and double-byte characters.

For example, in the following code the reference to tablePtr{[myChar] is functionally
equivalent to a use of CharByte, but does not involve a trap call.

In Pascal:

Var

myChar: Integer;

i, max: Integer;

tablePtr: CharByteTable;

a String [255];

parseResult: Boolean;

Begin

parseResult := ParseTable(tablePtr) ;

is:= 1;

max := length (s);

While i <= max do Begin

myChar := ord(s[i]); {get byte}

i, s=]= 2.4 1; {skip to start of next}

if (tablePtr[myChar] <> 0) then Begin {if double-byte}

myChar := myChar * $100 + ord(s[i]);{include next byte}

i:=i +1; {skip to start of next}

End;

{do something with myChar}

End;

End;

In C:

short mychar;

CharByteTable table;

char *s = "Test String";

Boolean parseResult;

{

parseResult = ParseTable(table);

while (*s) {
mychar = *s; /*get the first byte*/

s+t;

if (table[*s] <> 0)

mychar = (mychar * 0x100) + *s;

/* Do something with mychar */

}

Remember that the CharByteTable is specific to the script. There could be two or three scripts
installed that are double-byte and have different CharByteTable arrays.

The § cript Manager

IntlTokenize

In Pascal:

Function IntlTokenize (tokenParam : TokenBlockPtr): TokenResults;

Inc:

pascal TokenResults IntlTokenize(TokenBlockPtr tokenParam) ;

The Int 1Tokenize routine is intended for use in macro expressions and similar programming
constructs intended for general users. It allows the program to recognize variables, symbols and
quoted literals without depending on the particular natural language (e.g., English vs. Japanese).

The routine is a mildly programmable regular expression recognizer for parsing text into tokens.
The single parameter is a parameter block describing the text to be tokenized, the destination of the
token stream, the 'it14' resource handle, and the various programmable options.
Int1Tokenize will return a list of tokens found in the text.

In Pascal:

TokenBlock = RECORD

source: Ptr; {pointer to stream of characters}

sourceLength: LongInt; {length of source stream}

tokenList: Ptr; {pointer to array of tokens}

tokenLength: LongInt; {maximum length of TokenList}

tokenCount: LongInt; {number of tokens generated by tokenizer}

stringList: Ptr; {pointer to stream of identifiers}

stringLength: LongInt; {length of string list}

stringCount: LongInt; {number of bytes currently used}

doString: Boolean; {make strings & put into StringLIst}

doAppend: Boolean; {append to TokenList rather than replace}

doAlphanumeric: Boolean; {identifiers may include numeric}

doNest: Boolean; {do comments nest?}

leftDelims, rightDelims: ARRAY[0..1] OF TokenType;

leftComment, rightComment: ARRAY[0..3] OF TokenType;

escapeCode: TokenType; {escape symbol code}

decimalCode: TokenType; {decimal symbol code}

itlResource: Handle; {itl4 resource handle of current script}

reserved: array [0..7] of Longint; { must be zeroed! }

END;

TokenType = Integer; {see list of TokenType values at end of document}

TokenRec = RECORD

theToken: TokenType;

position: Ptr; {ptr into original source}

length: LongInt; {length of text in original source}

stringPosition: StringPtr; {Pascal/C string copy of identifier}
END;

Text 5

Inside Macintosh Chapter Addition

Inc:

struct TokenBlock {

Ptr source; /*pointer to stream of characters*/

long sourceLength; /*length of source stream*/

Ptr tokenList; /*pointer to array of tokens*/

long tokenLength; /*maximum length of TokenList*/

long tokenCount; /*number tokens generated by tokenizer*/

Ptr stringList; /*pointer to stream of identifiers*/

long stringLength; /*length of string list*/

long stringCount; /*number of bytes currently used*/

Boolean doString; /*make strings & put into StringLIst*/

Boolean doAppend; /*append to TokenList rather than replace*/

Boolean doAlphanumeric; /*identifiers may include numeric*/

Boolean doNest; /*do comments nest?*/

;

TokenType leftDelims([2];

TokenType rightDelims[2];

TokenType leftComment [4];

TokenType rightComment [4];

TokenType escapeCode; /*escape symbol code*/

TokenType decimalCode;

Handle itlResource; /*ptr to itl4 resource of current script*/

long reserved[8]; /*must be zero!*/

#ifndef cplusplus
typedef struct TokenBlock TokenBlock;

#endif

typedef TokenBlock *TokenBlockPtr;

typedef short TokenType;

struct TokenRec {

};

TokenType theToken;

Ptr position; /*pointer into original Source*/

long length; /*length of text in original source*/

StringPtr stringPosition; /*Pascal/C string copy of identifier*/

For the TokenBlock record:

source is a pointer to the beginning of a stream of characters (not a Pascal string).

sourceLength is the number of characters in the source stream.

tokenList is a pointer to memory allocated by the application for the token stream. The
tokenizer places the tokens it generates at and after the address in tokenList.

tokenLength is the number of tokens that will fit in the memory pointed to by tokenList
(not the number of bytes).

tokenCount is the number of tokens that are currently occupying the space pointed to by
tokenList. Ifthe doAppend flag is true, then tokenCount must be a correct number
before calling the tokenizer. The tokenizer modifies this value to show how many tokens are in
the token stream after tokenizing.

stringList is a pointer to memory allocated by the application for strings that the tokenizer

generates if the doSt ring flag is true. If the flag is false, then stringList is ignored.

UO

The Script Manager

stringLength is the number of bytes of memory allocated for stringList.

a: stringCount is the number of bytes that are currently occupying the space pointed to by

stringList. If the doAppend flag is true, then stringCount must be a correct number
before calling the tokenizer. The tokenizer modifies this value to show how many bytes are in
the string stream after tokenizing.

doString is a boolean flag that instructs the tokenizer to create a sequence of even-
boundaried, null-terminated Pascal strings. Each token generated by the tokenizer will have a
string created to represent it if the flag is true. Each token record contains the address of the
string that represents it.

doAppend is a boolean flag that instructs the tokenizer to append tokens to the space pointed
to by tokenList rather than replace whatever is there. tokenCount must correctly reflect
the number of tokens in the space pointed to by tokenList.

doAlphanumeric is a boolean flag that, when true, states that numerics may be mixed with
alphabetics to create alphabetic tokens.

doNest is a boolean flag that instructs the tokenizer to allow nested comments of any depth.

leftDelims is an array of two integers, each of which corresponds to the class of the
symbol that may be used as a left delimiter for a quoted literal. Double quotes, for instance, is
class token2Quote. If only one left delimiter is needed, the other must be specified to be
delimPad.

{ rightDelims is an array of two integers, each of which corresponds to the class of the
symbol that may be used as the matching right delimiter for the corresponding left delimiter in
leftDelims.

leftComment is an array of four integers. Each successive pair of two describes a pair of
tokens that may be used as left delimiters for comments. These tokens are stored in reverse
order. The tokens numbered zero and two are the second tokens of the two-token sequences;

| the tokens numbered one and three are the first tokens of the two-token sequences.

If only one token is needed for a delimiter, the second token must be specified to be
delimPad. If only one delimiter is needed, then both of the tokens allocated for the other
symbol must be delimPad. The first token of a two-token sequence is the higher position in
the array. For example, the two left delimiters (* and { would be specified as

leftComment [0] := tokenAsterisk (*asterisk*)

leftComment [1] := tokenLeftParen; (*left parenthesis*)

leftComment [2]:= delimPad ; (*nothing*)

leftComment [3] := tokenLeftCurly; (*curly brace*)

rightComment is an array of four integers with similar characteristics as left Comment.
The positions in the array of the right delimiters must be the same as their matching left
delimiters.

escapeChar is a single integer that is the class of the symbol that may be used for an escape
character. The tokenizer considers the escape character to be an escape character (as opposed
to being itself) only within quoted literals.

Text 7

Inside Macintosh Chapter Addition

If backslash (\) is given as the escapeChar, then the tokenizer would consider it an escape
character in the following string:

"This is an escape\n"

It would not be considered an escape character in a non-quoted string like the following:

This isn't an escape\n

decimalCode is a single integer that is the tokenType that may be used for a decimal
point. The tokenizer considers the decimal character to be a decimal character (as opposed to
being itself) only when flanked by numeric or alternate numeric characters, or when following
them. When the strings option is selected, the decimal character will always be transliterated to
an ASCII period (and alternate numbers will be transliterated to ASCII digits).

it1lResource is a handle to the 'it14' resource of the script in current use. The
application must load the 'it14' resource and place its handle here before calling the
tokenizer. Every time the script of the text to be tokenized changes, the pointer to the
respective 'i1t14' resource must be placed here.

reserved locations must all be zeroed.

For the token record:

theToken is the ordinal value of the token represented by the token record.

position points to the first character in the original text that caused this particular token to be
generated.

length is the length in bytes of the original text corresponding to this token.

stringPosition points to a null-terminated, even-boundaried Pascal string that is the result

of using the doSt ring option. If doSt ring is false then stringPosit ion is always set

to NIL.

The available token types are: whitespace, newline, alphabetic, numeric, decimal, endOfStream,

unknown, alternate numeric, alternate decimal, and a host of fixed token symbols, such as (#@ :

The tokenizer does not attempt to provide complete lexical analysis, but rather offers a

programmable “pre-lex” function whose output should then be processed by the application at a

lexical or syntactic level.

The programmable options include: whether to generate strings which correspond to the text of

each token; whether the current tokenize call is to append to, rather than replace, the current token

list; whether alphabetic tokens may have numerics within them, whether comments may be nested;

what the left and right delimiters for comments are (up to two sets may be specified); what the left

and right delimiters for quoted literals are (up to two sets may be specified); what the escape
character is; and what the decimal point symbol is.

Some users may use two or more different scripts within a program. However, each script’s

character stream must be passed separately to the tokenizer because different resources must be

passed to the tokenizer depending on the script of the text stream. Appending tokens to the token

stream lets the application see the tokens generated by the different scripts’ characters as a single

ee

8

The Script Manager

token stream. Restriction: users may not change scripts within a comment or quoted literal because
these syntactic units must be complete within a single call to the tokenizer in order to avoid
tokenizer syntax errors.

The application may specify up to two pairs of delimiters each for both quoted literals and
comments. Quoted literal delimiters consist of a single symbol, and comment delimiters may be
either one or two symbols (including newline for notations whose comments automatically
terminate at the end of lines). The characters that compose literals within quoted literals and
comments are normally defined to have no syntactic significance; however, the escape character
within a quoted literal does signal that the following character should not be treated as the right
delimiter. Each delimiter is represented by a token, as is the literal between left and right
delimiters.

If two different comment delimiters are specified by the application, then the doNest flag always
applies to both. Comments may be nested if so specified by the doNest flag with one restriction
that must be strictly observed in order to prevent the tokenizer from malfunctioning: nesting is
legal only if both the left and right delimiters for the comment token are composed of two symbols
each. In this version, there is limited support for nested comments. When using this feature, test
to insure that it meets your requirements.

An escape character between left and right delimiters of a quoted literal signals that the following
character is not the right delimiter. An escape character is not specially recognized and has no
significance outside of quoted literals. When an escape character is encountered, the portion of the
literal before the escape is placed into a single token, the escape character itself becomes a token,
the character following the escape becomes a token, and the portion of the literal following the
escape sequence becomes a token.

A sequence of whitespace characters becomes a single token.

Newline, or carriage return, becomes a single token.

A sequence of alphabetic characters becomes an alphabetic token. If the doAlphanumeric flag
is set, then alphabetic characters include digits, but the first character must be alphabetic.

A sequence of numeric characters becomes a numeric token.

A sequence of numeric characters followed by a decimal mark, and optionally followed by more
numeric characters, becomes a realNumber token.

Some scripts have not only “English” digits, but also their own numeral codes, which of course
will be unrecognizable to the typical application. A sequence of alternate digits becomes an
alternate numeric token. If the strings option is selected then the digits will be transliterated to
“English” digits. This includes the realNumber tokens, whose results become alternate real
tokens.

The end of the character stream becomes a token.

A token record consists of a token code, a pointer into the source stream (signifying the first
character of the sequence that generated the token), the byte length of the sequence of characters
that generated the token, and space for a pointer to a Pascal string, explained next.

The application may instruct the tokenizer to generate null-terminated, even-boundaried Pascal
strings corresponding to each token. In this case, if the token is anything but alphabetic or numeric
then the text of the source stream is copied verbatim into the Pascal string. Otherwise, if the text in

ey

Text 9

Inside Macintosh Chapter Addition

the source stream is Roman letters or numbers then those characters are transliterated into
Macintosh eight-bit ASCII and a string is created from the result, allowing users of other languages
to transparently use their own script’s numerals or Roman characters for numbers or keywords.
Non-Roman alphabetics are copied verbatim.

Semantic attributes of byte codes vary from natural language to natural language. As an example,
in the Macintosh character set code $81 is an A, but in Kanji this code is the first byte of many
double-byte characters, some of which are alphabetic, some numeric, and some symbols. This
information is retrieved from the 'it14' resource, which also contains a canonical string format
for the fixed tokens, so that the internal format of formule can be redisplayed in the original
language.

'it14' also holds a string copy routine which converts the native text to the corresponding
English (except for alphanumerics). As with the other international resources, the choice of
'it14' depends on the script interface system in use.

Macro Text

*®B=-A(FE= : ZH); /FER total3=sum(A3:B9); // yearly totals

itl4 Resource

Roman}

Japanese,

Chinese,

Korean,

Arabic,

Hebrew,

Thai,

Indian,

> tttatettetetatetetet

¢

‘

€

&

rerATATAN retatatetet

tt 4
atthe
tatctatttte

a ee eee ee ee
Figure 1-IntiTokenize

The untokenTable in the 'it14' resource contains standard representations for the fixed

tokens, and can be used to display the internal format. An example of how a user might access this

table and use the token information follows:

10

In Pascal:
CC) sess

UntokenTable = Record

len: Integer;

lastToken: Integer;

End;

UntokenTablePtr = “UntokenTable;

UntokenTableHandle = “UntokenTablePtr;

The S cript Mana ger

index: array [0..255] of Integer; {index table; last = lastToken}

{list of pascal strings here. index pointers are from front of table}

{untokenize parts subtable}

{using resource table}

{make handle of proper size}

Function GetUntokenTable(Var x: UntokenTableHandle): Boolean;

Var

itl4: itl4Handle;

p: UntokenTablePtr;

Begin

GetUntokenTable := false; {assume error}

itl4 := itl4Handle(IUGetIntl(4)); {get itl4 record}

if itl4 <> nil then begin {if ok}

HLock (Handle (itl4)); {lock for safety)

p := UntokenTablePtr (ord(it14*)+itl4**.untokenOffset) ;

With p* Do Begin

x := UntokenTableHandle (NewHandle(len));

BlockMove (Ptr(p),Ptr(x%*),len); {copy contents}

End;

HUnlock (Handle (it14)); {free back up}

GetUntokenTable := true; {no error}

End;

End;

(> If (GetUntokenTable(myUntokenTable)) then

With curToken* Do Case theToken OF

ee

tokenAlpha:

AppendString(myVariable[i]);

Otherwise With myUntokenTable**, curToken® Do Begin

If theToken > lastToken Then Begin

AppendString('?');

| End Else Begin

| sPtr := pointer(ord(@len) + index[theToken]);

AppendString(sPtr%);

End; {if}

| End; {item}

| End; {case}

Text

Inside Macintosh Chapter Addition

Inc:

struct UntokenTable {

short len;

short lastToken;

short index[(256]; /*index table; last = lastToken*/

};

#ifndef _ cplusplus

typedef struct UntokenTable UntokenTable;

#endif

typedef UntokenTable *UntokenTablePtr, **UntokenTableHandle;

GetUntokenTable(UntokenTableHandle *x)

Itl4Handle itl4;

UntokenTablePtr Pp?

itl4 = (Itl14Handle) IUGetInt1(4);

if (itl4) {

HLock ((Handle) it14);

p = (UntokenTablePtr) ((char *) (*itl4) + ((*it14)->unTokenOffset));

*x = (UntokenTableHandle) NewHandle(p->len) ;

if (x)

BlockMove((Ptr)p, (Ptr) **x,p->len);

HUnlock ((Handle) it14);

return ((short) *x);

else

return (0);

if (GetUntokenTable(myUntokenTable))

switch curtoken->theToken {

[* se BL

case tokenAlpha:

AppendString(myvariable[i]);

break;

default:

if (curtoken->theToken > lastToken)

AppendString("?");

else {

Hlock ((Handle) myUntokenTable) ;

sptr = (char *) (*myUntokenTable) + (*myUntokenTable) -

>index [curtoken->theToken] ;

AppendString(sptr) ;
HUnlock ((Handle) myUntokenTable) ;

break;

12

The Script Mana ger

PortionText

In Pascal:

Function PortionText (textPtr : Ptr; textLen : Longint): Fixed; {proportion}

Inc:

pascal Fixed PortionText (Ptr textPtr,long textLen) ;

This routine returns a result which indicates the proportion of justification that should be allocated
to this text when compared to other text. It is used when justifying a sequence of format runs, so
that the appropriate amount of extra width is apportioned properly among them. For example,
suppose that there are three format runs on a line: A, B, and C. The line needs to be widened by

11 pixels for justification. Calling PortionText on these format runs yields the first row in the
following table:

A B & Total

PortionText: 5.4 see 8.2 20.9
Normalized: 258 .349 remainder 1.00
Pixels (p): 2.84 3.84 remainder 11.0
Rounded (r): 3 4 remainder 11

The proportion of the justification to be allotted to A is 25.8%, so it receives 3 pixels out of 11. In
general, to prevent rounding errors, rt, = round(X.» p) — Ly, n-7 t (which can be computed
iteratively); e.g., rg is round(3.84+2.84) — 3, and rc is round(11.0) — 7.

For normal Roman text, the result is currently a function of the number of spaces in the text, the
number of other characters in the text, and the font size (the raw size, not ascent + descent +
leading). This may change in the future, so values should be compared at the time of execution.

Text 13

Inside Macintosh C hapter Addition

Justifying Format Runs

© © Y
PortionText 1 pt Gap

5.4 13 8.2

Normalized

25.8% 34.9% 39.2%

Scaled

2.84 pt 3.84 pt 4.32 pt

Figure 2—PortionText

Format Order

In Pascal:

FormatOrder = array [0..0] of Integer;

FormatOrderPtr = “FormatOrder;

Procedure GetFormatOrder (ordering: FormatOrderPtr;

firstFormat: Integer;

lastFormat: Integer;

lineRight: Boolean;

RLDirProc: Ptr;

dirParam: Ptr) 7

In C:

typedef short FormatOrder [1];

typedef FormatOrder *FormatOrderPtr;

pascal void GetFormatOrder (FormatOrderPtr ordering,short firstFormat,short lastFormat,

Boolean lineRight,Ptr rlDirProc,Ptr dirParam) ;

This routine orders the text properly for display of bidirectional format runs. Word processing
programs that use this procedure for multi-font text can be independent of script text-ordering in a
line (e.g., Hebrew or Arabic right-left text). The ordering points to an array of integers, with

14

The S cript Manager

(lastFormat — firstFormat + 1) entries. The Get FormatOrder routine retrieves the direction of

each format by calling the direction procedure, RLDirProc, which has the following format:

In Pascal:

Function MyRLDirProc (theFormat : Integer; dirParam : Ptr) :Boolean;

In C:

pascal Boolean MyRLDirProc(short theFormat, Ptr dirParam);

The RLDirProc is called with the values from firstFormat to lastFormat to determine the
directions of each of the format runs. It returns true for right-left text direction, otherwise false.
The parameter dirParam is available to provide other necessary information for the direction
procedure (i.e., style number, pointer to style array, etc).

GetFormatOrder returns a permuted list of the numbers from firstFormat to
lastFormat. This permuted list can be used to draw or measure the text. (For more detail, see

the Script Manager developers’ packet). The 1ineRight parameter is true if the text is right-left
orientation, otherwise false.

The array Ordering is created and filled by your application. The first element in the array
should correspond to the parameter firstFormat, and the last element should correspond to
lastFormat. GetFormatOrder loops through this array and passes each element in the array
back to the RLDirProc function. Since you fill the ordering array and you write the
RLDirProc, you should obviously store format runs in a way that makes the
GetFormatOrder routine useable.

One obvious way to do this would be to declare a record type for format runs that allowed you to
save things like font style, font ID, script number, and so on. You then could store these records
in an array. When the time came to call GetFormatOrder, you would simply fill the
Ordering array with the indexes that you used to access your array of format run records.
GetFormatOrder would return an array which described the correct drawing order for your
format runs.

Consider this example. Let uppercase letters stand for format runs that are left to right, and
lowercase letters stand for right-left format runs. For example, there are two format runs in the
following line.

1 2

ABCfed

With left-right line direction, the text should appear on the screen as:

i 2

ABCdef

With right-left line direction, the text should appear on the screen as:

2 2
fedABC

Text 15

Inside Macintosh Chapter Addition

GetFormatOrder is used to tell you what order the format runs should be drawn in based on
line direction for a particular line of text.

myOrdering—».

OEE a a aaa ee aA

firstFormat = 3 myRLDirProc(3) = T
lastFormat = 9 myRLDirProc(4) = T
lineRight = GetSysJust myRLDirProc(7) = T

myRLDirProc(8) = T

otherwise
myRLDirProc = F

Figure 3—GetFormatOrder

For example, in Pascal:

GetFormatOrder (myOrdering, firstFormat, lastFormat,GetSysJust = 0,MyRLDirProc,nil);

for i := 0 to lastFormat-firstFormat do

with MyFormat [myOrdering [i]], MyStyle [formatStyle] do begin

TextFont (styleFont) ;

{set up other text style features...}

case what of

drawing: DrawText(textStartPtr, formatStart, formatLength);

measuring: TextWidth(textStartPtr, formatStart, formatLength) ;

{and so on}

end; {case}

end; {with}

end; {for}

nC:

Get Format Order (myOrdering, firstFormat, lastFormat, (Boolean) GetSysJust (), (Ptr)MyRLDirProc, nil);

for (i= 0, i <= (lastFormat-firstFormat), i++)

/* set up style stuff */
switch what {

case drawing:
DrawText (textStartPtr, formatStart, formatLength) ;

break;

case measuring:
TextWidth (textStartPtr, formatStart, formatLength) ;

break;

default:

break;

16

The Script Manager

FindScriptRun

In Pascal:

Function FindScriptRun (textPtr: Ptr; textLen: Longint;

VAR lenUsed: Longint): ScriptRunStatus;

ScriptRunStatus = RECORD

script: SignedByte;

variant: SignedByte;

END;

Inc:

pascal struct ScriptRunStatus FindScriptRun(Ptr textPtr,long textLen,long *lenUsed) ;

struct ScriptRunStatus {

short script;

short variant;

};

char *mychararray = 'abcDEFghi';

char *textptr;

long textlength;

ScriptRunStatus SIs;

long lenused;

srs = FindScriptRun(mychararray, (long) strlen (mychararray) , &lenUsed) ;

/* lenUsed would now = 3, blocktype would equal 0 */

/* we can point at the remainder of the text with the following code */

textptr = mychararray + lenUsed;

textlen = strlen(mychararray) - lenUsed;

For compatibility, each script allows Roman text to be mixed in. This routine is used to break up
mixed text (Roman & Native) into blocks. The lenUsed is set to reflect the length of the
remaining text. The return value reflects the type of block: the upper byte is the script (0 being
Roman text) and the lower byte being script-specific (script systems can return types of native sub-
scripts, such as Kanji, Katakana and Hiragana for Japanese). For example, given that the capital
letters represent Hebrew text:

In Pascal:

myCharArray = ‘abcDEFghi';

myCharPtr := @myCharArray;

blockType := FindScriptRun (myCharPtr, 9, lenUsed) ;

{lenUsed 3, blockType = 0: get remainder of text with: }

textPtr := ptr(ord(textPtr) +lenUsed) ;

textLen := textLen-lenUsed;

Text 17

Inside Macintosh Chapter Addition

StyledLineBreak

In Pascal:

Function StyledLineBreak (textPtr: Ptr;

textLen: Longint;

textStart: Longint;

textEnd: Longint;

flags: Longint;

Var textWidth: Fixed; {on exit, set if too long}

Var textOffset: Longint)

:StyledLineBreakCode;

StyledLineBreakCode = (smBreakWord, smBreakChar, smBreakOverflow) ;

In C:

pascal StyledLineBreakCode StyledLineBreak (Ptr textPtr,long textLen, long textStart,

long textEnd,long flags,Fixed *textWidth,long *textOffset);

enum {smBreakWord, smBreakChar, smBreakOverflow};

typedef unsigned char StyledLineBreakCode;

This routine breaks a line on a word boundary. The user will loop through a sequence of format

runs, resetting the text Ptr and textLen each time the script changes; and resetting the

textStart and textEnd for each format run. The textWidth will automatically be

. decremented by St yledLineBreak.

TextPtr points to the start of the text, textLen indicates the maximum length of the text, and

the text Width parameter indicates the maximum pixel width of the rectangle used to display the

text starting at the text Start and ending at the textEnd. The flags parameter is reserved

for future expansion and must be zero.

textWidth

Courier Chicago

textStart

textEnd

textPtr

Figure 4-StyledLineBreak

On input, a non-zero text Offset indicates whether this is the first format run (possibly forcing

a character break rather than a word break: if text Offset is non-zero, at least one character will

be returned if the line is not empty). On output it is the number of bytes from text Ptr up to the

point where the line should be broken. If the passed textWidth extended beyond the end of the

text (i.e., is larger than the width from textoffset to textLen), then the width of the text is

subtracted from the text Width and the result returned in the text Width parameter. This can

be used for the next format run.

18

The Script Manager

The routine result indicates whether the routine broke on a word boundary, character boundary, or

the width extended beyond the edge of the text.

When used with single-format text, the text Start can be zero, and the textEnd identical with

the textLen. With multi-format text, the interval between text Start and textEnd specifies
a format run. The interval between text Ptr and textLen specifies a script run (a contiguous
sequence of text where the script of each of the format runs is the same). Note that the format runs
in StyledLineBreak must be traversed in back-end storage order, not display order (see

GetFormatOrder).

In other words, if the current format run is included in a contiguous sequence of other format runs
of the same script, then the text Ptr should point to the start of the first format run of the same
script, while the text Len should include the last format run of the same script. This is so that
word boundaries can extend across format runs; they will never extend across script runs.

Although the offsets are in Longint values and widths in fixed for future extensions, in the
current version the longint values should be restricted to the integer range, and only the integer
portion of the widths will be used.

VisibleLength

In Pascal:

FUNCTION VisibleLength (textPtr : Ptr; textLen: Longint): Longint;

InC:

pascal long VisibleLength(Ptr textPtr,long textLen);

This routine returns the length of the text excluding trailing white space, taking into account the
script of the text. Trailing white space is only excluded if it occurs on the visible right side, in
display order.

bee Aes 54321

sg lal [--ebal=—
VisibleLength of this left-right example = 3. VisibleLength of this right-left example = 5.

Figure 5-VisibleLength

For example, in Pascal:

myVisibleLength := VisibleLength (myText,myOffset);

curSlop := myPixel - TextWidth(myText,0,myVisibleLength) ;

DrawJust (myText,myVisibleLength,curSlop);

Text 19

Inside Macintosh Chapter Addition

Changing Text Case

In Pascal:

Procedure UprText(textPtr: Ptr; len: Integer);

Procedure LwrText (textPtr: Ptr; len: Integer);

Inc:

pascal void UprText (Ptr textPtr,short len);

pascal void LwrText (Ptr textPtr,short len);

UprText provides a Pascal interface to the UprString assembly routine, which will
uppercase text up to 32K in length. The LwrText routine provides the corresponding lowercase
routine. Both of these routines will not change the number or position of characters in a string, but
are faster and simpler than the Transliterate routine.

Text Comparison

We have done some performance analyses of Pack6 comparison routines, and based upon those,
were able to increase performance by about 50% on average. This increase results in a
corresponding increase in 4th Dimension sorting performance, for example. Also, a long-standing
bug in sorting “ce” and “ze” has been corrected. A test program on the Macintosh SE comparing
“The quick brown fox jumped over the lazy dog” to variants produced the following decreases in
comparison time:

Identical text: 94%
Last Character Unequal (g vs. X) 83%
Last Character Weakly Equal (g vs. G): 82%
First Character Unequal (T vs X): 59%
First Character Weakly Equal (T vs t): 29%
All Characters Weakly Equal (T vs t...g vs. G): 25%

Part of the performance increase results from internal caching of 'it1 ' resources. Originally all
‘itl ' resources (resulting from IUGet Int 1 of 0,1,2,4) were cached, but several programs do

a ReleaseResource or DetachResource on 'it10"', rendering the cache invalid.
Because of this, currently only '1t12' and 'it14' are cached. Developers must be sure not to
release or detach these resources. Also, only the system file resources are used, so they cannot be
overridden by copies in the application or document resource forks.

20

The § cript Manager

“The quick brown fox jumped over the lazy dog”

A. Identical “The quick brown fox jumped over the lazy dog”

Last Char
B. Unequal = “The quick brown fox jumped over the lazy doX”

C. Similar —_ “The quick brown fox jumped over the lazy doG”
First Char

D. Unequal “Xhe quick brown fox jumped over the lazy dog”

E. Similar “the quick brown fox jumped over the lazy dog”

All Chars
F. Similar = “THE QUICK BROWN FOX JUMPED @VER THE LAZY DOG”

alee ee eek
Ct) Ce) Co BB) BH FF

Figure 6-International Text Comparison

Dates

The Macintosh date routines are extended to provide a larger range (roughly 35 thousand years),
and more information. This extension allows programs that need a larger range of dates to use
system routines rather than produce their own, which may not be internationally compatible. The
programmer can also access the stored location (latitude and longitude) and time zone of the
Macintosh from parameter RAM. The Map cdev gives users the ability to change and reference
these values.

The long internal format of a date is as before, in seconds since 12:00 midnight, January 1, 1904,
but is represented as a signed 64-bit integer (SANE Comp format), allowing a somewhat larger
range (roughly 500 billion years). Short internal format dates (since they are unsigned) can be
converted to long format by filling the top 32 bits with zero; long formats can be converted to short
by truncating (assuming that they are within range). When storing in files, a five (or six) byte
format can be used for a range of roughly 35 thousand years. This value should be sign-extended
to restore it to a Comp format.

In Pascal:

Type LongDateTime = Comp;

Text 21

Inside Macintosh Chapter Addition

In C:

typedef comp LongDateTime;

The standard date conversion record is extended using a new structure:

In Pascal:

LongDateRec = Record

case Integer of

0: (era, year,month,day,hour,minute, second,

dayOfWeek, dayOfYear, weekOfYear,

pm, resl,res2,res3: Integer);

1% (list: array [longDateField] of Integer);

23 (eraAlt: Integer;

oldDate: DateTimeRec) ;

end;

inc:

union LongDateRec {

struct {

short era;

short year;

short month;

short day;

short hour;

short minute;

short second;

short dayOfWeek;

short dayOfYear;

short weekOfYear;

short pm;

short resl;

short res2;

short res3;

} ld;

short list[14]; /*Index by LongDateField!*/

struct. {

short eraAlt;

DateTimeRec oldDate;

} od;

;

The default calendar for converting to and from the long internal format is the Gregorian calendar.
The era field for this calendar has values 0 for A.D. and -1 for B.C. (Note that the international
date string conversion routines do not append strings for A.D. or B.C.) The current range allowed
in conversion is roughly 30,000 BC to 30,000 AD.

(Note that in different countries the change from the Julian calendar to Gregorian calendar occurred
in different years: in Catholic countries, it occurred in 1582, while in Russia it took place as late as
1917. Dates before these years in those countries should use the Julian calendar for conversion.
The Julian calendar differs from the Gregorian by three days every four centuries.)

22

The Script Manager

LongDateRec

os

munute

ppm

InitDateCache

In Pascal:

Function InitDateCache (theCache:

InC:

LongSecs

0.ST years

C 2G years

A 9M years

E 35 millenia

N 136 years

D 194 days

A 18 hours

R 4 minutes

Comp
[64-bit (8 byte)
Signed Integer]

Gregorié

Japanese
(year of the Emperor’s reign

Arabic
(new moon starts month)

Hebrew
\ (lunar, but algorithmic)

Figure 7—-Long Date ° String

DateCachePtr): OSErr;

pascal OSErr InitDateCache(DateCachePtr theCache) ;

This routine must be called before using the String2Date or String2Time routines to
format the theCache record. Allocation of this record is the responsibility of the caller: it can
either be a local variable, a Pt r or a locked Handle. By using this cache, the performance of the
String2Date and String2Time routines is improved.

Dates 23

Inside Macintosh Chapter Addition

In Pascal:

Procedure MyRoutine;

Var

myCache: DateCacheRecord;

Begin

InitDateCache (@myCache) ;

{call the String2Date or Time routines. Note that if you are doing this}

{inside an application where global variables are allowed, you should probably}

{make your Date cache a global and initialize it once, when you initialize}

{the Toolbox Managers. }

End;

In C:

void MyRoutine()

{
DateCacheRecord myCache;

InitDateCache (&myCache) ;

/* Now you can call String2Date or String2Time, Note that if you are doing this

inside an application where global variables are allowed, you should probably make

your Date cache a global and initialize it once when you initialize the Toolbox

managers

if,

String2Date and String2Time

In Pascal:

Function String2Date(textPtr: Ptr;

textLen: longint;

theCache: DateCachePtr;

Var lengthUsed: Longint;

Var dateTime: LongDateRec)

String2DateStatus;

Function String2Time(textPtr: Ptr;

textLen: longint;

theCache: DateCachePtr;

Var lengthUsed: Longint;

Var dateTime: LongDateRec)

: String2DateStatus;

In C:

pascal String2DateStatus String2Date(Ptr textPtr,long textLen,DateCachePtr theCache,

long *lengthUsed, LongDateRec *dateTime) ;

pascal String2DateStatus String2Time(Ptr textPtr,long textLen,DateCachePtr theCache,

long *lengthUsed, LongDateRec *dateTime) ;

These routines expect a date and time at the beginning of the text. They parse the text, setting the
lengthUsed to reflect the remainder of the text, and fill the dateTime record. They recognize
all the strings that are produced by the international date and time utilities, and others. For
example, they will recognize the following dates: September 1, 1987; 1 Sept 1987; 1/9/1987; and 1
1987 sEpT.

24

The Script Manager

If the value of the input year is less than 100, then it is added to 1900; if less than 1000, then it is
added to 1000 (the appropriate values are used from other calendars, gotten from the base date:
LongDateTime =0). Thus the dates 1/9/1987 and 1/9/87 are equivalent.

The routines use the following grammar to interpret the date and time. The relevant fields of the
international utilities resources are used for separators, month and weekday names, and the
ordering of the date elements. The parsing is actually semantic-driven, so finer distinctions are
made than those represented in the syntax diagram.

time = number [tSep number [tSep number]] [mornStr | eveStr | timeSuff]

tSep = timeSep | sep

date = [dSep] dField [dSep dField [dSep dField [dSep dField [dSep]]]]

dField := number | dayOfWeek | abbrevMonth | month

dSep = dateSep | stO | stl | st2 | st3 | st4 | sep

sep = <non-alphanumeric>

The date defaults are the current day, month and year. The time defaults to 00:00:00. The digits in
a year are padded on the left, using the base date (the date corresponding to zero seconds: Jan 1,
1904). This routine uses the tokenizer to separate the components of the strings. It depends upon
the names of the months and weekdays used from international resources being single
alphanumeric tokens.

Note that the date routine only fills in the year, month, day and dayOfWeek; the time routine fills in
only the hour, minute and second. Thus the two routines can be called sequentially to fill
complementary values in the LongDateRec.

The return from the routine is a set of bits that indicate confidence levels, with higher numbers
indicating low confidence in how closely the input string matched what the routine expected. For
example, inputting a time of 12.43.36 will work, but return a message indicating that the separator
was not standard. This can also be used to parse a string containing both the date and time, by
using the confidence levels to determine which portion comes first. The returned bits include:

In Pascal:

fatalDateTime = $8000;

longDateFound = 1;

leftOverChars = 2;

sepNotIntlSep = 4;

fieldOrderNot Intl 8;
tod Ph fon} . extraneousStrings

tooManySeps = 32;

sepNotConsistent = 64;

tokenErr = $8100;

cantReadUtilities = $8200;

dateTimeNotFound = $8400;

dateTimeInvalid = $8800;

Dates 25

Inside Macintosh C. hapter Addition

Inc:

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

fatalDateTime 0x8000

longDateFound 1

leftOverChars 2

sepNotIntlSep 4

fieldOrderNotIntl 8

extraneousStrings 16

tooManySeps 32

sepNotConsistent 64

tokenErr 0x8100

cantReadUtilities 0x8200

dateTimeNotFound 0x8400

dateTimeInvalid 0x8800

LongDate Conversion

In Pascal:

Procedure LongDate2Secs (1Date:

Var 1lSecs:

Procedure LongSecs2Date (1Secs:

Var 1Date:

InC:

LongDateRec;

LongDateTime) ;

LongDateTime;

LongDateRec) ;

pascal void LongDate2Secs(const LongDateRec *1Date,LongDateTime *1lSecs);

pascal void LongSecs2Date(LongDateTime *lSecs,LongDateRec *lDate);

These routines extend the range of the Macintosh calendar as discussed above. Any fields that are
not used should be zeroed. On input, the LongDate2Secs routine will use the day and month
unless the day is zero; otherwise the dayOfYear is used unless it is zero; otherwise the dayOfWeek
and weekOfYear are used.

Other fields are additive: if you supply a month of 37, that will be interpreted as adding 3 to the
year, and using a month of 1. This latter property is subject to some restrictions imposed by the
internal arithmetic: for example, | hour*60+minute | must be less than 32767.

Two new interfaces have been added to Pack6 for LongDate support:

In Pascal:

IULDateString (dateTime:

form:

Var Result:

intlParam:

Assembly selector: 20

IULTimeString (dateTime:

wantSeconds:

Var Result:

intlParam:

Assembly selector: 22

26

LongDateTime;

DateForm;

Str255;

Handle) ;

LongDateTime;

BOOLEAN;

Str255;

Handle);

The Script Manager

mc

pascal void IULDateString(LongDateTime xdateTime, DateForm longFlag,Str255 result,

Handle int1lParam);

pascal void IULTimeString (LongDateTime *dateTime, Boolean wantSeconds,Str255 result,

Handle intlParam);

These routines take a LongDateTime, and return a formatted string. Only the old fields

year..second, and dayOfWeek are used. If the int lParam is zero, then the international

resource 0 ('it10"') is used. The output year is limited to four digits: e.g., from 1 to 9999 A.D.

ToggleDate and ValidDate

In Pascal:

Function ToggleDate (Var mySecs: LongDateTime;

field: LongDateField;

delta: DateDelta;

ch: Integer;

params: TogglePB)

:ToggleResults;

Function ValidDate (Var date : LongDateRec;

flags: Longint;

Var newSecs: LongDateTime)

: Integer;

inc:

pascal ToggleResults ToggleDate(LongDateTime *lSecs, LongDateField field,

DateDelta delta,short ch,const TogglePB *params) ;

pascal short ValidDate(LongDateRec *vDate,long flags,LongDateTime *newSecs) ;

The ToggleDate routine is used to modify a date or time record by toggling one of the fields up
or down. The routine returns a valid date by performing two types of action. If the affected field
overflows or underflows, then it will wrap to the corresponding low or high value. If changing
the affected field causes other fields to be invalid, then a close date is selected (which may cause
other fields to change). For example, toggling the year upwards in February 29, 1980 results in
March 1, 1981. Currently only the fields year..second, and am can be toggled, although this
should change in the future.

The routine will also toggle by character, if the delta = 0. The character will be used to change
the field in the following way. If it is a digit, then it will be added to the end of the field, and the
field will be then modified to be valid in a similar manner as in the alarm clock. For example, if the
minute is 54, then to replace it by 23 by entering characters, first the minute will change to 42, then
to 23. The AM/PM field will also use letters.

Dates 27

Inside Macintosh Chapter Addition

In Pascal:

TogglePB = RECORD

togFlags: LONGINT;

amChars: ResType; {from int10}

pmChars: ResType; {from int10}

reserved: ARRAY [0..3] OF LONGINT;

END;

In C:

struct TogglePB {

long togFlags;

ResType amChars; /*from intl0*/

ResType pmChars; /*from intlO*/

long reserved[4];

};

The parameter block should be set up as follows. It should contain the uppercase versions of the
AM and PM strings to match (the defaults mornStr and eveStr can be copied from the
international utilities using IUGet Int 1, and converted to uppercase with UprText).

The ToggleDate routine makes an internal call to ValidDate, which can also be called directly
by the user. ValidDate checks the date record for correctness, using the params.togflags

which is passed to it by ToggleDate. If any of the record fields are invalid, ValidDate
returns a DateField value corresponding to the field in error. Otherwise, it returns a -1.

The params.togflags value passed to ValidDate by ToggleDate are the same for

ToggleDate and ValidDate. The low word bits correspond to the values in the enumerated
type DateField. For example, to check the validity of the year field you can create a mask by
doing the following:

yearFieldMask = 2**yearField;

The high word of the flags value can be used to set various other conditions. The only one
currently used is a flag which can be set to restrict the range of valid dates to the short date format
(smallDateBit = 31; smallDateMask = $80000000). All other bits are reserved, and
should be set to zero. The reserved values should also be zeroed.

Togflags should normally be set to $007F, which can be done by using the predeclared constant
dateStdMask.

28

The Script Manager

LongDateRec

12 / 31 / 88

Figure 8-ToggleDate

Reading and Writing the Location

In Pascal:

PROCEDURE ReadLocation(VAR loc: MachineLocation) ;

PROCEDURE WriteLocation(loc: MachineLocation) ;

InC:

pascal void ReadLocation(MachineLocation *loc);

pascal void WriteLocation(const MachineLocation *loc);

These routines allow the programmer to access the stored geographic location of the Macintosh and
time zone information from parameter RAM. For example, the time zone information can be used
to derive the absolute time (GMT) that a document or mail message was created. With this
information, when the document is received across time zones, the creation date and time are
correct. Otherwise, documents can appear to be created after” they are read (e.g., I can create a

Dates 2

Inside Macintosh Chapter Addition

message in Tokyo on Tuesday and send it to Cupertino, where it is received and read on Monday).
Geographic information can also be used by applications which require it.

If the MachineLocation has never been set, then it should be <0,0,0>. The top byte of the

gmt Delta should be masked off and preserved when writing: it is reserved for future extension.
The gmt Delta is in seconds east of GMT: e.g., San Francisco is at minus 28,800 seconds (8
hours * 3600 seconds per hour). The latitude and longitude are in fractions of a great circle, giving
them accuracy to within less than a foot, which should be sufficient for most purposes. For
example, Fract values of 1.0 = 90°, -1.0 = -90°, -2.0 = -180°.

In Pascal:

MachineLocation = RECORD

latitude: Fract;

longitude: Fract;

CASE INTEGER OF

0:

(dlsDelta: SigqnedByte) ; {signed byte; daylight savings delta}

1

(gmtDelta: LONGINT); {must mask - see documentation}

END;

InC:

struct MachineLocation {

Fract latitude;

Fract longitude;

union{

char dlsDelta; /*signed byte; daylight savings delta*/

long gmtDelta; /*must mask - see documentation*/

}gmtFlags;

MF

The gmt Delta is really a three-byte value, so the user must take care to get and set it properly as
in the following code examples:

In Pascal:

Function GetGmtDelta(myLocation: MachineLocation): longint;

Var

internalGmtDelta: Longint;

begin

With myLocation Do Begin

internalGmtDelta := BAnd(gmtDelta, SOOFFFFFF) ; {get value}

If BTst (internalGmtDelta, 23) {sign extend}

Then internalGmtDelta := BOr(internalGmtDelta, $FF000000) ;

GetGmtDelta := internalGmtDelta;

End;

End;

Procedure SetGmtDelta(Var myLocation: Location; myGmtDelta: Longint);

Var

tempSignedByte: SignedByte;

BEGIN

WITH myLocation DO BEGIN

tempSignedByte := dlsDelta;

gmtDelta := myGmtDelta;

dlsDelta := tempSignedByte;

END;

END;

The Script Manager

In C:

long GetGmtDelta(MachineLocation myLocation)

{
long internalGMTDelta;

internalGMTDelta = myLocation.gmtDelta & OxOOffffff;

if ((internalGMTDelta >> 23) & 1) // need to sign extend

internalGmtDelta = internalGmtDelta | Oxff000000;

return (internalGmtDelta) ;

void SetGmtDelta(MachineLocation *myLocation, long myGmtDelta)

{
char tempSignedByte;

tempSignedByte = myLocation->dlsDelta;

myLocation->gmtDelta = myGmtDelta;

myLocation->dlsDelta = tempSignedByte;

abel

(from GMT)

|
180 ldegree 1minute 1 second 1 foot

degrees (69mi) (1.2mi) (102 ft)

Figure 9-Locations

Dates 31

NN _—_ ETO

Inside Macintosh Chapter Addition

Setting Latitude, Longitude, and Time Zone cdev

This new Control Panel module on the utilities disk allows the user to set the latitude, longitude, |
and time zone. The values are stored in parameter RAM on the host machine. (See the Map cdev
documentation for more details).

Control Panel

Latitude

Longitude

Time Zone

mi 5470

Figure 10-Map

Numbers

The new number routines supplement SANE, allowing applications to display formatted numbers
in the manner of Microsoft Excel or Fourth Dimension, and to read both formatted and simple
numbers. The formatting strings allow natural display and entry of numbers and editing of format
strings even though the original numbers and the format strings were entered in a language other
than that of the final user.

Number parsing is based on a NumberParts table that describes the essentials of numeric
display for a particular language, including such components as thousands separator, decimal
point, scientific notation, forced zeroes in the absence of significant digits, etc. A default

NumberParts table for each locale’s system resides in the 'it 14 ' resource for that system.

In Pascal:

NumberParts = RECORD

version: integer;

data: array [tokLeftQuote..tokMaxSymbols] OF WideChar;

pePlus, peMinus, peMinusPlus: WideCharArr;

altNumTable: WideCharArr;

reserved: packed array [0..19] of Char; (must be zeroed!}

END;

The Script Manager

Inc:

struct NumberParts {

short version;

WideChar data[31]; /*index by [tokLeftQuote..tokMaxSymbols]*/

WideCharArr pePlus;

WideCharArr peMinus;

WideCharArr peMinusPlus;

WideCharArr altNumTable;

char reserved[20];

;

Here is an example of how to access the 'it14' default NumberParts table:

In Pascal:

Function DefaultParts(Var x: NumberParts): Boolean;

Var

itl4: Itl4Handle;

Begin

DefaultParts := false; {assume error}

itl4 := itl4Handle(IUGetIntl(4)); {get itl4 record)

if itl4 <> nil then begin {if ok}

x := NumberPartsPtr(ord(itl14%)+itl4**.defPartsOffset) *;

{number parts subtable}

DefaultParts := true; {no error}

end;

End;

ing:

DefaultParts(NumberParts *x)

{

Itl4Handle itl4;

itl4 = (Itl4Handle) IUGetInt1(4);

if € Tela)« 4

*x = *((NumberPartsPtr) ((char *) (*itl4) + ((*it14)->defPartsOffset)));

return(l1);

}

return (0);

}

The user provides a format descriptor string very similar to Fourth Dimension’s. This format
string is translated by Str2Format in a canonical format which is transportable between different
languages such as French, English, and Japanese. The canonical format is stored in a record called
NumFormatString. This record’s structure is as follows:

In Pascal:

NumFormatString = PACKED RECORD

fLength: Byte;

fVersion: Byte;

data: PACKED ARRAY [0..253] OF SignedByte; {private data}
END;

Ee a ee ee ee

Numbers 33

Inside Macintosh Chapter Addition

In C:

struct NumFormatString {

char fLength;

char fVersion;

char data[254]; /*private data*/

dF

The format descriptor string may be broken into as many as three parts: positive, negative, and
zero. For example, the number 3456.713 used with the canonical format produced from
“Ht THE HE, EA)” will produce the string representation “3,456.7” in the United States. In
Switzerland the same canonical format would be displayed as “‘#.###,#;(#.#4##,#),” and the
number displayed with this format would be “3.456,7.”

The number formats include the following features (the defaults for the U.S. are listed following):

Separators:

decimal separator (.), thousands separator (,)

Example: format string: ##Ht,##Ht.O#H#,#HHF
1 —> 1.0
1234 —> 1,234.0
3.141592 —> 3.141,592

Digits:

zero digit (0), skipping digit (#), padding digit (“), padding value (NBSP)

Example: format string: ###;(000);“™
1 —> 1

-1 —> (001)
0 —> 0

The number format routines always fill in digits from the right or from the left of the

decimal point.

Example: format string: ####‘foo’##H
123f00456 —> 123f00456
22f0044 —> 2f00244
123foo —> 123

Example: format string: 0.####‘ foo’ ##Ht
0.f00123 —> 0.123
0.1f00456 —> 0.145fo006
0.1456 —> 0.145fo06

Formats using zero and skipping digit characters do not allow extension beyond the

minimum number of digits specified to the right or left of the decimal place. For example:

users must provide the desired maximum digits on the left: e.g., #,#H##,#H## instead of

####. X2FormStr will return a result of format Overflow when the number contains

more digits to the left of the decimal point than specified in the format string. Input values

with more digits to the right of the decimal point than there are digits allowed in the format

string will be rounded on output.

34

The Script Manager

Example: format string: ##Ht.tHHT
1234.56789 —> formatOverflow on output
1.234999 —> 1.235

Control:

left quote (‘), right quote (’), escape quote (\), sign separator (;)

Example: format string: ###‘CR’;####DB’;‘Vzero\’’
1 —> 1CR
-1 —> 1DB
0 —> ‘zero’

Marks:

plus (+), minus (-), percent (%), positive exponent (E+), negative exponent (E-), mixed
exponent (E)

Example: format string: ##%
0.1 —> 10%

There is a limitation creating format strings with exponential notation: the user must
always place zero leaders immediately after the exponent marks and skipping digits before,
when more than one digit must be represented between the exponent and the decimal point.

Example: format string: ##.#HHHE+0
1.23E+3 —> 1.23E+3

The sign of exponents must be made explicit in the format string by using ePlus (E+) or
eMinus (E-) format. eMinusPlus notation (E) is only used in the input number string to
specify a positive exponent when the sign of the format string exponent is negative.

format ~ exponent sign -
ePlus ePlus(E+) eMinus(E-)
eMinus eMinusPlus(E) eMinus(E-)

Use ePlus notation in the format string to specify negatively or positively signed exponents
in the input number string:

Example: ePlus format string: #.#E+#
1.2E-3 —> 1.2E-3
1.2E+3 —> 1.2E+3

Example: eMinus format string: #.4#E-#
1.2E-3 —> 1.2E-3
1.2E3 —> 1.2E3 (i.e., 1200)

Literals:

unquoted literals ({]$:(){}), literals requiring quotes (ABC...)

Example: format string: [###‘ Million ’### Thousand ’###]
300 —> [300]
3000000 —> [3 Million 000 Thousand 000]

Numbers 35

Inside Macintosh C hapter Addition

A typical scenario consists of the application reading the default NumberParts table from
'it14'. One provides a format definition string, such as the string “#.##+#,#;(#.44#,#)” of the ;
above example, as a template for whatever field one is currently working in. The application Ld
submits that string to Str2Format, which returns a canonical format string corresponding to the
user’s input. This canonical format, rather than the raw format definition string, is stored in the
document. The program can convert the canonical format back to a user-editable string using the
Format2Str routine.

When a number is to be displayed, the application passes the number and canonical format to
FormatX2Str to produce a formatted number that the application then displays in that field. If
the user types a string into the field, then Format St r2X can be used with the canonical format
for the field to read formatted numbers. That is, the user can type “(3.678,9)” and have the
number interpreted correctly.

The § cript Manager

Converting to Canonical Formats

Ca) In Pascal:

FUNCTION Str2Format (inString: Str255;partsTable: NumberParts;

VAR outString: NumFormatString): FormatStatus;

InC:

pascal FormatStatus Str2Format(const Str255 inString,const NumberParts *partsTable,

NumFormatString *outString);

Str2Format converts a string typed by the user into a canonical format. It checks the validity of
the format string itself and also that of the NumberParts table, because the NumberParts table
is programmable by the application.

Format

HH HHH OO; (##, #H##.00)
NumberParts

Table

(Englis!
Canonical Format

Figure 11-Str2Format

Numbers 37

Inside Macintosh C. hapter Addition

Displaying the Canonical Format String

In Pascal:

FUNCTION Format2Str(myCanonical: NumFormatString;partsTable: NumberParts;

VAR outString: Str255;VAR positions: TripleInt): FormatStatus;

In C:

pascal FormatStatus Format2Str(const NumFormatString *myCanonical,

const NumberParts *partsTable,Str255 outString,TripleInt *positions);

Format 2Str creates the string corresponding to a format definition string which has been created
by a prior call to Str2Format and according to the NumberParts table. It is the inverse
operation of Str2Format. This allows programs to display previously entered formats for users
to edit.

Canonical Format

NumberParts

Table

(Frenc! Pecaiit

#Ht HHO; (Ht HH ,O0)

Figure 12—Format2Str

38

The Script Manager

Formatting Numbers

In Pascal:

FUNCTION FormatX2Str(x: Extended;myCanonical: NumFormatString;partsTable: NumberParts;

VAR outString: Str255): FormatStatus;

InC:

pascal FormatStatus FormatX2Str (extended x,const NumFormatString *myCanonical,

const NumberParts *partsTable,Str255 outString);

This routine creates a textual representation of a number according to a canonical format which has
been created by a prior call to Str2Format.

NumberParts

Canonical Format

(Englis!
Formatted String

(3,456.70)

Figure 13-FormatX2Str

Numbers 39

Inside Macintosh Chapter Addition

Reading Formatted Numbers

In Pascal:

FUNCTION FormatStr2X(source: Str255;myCanonical: NumFormatString;partsTable: NumberParts;
VAR x: Extended): FormatStatus;

Inc:

pascal FormatStatus FormatStr2X(const Str255 source,const NumFormatString *myCanonical,

const NumberParts *partsTable,extended *x);

This routine reads a textual representation of a number according to a canonical format which has
been created by a prior call to Str2Format, and creates an extended floating point number which
corresponds to that string.

Internally, the routine converts the string into a format acceptable to SANE, matching against the
three possible patterns in the canonical format. If the input string does not match any of the
patterns, then Format St r2X parses the string as best it can returning the result. Currently it is
converted to a simple form, stripping non-digits and replacing the decimal point, before calling
SANE.

Formatted String

(3.456,70)
NumberParts

Table

Canonical Format

(Frencl Extended

—3456.7

Figure 14-FormatStr2X

40

an

The Script Manager

a a
Summary of Routines

The updated MPW 3.0 interface files for the Script Manager 2.0 routines are available on

AppleLink in the Developer Services Bulletin Board (Developer Services:Developer Technical

Support:Macintosh:Latest MPW Interfaces) and from APDA as part of the MPW 3.0 final product.

Further Reference:
° Inside Macintosh, Volume V-293, The Script Manager
¢ Script Manager Hints and Recommendations (APDA)

a ee ee ee

Numbers 41

Inside Macintosh Interim Chapter Draft

Translating Between Character Sets

Written by: Karl Young May 25, 1987

Last Revision: Mark Davis & Karl Young July 8, 1987

Synopsis

This document describes a method for converting (or, more correctly, transliterating) be-
tween different character sets. It defines a standard interface for calling a procedure for the
transliteration. It describes the way procedures are stored as resources and how to describe
a family of such procedures.

Motivation

Two current Macintosh applications have shown need for transliterating characters between
different character sets, and there are many more.

Apple File Exchange transliterates files between IBM PC compatibles, the Apple II family,
and the Macintosh. Each has a different character set which, especially in the case of the PC
and Apple II, can vary from language to language and country to country.

Any telecommunications program that emulates terminals must deal with the varying char-
acter sets of each terminal. Once again, character sets on terminals vary on domestic and
foreign versions.

It is difficult (and inelegant) to place the knowledge of all possible character sets into the
code of the application. This document proposes a character conversion architecture using
transliteration definition procedures for converting between different kinds of character
sets. The main goals are to provide (a) a consistent interface for definition procedures, and
(b) an extendable structure that allows new character sets to be handled by installation of
new definition procedures.

Character Sets

We often describe the character set in terms of a machine that uses that character set. For
instance, while the Macintosh, Apple II and IBM PC all use ASCII for the basis of their
characters sets, they all have different extensions to ASCII which have different
repertoires, and are coded differently. Each of these different encodings forms a different
character set.

Similar character sets may also be slightly different in different countries. For example, the
French version of EBCDIC is different from the English version. The German variant of
ASCII substitutes umlauted characters (“a’”,““6”,“ii””) for ASCII punctuation (“[”,“/’,“]”).
Each of these minor variations also form a different character set. These variant character
sets are grouped as a character set family.

Inside Macintosh Interim Chapter Draft Page 1 Translating Between Character Sets

In general, characters sets may be composed of a number of subsets. For example, Xerox
or ISO character sets are shifting character sets, allowing shifting between different
character subsets by means of escape codes. On other machines, such as the Macintosh, the
character set information is encoded by means of the font family number. The character
conversion architecture treats different subsets as different character sets belonging to a
character set family.

Character set families are distinguished by numbers, ranging from 0 to 32767. They are
referenced below as being defined by:

Type CharFam = Integer;

An initial list of CharFam values consists of the following:
cfMacintosh

cefAScII

cfIBMPC

cfIBMPS2

cfEBCDIC

cfISo8s59

cf1IS06937

cfXerox

Countries are also numbered by country code, as initially defined in the International
Utilities Package chapter of Inside Macintosh. Further country codes are defined in MPW
equate files. Note that the term really refer to regions rather than countries: a country
(Canada, Belgium, Switzerland) may contain a number of regions, each with its own
country code. Country codes are defined as:

Type CntryCode = Integer;

tou bw tot town

a

Transliteration Procedure

Transliteration procedures can reside in application files, common resource files or in the
system file. There may be many transliteration procedures (or TProc’s for short) available
in a particular resource file. Each TProc handles the transliteration from a particular source
character set to a particular destination character set.

The call to the transliteration procedure can be described in Pascal as follows:

Function Translit (params: TransPB): OSErr;

Type TransText = record

trPtr: Ptr;

trLen: Longint;

trFont: Integer;

end;

TransPB = record

verb: Integer; {i}

featureFlags: Integer; {i}

result: OSErr; {o}

newCountry: Integer; {io}

srcText: TransText; {io,io,i}

dstText: TransText; {io, io, io}

reserved: Array [0..3] of Longint;

Inside Macintosh Interim Chapter Draft Page 2 Translating Between Character Sets

result:

The function returns an error code (type OSERR) describing any error conditions that oc-
curred during transliteration. This result is duplicated in the result field. In addition to the
standard OSErr codes we define the following termination results for TProc’s:

tDstTooShort = -501; { destination buffer too short }

tSubsetSwitch = =502; { source changed character subset }

tPartialChar = -503; { source ends with partial character }

verb:

The verb can have the following values:

transInit = 0;
transDone = i;

transLowToHigh = 2;
transHighToLow = 3;

Any other values are ignored (in current versions). The transInit and transDone verbs are
called initially and finally for initialization and cleanup. Each transliteration procedure
translates between two character sets. The transLowToHigh call translates from lower
numbered character set to the larger number character set (e.g. Mac to IBM PC). The
transHighToLow Call translates in the reverse direction.

featureFlags:

The feature flags word contains a number of bits for selecting different variations of
transliteration:

trMultiDestFont = ss {allow multiple destination fonts}

trMultiDestCountry = 2; {allow multiple destination countries}

trNonOneToOne = 4; {allow one:many or many:one conversions}

trOverStrike = 8; {allow overstrike output, e.g. A~Backspace-~ }

newCountry:

When a TProc is first used, this parameter should be set to -1 on input. On output, it
reflects the country code that should be used for the next conversion (see below). If
trMultiDestCountry is 0, this will always be the same as the current country. This
parameter is used internally to insert control codes for shifting character sets.

srcText.trPtr, dstText.trPtr:

On input, these parameters are pointers to the source and destination buffers, respectively.

srcText.trLen, dstText.trLen:

As input, these parameters contain the size (in bytes) of the source and destination buffers,
respectively. As output, srcText.trLen contains the number of bytes of the source string
remaining that were not used; dstText.trLen contains the number of bytes remaining in the
destination buffer.

Note that the number of bytes converted in the output text may differ from the number of
bytes used in the input text for a number of reasons:

1. The destination may not be large enough for the required conversion; note that
conversions may convert many bytes to one or vice versa unless tNonOneToOne
is 0.

2. The input text may contain a partial character: the last byte may be part of a multi-
byte character.

Inside Macintosh Interim Chapter Draft Page 3 Translating Between Character Sets

3. To represent the input text on the specified machine, the font may need to be
changed. For example, a symbol may be available in the source that is only avail-
able in the Symbol font on the Macintosh.

srcText.trFont, dstText.trFont:

These parameters contain the source and destination font numbers, respectively. For
conversion to the Macintosh, these numbers are standard Font Manager font family
numbers. For other machines distinguishing character sets by fonts, the font number may
be different. A value of zero should refer to the standard (or system) font, while a value of
one should refer to the common application font (which may be the same as the system
font). On output, the dstText.trFont may contain a different font number, indicating that the
proper representation of the text requires that font or an equivalent (e.g. Symbol). If the
trMultiDestFont flag is 0, the output font will never differ from the input font: fallback
characters will be used instead.

reserved:

This space should be zeroed on input.

Using the Transliteration Procedure

To use a transliteration procedure, the application should get the resource, lock it down for
the duration, and jump to the start of the handle contents. (In Pascal, this can be done by
recasting using a procedure pointer.) The srcSubset and dstSubset should be set to the ini-
tial character subset or font number (zero if unknown). The user must unlock the resource
when done (after making the transDone call).

The transliterate routine will translate characters into the destination country and font (say,
Times) as long as it can. If it is forced to stop because the source has changed to a font or
country that it cannot handle, then it will indicate this by setting the destination country and
font, and returning the error subset Switch. If the country changes, then the application
should switch to a transliteration procedure that can handle that country (see below).

TProcs that handle shifting character sets should return the lowest-numbered country code
for a TProc that will handle the new text.

As a general rule, control characters are not transliterated. Exceptions are in cases where
characters are composed (e.g. in ISO 6937 where A equals A-Backspace-*), or where
characters are represented by shifting to another graphic character set on one machine, but
are single character on another.

Transliteration Procedure Resources

Transliteration procedures are stored as resources with type 'tprc'. The resources have a
header of the form (in pseudo-Pascal):

Record

{standard header}

branch: Integer; {BSR.S Code instruction}

flags: Integer; {flag bits}

rType: ResType; {'tpre™)}

id: Integer; {resource id number}

version: Integer; {version number}

{tProc information}

lowCountry: CntryCode; {Macintosh country code}

Inside Macintosh Interim Chapter Draft Page 4 Translating Between Character Sets

lowCharFam: CharFam; {E.g. IBM PC Character set, French EBCDIC}

highCountry: CntryCode; {Macintosh country code}

highCharFam: CharFam; {E.g. Macintosh Character set}

reserved: Array [0..3] of Longint;

End;

The resource ID numbers are assigned serially by Technical Support. The name of each
resource should indicate the kind of transliteration that will be going on: e.g., “Mac to
VT100,” “Mac to Apple Ile,” “EBCDIC to Mac,” etc. The country names can be gotten
from the TProc family (see below).

The flags bits indicate which of the featureFlags the TProc will support. The low country is
always the smaller number of the two countries that are translated between; the
lowCharFam is the CharFam associated with the lowCountry.

One anticipated use of the resource name will be to display a list to users (say, of a terminal
emulation program) so they can choose the appropriate transliteration. Remember that the
resource names can be localized, so a program can’t necessarily depend on a certain name
being present.

Transliteration Procedure Families

A TProc family is described by another resource, with resource type 'tprf’. It provides a
way of finding the appropriate TProc for the countries and character sets involved. Note
that the TProcs contain the specification information in their headers, so the TProc families
(except for their names) can be reconstructed from the available TProcs.

The resource ID of this resource corresponds to the country code, and lists all of the
available TProcs that transliterate to and from that country. The name of the resource also
corresponds to the appropriate country, in the language of the host machine. Since this
name may also be localized, programs cannot depend upon the names being constant.

The form of a TProc family resource is described as follows:

TPRF = RECORD

lastEntry: Integer;

reserved: Array[0..31] of Integer;

TProcs: Array[0..lastEntry] of TPRCEntry;

END;

The lastEntry field can be used to find the number of TPRC entries described in this
family. The reserved field is for future extensions. The TProcs field is an array with
lastEntry+1 elements, each element of the form described below:

TPRCEntry = RECORD

tprcID: Integer;

curCharFam: CharFam;

altCountry: CntryCode;

altCharFam: CharFam;

end;

The tpreID field contains the resource ID of the 'tprc' resource which will transliterate
between the given countries and character sets, where the current country is derived from
the family resource id. The curCharFam field contains the character set family number
associated with the family’s country.

The altCountry field contains the country code for the second country. As noted earlier,
this will most often be the same as the current country, but it need not be. The
altCharFam field contains the second character set family number. Each TProc may have
two entries: one in the TProc family for the lowCountry, and one for the highCountry. It
will have only one entry when the low and high countries are identical.

Inside Macintosh Interim Chapter Draft Page 5 Translating Between Character Sets

Using Transliteration Procedure Families

How an application uses a TProc family depends upon the amount of user interaction that
can be required. An application can infer the current source and destination country from
the international resource 0 (use IUGetIntl). Likewise, the user might want to choose from
the list of available countries (which is a list of the names of the ‘tprf' resources) for both
the source and destination country.

For terminal emulation, either the source or the destination will always be the Macintosh,
but the source and destination countries may vary.

Given a particular source and destination machine, the application can investigate the ap-
propriate TProc family for the appropriate TProc. In the case of Apple File Exchange,
where outside parties are writing file translators, the transliteration part of their code is
abstracted so the translator will work across all countries without any further localization.

Inside Macintosh Interim Chapter Draft Page 6 Translating Between Character Sets

Human Interface qt Notes

Note #0 Welcome to Human Interface Notes April 1990

Human Interface Note #0 (this document) accompanies each release of Human Interface

Notes. This release includes Human Interface Notes 7-8. These documents are written

and produced by the Macintosh Human Interface Group and published in conjunction with

Developer Technical Support for all Apple developers.

These documents correct and enhance the Human Interface Guidelines: The Apple Desktop

Interface; they also incorporate and supersede the previously released “Human Interface

Updates.” This means that all you need is the Human Interface Guidelines and these

documents to stay abreast of the latest recommended interface guidelines (unless, of

course, you want to be on the very cutting edge of interface technology and read Tog’s

article in Apple Direct every month). These documents and the book will eventually be

incorporated into a single, comprehensive human interface reference, but you’ll need both

until that time.

These documents are not done in a vacuum. Many of the guidelines you see are a direct

result of developer feedback. If you have any questions or ideas for interface extensions or

clarifications, please contact the Macintosh Human Interface Group at one of the following

electronic addresses:

AppleLink: MaclInterface

Internet: MacInterface@A ppleLink.Apple.com

We want Human Interface Notes to be distributed as widely as possible, so they are sent to

all Partners and Associates at no charge; they are also posted on AppleLink in the

Developer Services bulletin board and other electronic sources, including the Apple FTP

site (IP 130.43.2.2).

We place no restrictions on copying Human Interface Notes, with the exception that you

cannot resell them, so read, enjoy, and share. We hope these guidelines provide you with
lots of useful information while you are developing software for Apple computers. The

following page lists all Human Interface Notes that have been released.

Human Interface Note #0 Page 1 of 2 Welcome to Human Interface Notes

Released Human Interface Notes April 1990

* * New

R Revised (Supersedes Human Interface Update)

Number Title Released
1 User Observation: Guidelines for Apple Developers 1/90
2 Design Principles for On-Line Help Systems 1/90
3 Dueling Metaphors: the Desktop & HyperCard 1/90
4 Movable Modal Dialog Boxes 1/90
5 What “Cancel” Means 1/90
6 Window Positions 1/90

ee | Who’s Zooming Whom? 4/90
mee 8 Keyboard Equivalents 4/90

Human Interface Note #0 Page 2 of 2 Welcome to Human Interface Notes

(>) Human Interface J’, Notes

Note #1 User Observation: Guidelines for Apple Developers

Written by: Kathleen Gomoll & Anne Nicol January 1990
(Supersedes Human Interface Update #11)

Discussion of guidelines for user observation.

Introduction

User testing covers a wide range of activities designed to obtain information on the

interactions between users and computers. Most user testing requires considerable

expertise in research methods, as well as skill in using complex data collection tools. For

example, user testing techniques include: interviews, focus groups, surveys, timed

performance tests, keystroke protocols, and controlled laboratory experiments. Of the

many user testing techniques available, user observation is one technique that can be used

by anyone with a concern for including the user in the product development process.

User observation involves watching and listening carefully to users as they work with a

product. Although it is possible to collect far more elaborate data, observing users is a

quick way to obtain an objective view of a product.

When to observe users

User observation should be an integral part of the design process—from the initial concept

to the product’s release. Software design that includes user observation is an iterative

process; user feedback provides the data for making design modifications.

As Figure 1 demonstrates, this iterative process assumes that preliminary human interface

designs should exist prior to the development of underlying code. Interface designs should

be tested frequently to determine which design should be implemented. Then, as the code

develops, the entire product should be tested and revised several times.

Human Interface Note #1 Page 1 User Observation

Design

Prototype Test
With Users

Figure 1-User observation in software design

Preparing for a user observation

Set an objective

Before you do any testing, you should take time to figure out what you’re testing and what

you’re not. In other words, determine an objective for your test that focuses on a specific

aspect of the product. By limiting the scope of the test, you’re more likely to get

information that helps you solve a specific problem.

Design the tasks

Your test participant will work through one or more specific tasks. These tasks should be

real tasks that you expect most users will do when they use your product. The entire user

observation should not run over an hour, so you should design tasks that focus on the part

of the product you’re studying. For example, if you want to know whether your menus

are useful, you could design a task that requires the participant to access the menus

frequently. After you determine which tasks to use, write them out as short, simple

instructions.

Important: Your instructions must be clear and complete, but they should
not explain how to do things you’re trying to test. For example, if you

want to find out whether users can navigate through your program easily,

don’t give them instructions for navigation. Or, if you want to know
whether your interface is self-explanatory, don’t describe how it works.
This concept is extremely important to remember. If you teach your
participants about something you’re trying to test, your data will not be
useful.

Human Interface Note #1 Page 2 User Observation

Decide upon the use of videotape

Although you can observe users effectively without using special recording equipment, you

may want to use videotape to capture the entire session. By videotaping the session, you

collect an enormous amount of valuable information that you can review and analyze after

the test is over. If video equipment is not available, a tape recorder can be helpful for

recording what is said during the test.

Determine the setting

The ideal setting for user observation is a quiet, enclosed room with a desk, the appropriate

hardware and software, a video camera, and two microphones (one for you and one for the

participant). Of course, you may not have all these things available when you need to

observe; therefore, you should try to approximate the ideal setting as closely as you can. If

you have to conduct the observation in a regular office, ask the people around you to keep

the noise level down during the observation. The key is to make the environment as

interruption-free as possible. Get the participants out of their offices, away from phone

calls and people who might drop by.

Find representative users

When looking for participants, try to find people who have the same experience level as the

typical user for your product. Don’t ask people you work with regularly to be participants

because they are probably familiar with your product or your opinions about the product.
Generally, you should look for people who are familiar with the hardware you use but are
not familiar with your product.

You may want to ask pairs of people to work together on your tasks. You’ll find that
people working in pairs usually talk more than people working alone, and they also tend to

discuss features of the product and explain things to each other.

10 steps for conducting a user observation

The following instructions guide you through a simple user observation. Remember, this
test is not designed as an experiment, so you will not get statistical results. You can,

however, see where people have difficulty using your product, and you can use that

information to improve it.

These instructions are organized into steps. Under most of the steps, there is some

explanatory text and a bulleted list. The bulleted list contains sample statements that you

can read to the participant. (Feel free to modify the statements to suit your product and the

situation.)

Human Interface Note #1 Page 3 User Observation

1. Introduce yourself.

2. Describe the purpose of the observation (in general terms).

Set the participant at ease by stressing that you’re trying to find problems in the

product. For example, you could say:

¢ You’re helping us by trying out this product in its early stages.
¢ We’re looking for places where the product may be difficult to use.

* If you have trouble with some of the tasks, it’s the product’s fault, not

yours. Don’t feel bad; that’s exactly what we’re looking for.

¢ If we can locate the trouble spots, then we can go back and improve the

product.
¢ Remember, we’re testing the product, not you.

3. Tell the participant that it’s okay to quit at any time.

Never leave this step out. Make sure you inform participants that they can quit at any

time if they find themselves becoming uncomfortable. Participants shouldn't feel like

they’re locked into completing tasks. Say something like this:

“Although I don’t know of any reason for this to happen, if you should

become uncomfortable or find this test objectionable in any way, you are

free to quit at any time.”

4. Talk about the equipment in the room.

Explain the purpose of each piece of equipment (hardware, software, video camera,

microphones, etc.) and how it is used in the test.

5. Explain how to “think aloud.”

Ask participants to think aloud during the observation, saying what comes to mind as

they work. By listening to participants think and plan, you can examine their

expectations for your product, as well as their intentions and their problem solving

strategies. You’ll find that listening to users as they work provides you with an

enormous amount of useful information that you can get no other way.

Human Interface Note #1 Page 4 User Observation

Unfortunately, most people feel awkward or self-conscious about thinking aloud.

Explain why you want participants to think aloud, and demonstrate how to do it. For

example, you could say:

¢ We have found that we get a great deal of information from these
informal tests if we ask people to think aloud as they work through the
exercises.

¢ It may be a bit awkward at first, but it’s really very easy once you get
used to it. ,

¢ All you have to do is speak your thoughts as you work.
¢ If you forget to think aloud, Ill remind you to keep talking.
« Would you like me to demonstrate?

6. Explain that you cannot provide help.

It is very important that you allow participants to work with your product without any

interference or extra help. This is the best way to see how people really interact with

the product. For example, if you see a participant begin to have difficulty and you

immediately provide an answer, you lose the most valuable information you can gain

from user observation—where users have trouble, and how they figure out what to do.

Of course, there may be situations where you have to step in and provide assistance,

but you should decide what those situations might be before you begin testing. For

example, you may decide that you can allow someone to flounder for at least 3 minutes

before you provide assistance. Or, you may decide that there is a distinct set of

problems with which you can provide help.

As a rule of thumb, try not to give your test participants any more information than the

true users of your product will have. Following are some things you can say to the

participant:

¢ As you’re working through the exercises, I won’t be able to provide
help or answer questions. This is because we want to create the most
realistic situation possible.

¢ Even though I won’t be able to answer your questions, please ask them
anyway. It’s very important that I capture all your questions and
comments on tape.

¢ When you’ve finished all the exercises, I’ll answer any questions you
still have.

Human Interface Note #1 Page 5 User Observation

7. Describe the tasks and introduce the product.

Explain what the participant should do and in what order. Give the participant written

instructions for the tasks.

Important: If you need to demonstrate your product before the user
observation begins, be sure you don’t demonstrate something you’re trying
to test. (For example, if you want to know whether users can figure out
how to use certain tools, don’t show them how to use the tools before the
test.)

8. Ask if there are any questions before you start; then begin the

observation.

9. Conclude the observation.

When the test is over:

* explain what you were trying to find out during the test.
* answer any remaining questions the participant may have.
¢ discuss any interesting behaviors you would like the participant to

explain.

10. Use the results.

As you observe, you see users doing things you never expect them to do. When you

see participants making mistakes, your first instinct may be to blame the mistakes on

the participant’s inexperience or lack of intelligence. This is the wrong focus. The

purpose of observing users is to see what parts of your product might be difficult or

ineffective. Therefore, if you see a participant struggling or making mistakes, you

should attribute the difficulties to faulty product design, not to the participant.

To get the most out of your test results, review all your data carefully and thoroughly

(notes, the video tape or cassette tape, the tasks, etc.). Look for places where

participants had trouble, and see if you can determine how your product could be

changed to alleviate the problems. Look for patterns in the participants’ behavior that

might tell you whether the product was understood correctly.

It’s a good idea to keep a record of what you found during the test. That way, you

have documentation to support your design decisions and you can see trends in users’

behavior. After you’ve examined the results and summarized the important findings,

fix the problems you found and test the product again. By testing your product more

than once, you can see how your changes affect users’ performance.

Human Interface Note #1 Page 6 User Observation

Human Interface J", Notes

Note #2 Design Principles for On-Line Help Systems

Written by: Kathleen Gomoll & Anne Nicol January 1990
(Supersedes Human Interface Update #12)

Discussion of a set of criteria and guidelines for on-line help.

Introduction

As part of an ongoing effort to design and support a consistent interface to on-line help for

our computers, Apple has been developing a set of criteria and guidelines for on-line help.

These criteria are based on observations of users in our lab, reviews of the research,

requests and comments from our developers, and—last, but not least—the Human

Interface Guidelines: The Apple Desktop Interface. This is a working document. It reflects

Apple’s current view on designing on-line help, and we will probably revise and expand it

as we progress. In the future, we intend to distribute specific guidelines regarding access

to on-line help and the display of help information. Ultimately, we hope to supply toolbox

support for the interface features that we find, through user testing, to be most effective.

This document is divided into three sections: Principles, General guidelines, and Hints for

structure and organization. The Principles section reflects Apple’s underlying design

philosophy for on-line help. The General guidelines section puts guidelines for designing

on-line help into the context of the principles outlined in Human Interface Guidelines.

Finally, the Hints section lists suggestions for organizing and structuring help information.

These hints come from developers and from current research.

Principles

On-line help should never be a substitute for good interface design.

This is our first and foremost principle. Before setting out to build a help system that

“explains” a difficult interface, try to identify what makes the interface difficult—and fix the

problems. When you have made your interface as clear as it can be, then develop a help
system that aids users as they work.

Human Interface Note #2 Page 1 On-Line Help

Help should be context-sensitive; it should not take the user away
from the task at hand.

Perhaps the biggest complaint users have about help systems is that they don’t want to

leave their current application to get help. When users are forced to leave the context of

their problem, they often forget the specifics of the problem. Also, users often have

trouble applying the help information once they get back to the application because the help

is no longer visible.

Help systems should assist users in framing their questions and

provide different types of help for different questions.

When users need help, they often turn to local experts and ask questions. Human experts

are often able to help users frame their questions so they can get the appropriate answer.

Once the right question has been asked, help can be delivered quickly. Users’ questions

fall into a relatively small number of distinct categories, and those categories call for

different types of assistance. For example, we can make a clear distinction between the

question “What is this?” and the question “How do I do this?”

Help systems should be dynamic and responsive to individuals.

Different users need different kinds of help because they have individual learning styles and

needs. For example, some users may want to be shown exactly how to do something,

while others may want to explore and learn by their mistakes. If possible, on-line help

systems should make use of the user’s competence, learning style, level of experience and

past actions to provide appropriate help.

Users shouldn’t need help on how to get help.

Help systems should be structurally simple and self-explanatory. Although your help

system may require a few words of instruction (like “click here” or “select a topic”), don’t

fall into the trap of turning your help system into a complicated application that requires

lengthy instructions.

General Guidelines

Make help accessible through recognition, not recall.

See-and-point (instead of remember-and-type): Users can choose any available action at

any time—without having to remember a particular command or name. This paradigm

requires only recognition, rather than recall, of the desired activities.

Human Interface Note #2 Page 2 On-Line Help

Put the help system under the user’s control.

Direct manipulation: Users want to feel that they are in charge of the computer’s activities.

The user, not the computer, initiates and controls all actions. If the user attempts

something risky, the computer provides a warning, but allows the action to proceed if the

user confirms it. This approach “protects” the beginner but allows the user to remain in

control.

Support exploratory behavior by making an interactive help system.

User Control: People learn best when they’re actively engaged. Too often, however, the

computer acts and the user merely reacts within a limited set of options. Allow users to try

things out.

Place help options where they are visible to the user.

Direct manipulation: Users want topics of interest to be highlighted. They want to see
what functions are available at any given moment.

See-and-point: Users rely on recognition, not recall; they shouldn’t have to remember
anything the computer already knows.

Use graphics, animation, and sound.

Principles of Graphic Communication: The real point of graphic design, which comprises
both pictures and text, is clear communication. In the Apple Desktop Interface, everything
the user sees and manipulates on the screen is graphic.

Metaphors from the real world: Whenever appropriate, use audio and visual effects that
support a real-world metaphor. Use animation for modeling user actions. Use sound for

orienting attention and reinforcing information.

Hints for Structure and Content

On-line help should not be simply an on-line version of the print
documentation.

As a method for communication, computers provide opportunities that books can’t
provide. Use the computer’s capacity to its fullest by designing a help system that brings
help to the user rather than requiring the user to page through an on-line book. Use the
computer to link information in useful ways, and to create graphics, sound, animation, and

examples.

Human Interface Note #2 Page 3 On-Line Help

Organize the help system in very small, addressable chunks of
information.

By creating a help system that is modular, you allow tremendous flexibility. Small chunks

of information can be grouped in strategic ways to provide users with only the most

relevant information.

Include both search and browse capabilities.

Build a “find” feature into your help system to allow users to quickly search for specific

topics. Also allow users to browse through available help topics, since it’s often easier to

recognize a topic than to think of an appropriate keyword.

Allow users to discard help.

Users should never be forced to use the help system to use an application. A help system

should always be an optional aid.

Make the help system customizable and editable.

To make the most efficient use of a help system, users should be able to customize and edit

the information to suit their own needs. For example, users may want to put a marker on a

piece of information they access frequently, or they may want to eliminate or change

information that doesn’t suit their needs.

Include help information that can be delivered automatically.

Sometimes users make the same error repeatedly. Rather than waiting for the user to ask

for help, the help system should be able to detect problems and offer help automatically.

Incorporate hypertext features for linking information.

Hypertext allows users to press “buttons” to receive context-sensitive help in as much or as

little depth as they require. By linking chunks of help information in logical ways, you can

develop a help system that is responsive to users’ immediate needs.

Use the help system to inform users about short-cuts.

Short-cuts are facts that experts typically know. A help system that volunteers answers

without forcing users to ask questions can help novices become experts.

Human Interface Note #2 Page 4 On-Line Help

Suggested Readings

Apple Computer, Inc. (1987). Human Interface Guidelines: The Apple Desktop Interface.
Reading, MA: Addison-Wesley Publishing Co.

Borenstein, N.S. (1985). The Design and Evaluation of On-line Help Systems. Ph.d
thesis, Carnegie-Mellon University.

Christensen, M. (1984). Background for the Design of an Expert Consulting System for
On-line Help. Thesis proposal, Temple University.

Owen, D. (1986). Answers first, then questions. In D.A. Norman & S.W. Draper (Eds.),
User Centered System Design, (p. 361-375). Hillsdale, NJ: Erlbaum.

Human Interface Note #2 Page 5 On-Line Help

Human Interface]|’, Notes

Note #3 Dueling Metaphors: the Desktop & HyperCard

Written by: Tom Erickson January 1990

(Supersedes Human Interface Update #14)

Discussion of the differences between the metaphors of the Desktop and HyperCard.

Metaphors help users form a coherent model of an application’s human interface. In an

interface with a well-chosen metaphor like the Desktop, users find it easy to predict the

results of an action or to figure out which action produces a desired result.

While a single, clear metaphor aids human-computer communication, mixing metaphors

may cause significant problems. Even two metaphors which work well separately may

interfere with one another when they are used within the same human interface.

The Desktop and HyperCard metaphors can interfere with one another. This document

describes the conditions under which such interference can occur, and what can be done to

avoid it.

In the Desktop metaphor users do things by pressing rounded-rectangle buttons, choosing

menu commands, and double-clicking (opening) icons. Each type of control object has a

distinct, carefully-defined appearance, as well as a different method of access. You can tell

how to use a control object just by looking at it.

In HyperCard, buttons are the principle control objects, but in HyperCard, a button can

look like anything—an icon, an item in a list, a push button, a menu item. Since a click is

the only way of starting an action, the appearance of a button is less important than in the

Desktop: the user knows that all HyperCard control objects respond to a single click.

When elements of the Desktop and HyperCard metaphors are combined, confusion may
result. In an interface with a mixed metaphor, a user can no longer predict the result of
clicking an item in a list or clicking on an icon. Does a click select the object, as in the
Desktop metaphor, or does it launch an action, as in the HyperCard metaphor? Clicking on
an icon to select it and having it launch an action because it’s acting like a HyperCard
button is—at the very best—disconcerting. Such unpredictability destroys the comfortable

Human Interface Note #3 Page 1 Dueling Metaphors

feel that is essential to a good human interface!. Users confronted with such
unpredictability are likely to become lost, confused, and unhappy with your product.

Do not mix the Desktop and HyperCard metaphors. If you’re writing a HyperCard stack,

don’t include icon-like buttons that must be double-clicked. If you’re writing a Desktop

application, don’t include (to take a real example) a house icon that takes the user

somewhere when it’s clicked, like the Home Card button in HyperCard. Desktop

applications should not contain HyperCard-like interface elements.

The most important point is this: It should always be obvious whether the user is in a

Desktop application or a HyperCard stack. And this means obvious at a glance; users

should not have to read text or remember whether an application or a stack was launched.

If the context is obvious, the user knows the result of a click—without having to think

about it.

1 Also see Chapter 1 of Human Interface Guidelines: The Apple Desktop Interface (Addison-Wesley,

1987)—in particular, the principles of Consistency and Perceived Stability.

Human Interface Note #3 Page 2 Dueling Metaphors

VY

Human Interface J", Notes

Note #4 Movable Modal Dialog Boxes

Written by: Scott Jenson January 1990

Discussion of a new modal window style that can be moved by dragging its title bar.

A standard modal dialog box works well as long as you, the developer, are asking such

questions as “How do you want to print this document?” or “Save changes before

quitting?” However, sometimes you need to ask a question and the user needs to see the

document contents to make a decision. A common example is a Find... or Replace...

dialog box. The usual rule of choice is to use a modeless dialog box since 1) it’s less

intrusive on the many different ways people may want to use your software, and 2) since

it’s movable, the user can easily move it around to view covered parts of the document.

There are some cases, however, when the question or response task needs to be modal, but

the user still might want to view what’s behind the dialog box. An example would be a

complex attribute change like adding a border to a paragraph of text. You might want to

see the text or even other paragraphs while you’re setting up the border.

In these cases use a movable modal dialog box. This window design gives you visual

feedback both that it is a modal dialog box and also that you can drag it from the title bar.
Figure 1 shows a simple example of this dialog box style.

Border Style

Of ftTl.

a

Figure 1-Movable modal dialog box

Human Interface Note #4 Page 1 Movable Modal Dialog Boxes

A couple of points to keep in mind:

Any selection made in the dialog box should immediately update the
document contents. The OK button then means “accept this change” and
the Cancel button means “undo all changes done by this dialog box.” Some
applications use an Apply button to approximate this behavior but this only
confuses the meaning of OK and Cancel.
With this dialog box, it is not necessary to keep your application from
switching to other MultiFinder layers. System 7.0 uses this method to
show an application is busy with some time-consuming operation, yet can
still be switched into the background.
When you create this dialog box, be sure to use the new window type. Do
not draw a rect ina documentProc. System 7.0 has as new selector
on the standard 'WDEF' resource for this type of window. For System
Software 6.0.x, you can obtain anew 'WDEF' resource on AppleLink in
the the Human Interface section of the Developer Services Bulletin Board or
request a copy by writing to AppleLink address MACINTERFACE.
Make sure to save the position of the window for the next time it’s used.
Do not use this dialog box when a modeless dialog box would work
instead.

Human Interface Note #4 Page 2 Movable Modal Dialog Boxes

Human Interface qe Notes

Note #5 What “Cancel”? Means

Written by: John Sullivan January 1990

“Cancel” means “dismiss this operation, with no side effects.” It does not mean “done
with the dialog box,” “stop what you are doing no matter what,” or anything else.

When to use Cancel

In alert or dialog boxes, use Cancel for the name of a button that closes the alert or dialog

box and returns the system to the state it was in before the alert or dialog box was

displayed. When a lengthy operation is in progress, use Cancel for the name of a button

that dismisses the operation and returns the machine to the state it was in before the

operation began, with no side effects.

What to do the rest of the time

When it is impossible to return to the state that existed before an operation began, do not

use the word Cancel. Two common alternatives, useful in different situations, are OK and

Stop.

In alert or dialog boxes, use OK for the name of a button that closes the alert or dialog box

and accepts any changes made while it was displayed. For confirmation alerts (alerts that

say, essentially, “Are you sure you want to do this?”) and many simple dialog boxes, it is

better to use a word or two that succinctly describes what accepting the alert or dialog box

means, such as Revert or Change All.

When a lengthy operation is in progress, use Stop for the name of a button that halts the

operation before its normal completion, accepting the possible side effects. Stop may leave

the results of partially-completed tasks around, but Cancel never does.

Human Interface Note #5 Page 1 What “Cancel” Means

Some correct examples

Following is a series of examples of proper uses of Cancel and its cousins.

Q Revert to the last saved version

of “The Big Red Book”?

Figure 1—Confirmation alert

The alert in Figure 1 uses Revert instead of OK, since Revert neatly sums up what

accepting the alert means.

Cat Detector™ options

Pinpoint a purr at: Cat licence price (£):

© 40 yards

@ 60 yards 15) fn
© 80 yards

Figure 2-More complex dialog with Cancel and OK

The dialog box in Figure 2 uses OK because there is no succinct term to describe what

accepting the changes in the dialog box means.

Human Interface Note #5 Page 2 What “Cancel” Means

Custom Formats

That Format

This Format

Yet Another Format Remove

Figure 3—-More complex dialog with OK instead of Cancel

The dialog box in Figure 3 uses OK because it doesn’t throw away all the changes that

were made since the dialog box was first drawn. If the button were named Cancel instead,

clicking it would remove any formats created since the dialog box was drawn, bring back

any formats removed since the dialog box was drawn, and undo any changes that had been

made by selecting a format and clicking Modify since the dialog box was drawn.

Inserting the file “Really long document”

into “Wombat data”...

Figure 4-Progress indicator that uses Cancel

The dialog box in Figure 4 uses Cancel because clicking the button leaves the document

named Wombat Data in the state it was in before the Insert File command was chosen.

Human Interface Note #5 Page 3 What “Cancel” Means

Inserting the file “Really long document”

into “Wombat data”...

Figure 5—Progress indicator that uses Stop

The dialog box in Figure 5 uses Stop because clicking the button stops inserting text into

the document named Wombat Data, but it doesn’t remove the text that has already been

inserted.

Human Interface Note #5 Page 4 What “Cancel” Means

Human Interface UL Notes

Note #6 Window Positions

Written by: John Sullivan January 1990

Whenever a window is displayed on the screen, the application must make a decision about
its size and location. If a user moved the window in an earlier session, then it should be
restored to its previous position; otherwise, the application must choose an appropriate
default position. This document gives details about making these decisions.

Saving and restoring window positions

Users change the locations and sizes of windows for a reason. They might want to view

two documents side by side, or they might want to display a window on a larger monitor

so that more of it can be seen at once. They might want to display only the interesting area

of the window, which may be quite small, or they might want to position the window in

such a way that certain icons on the desktop are still visible. In any case, one of the most

important principles of a good interface is that the user is in control, so applications must

respect the user’s reasoning by reopening each window in the same location and with the

same size that the user left it.

Here is a simple, but effective, procedure for saving and restoring window positions:

1. When opening a new window, put it in the default position (see the next
section of this document for details about determining the default position).

2. Before closing a movable window, check to see if its location or size have
changed. If so, save the new location and size. If the window can be
zoomed, save the user state and also save whether or not the window is in
the zoomed (standard) state. Note that if the window corresponds to a
Finder document and there were no other changes to the document, the new
location and size should be saved without changing the modification date of
the document.

Note: If the location and size of a movable window have
not changed, do not save them, because the default location
and size may be different the next time the window is opened
(e.g., if the window is reopened on a different Macintosh
with a different screen size).

3. When reopening a movable window, check its saved position. If the
window is in a position to which the user could have dragged it, then leave
it there. If the window can be zoomed and was in the zoomed state when it

Human Interface Note #6 Page 1 Window Positions

was last closed, put it in the zoomed state again. (Note that the current and
previous zoomed states are not necessarily the same, since the window may
be reopened on a different monitor.) If the window is not in a position to
which the user could have dragged it, then it must be relocated, so use the
default location. However, do not automatically use the default size when
using the default location; if the entire window would be visible using the
default location and the stored size, then use the stored size.

Remember that checking to see if the saved position is reasonable before reopening the

window is a necessary part of this procedure, not an option. When an application opens

windows outside of the visible space, users tend to switch to competitors’ products.

Choosing a default window position

The appropriate default position of a window may depend upon several factors, including

whether the window is a document window or an alert, the locations of other open

windows, the user’s center of attention, and whether or not the window contains

information that is closely related to other open windows. The rest of this document

includes a series of default window position examples for several common cases.

Developers should consider how their particular situations relate to these common ones to

determine the best default positioning. In any case, the default position of any window

must never overlap multiple screens, as this can look and feel very strange with monitors of

different depth and resolution.

Independent document windows, single screen

On a single screen the first document window should be positioned in the upper-left region

of the gray area of the screen. Each additional window should be staggered slightly below

and to the right of its predecessor, if no windows are moved or closed. When a window is

moved or closed, its original position becomes available again. The next window opened

should use this position. Similarly, if a window is moved onto a previously-available

position, that position becomes unavailable again. Figure 1 illustrates independent

document windows on a single screen.

$ File Edit Gomtec

Figure 1-Independent document window positions

Human Interface Note #6 Page 2 Window Positions

Independent document windows, multiple screens

The first document window should be positioned in the upper-left region of the gray area of

the main screen (the screen with the menu bar). Each additional independent window

should be staggered from the upper-left of the screen that contains the largest portion of the

frontmost window. Thus, if the user starts the application, creates a single window, drags

that window over to a secondary monitor, and then creates a second window, the second

window and subsequent windows should appear on the secondary monitor. Figure 2

illustrates independent document windows on multiple screens.

Figure 2-Independent document window positions on multiple screens

Child windows

A child window is a window that contains more detail about part of another window. For

instance, in ResEdit a window showing all string resources of a given file is a child of the

window showing all resource types for that file. Child windows of visible parent windows

should be created just below and to the right of the parent window. Figure 3 illustrates

child windows.

Figure 3—Child Windows

Human Interface Note #6 Page 3 Window Positions

Alert or dialog box, single screen

Alerts or dialog boxes should be centered horizontally and positioned vertically such that

one-third of the remaining vertical gray screen space is above the window and the other

two-thirds are below. Figure 4 shows a typical alert.

File Edit GQoatee

This appltcatian ony
runs in 44-bit color

Figure 4-—Alert

Alert or dialog box, multiple screens

This case is similar to the previous one, except that the alert or dialog box should be drawn

on the screen closest to the user’s center of attention. Always putting an alert or dialog box

on the screen containing the cursor is a good rule of thumb. An even better rule is to use

the screen on which the last user action took place. For instance, if the user is typing into a

word processing document and presses Command-O, put the standard file dialog box on

the same screen as the word processing document. When an alert or dialog box appears in

response to the user selecting a menu item with the mouse, put the alert or dialog box on

the screen with the menu bar. Figure 5 shows an alert in a two-screen configuration.

Yaur pomouler just

enploded. Please

Figure 5—Alert on multiple screens

Human Interface Note #6 Page 4 Window Positions

Human Interface J’, Notes

Note #7 Who’s Zooming Whom?

John Sullivan April 1990

Further discussion about using the zoom box.

Introduction

A click in the zoom box toggles a window between two states, the user state and the

standard state. The user state, as its name implies, is set by the user. The standard state is

defined by the Apple Human Interface Guidelines (p. 48) as “generally the full screen, or

close to it...the size and location best suited to working on the document.” That brief

description has proven to be too brief in these days of larger and multiple monitors. This

note is a more explicit guide to determining the appropriate standard state.

Size of the Standard State

When the zoom box was introduced, all Macintoshes had the same relatively small screen,

so the “most useful” size of a window was almost always larger than the screen. Setting

the standard state to the full screen size was, therefore, a good rule of thumb. This is no

longer the case. These days, Macintosh monitors come in all shapes, sizes, and

configurations, so applications should never simply assume that the standard state should

be as large as the screen. Frequently the monitor is larger, sometimes much larger, than the

most useful size for a window. Screen real estate is valuable, so screen-sized windows

should be used only when they make sense.

For example, a document for a word processor has a well-defined “most useful width” (the

width of a page) and a variable “most useful height” (depending on the number of pages).

Therefore, the width of the standard state should be the width of a page or the width of the

screen, whichever is smaller, and the height of the standard state should be the height of the

screen or the height of the document, whichever is smaller.

Another example is a paint application whose documents are always exactly one page in

size. In this case, the width of the standard state should be the width of a page or the width

of the screen, whichever is smaller, and the height of the standard state should be the height

of a page or the height of the screen, whichever is smaller.

Human Interface Note #7 Page 1 of 2 Who’s Zooming Whom?

Yet another example is an application that displays pictures but does not let users edit them.

Since its pictures cannot be modified, making a window larger than the pictures it displays

would not be useful. Therefore, the width of the standard state should be the width of the

picture or the width of the screen, whichever is smaller, and the height of the standard state

should be the height of the picture or the height of the screen, whichever is smaller. Note

that this means that different document windows from the same application may have

different standard states.

Position of the Standard State

One of the basic principles of the Apple Desktop Interface is “perceived stability.” Users

are more comfortable in an environment that does not change in an apparently random

manner; a window need not move just because it is changing in size. When toggling a

window from the user state to the standard state, first determine the appropriate size of the

standard state. If this size would fit completely on the screen without moving the upper-left

corner of the window, keep this corner anchored. Otherwise, move the window to an

appropriate default location (see Human Interface Note #6, Window Positions).

The Standard State on Multiple Monitors

Zooming behavior in multiple monitor environments should not violate any of the

guidelines described herein, but it does introduce a single additional rule: the standard state

should be on the monitor containing the largest portion of the window, not necessarily on

the monitor with the menu bar. Note that this means the standard state for a single window

may be on different monitors at different times if the user moves the window around. In

any case, the standard state for any window must always be fully contained on a single

screen.

Further Reference

¢ Macintosh Technical Note #79, _ZoomWindow

Human Interface Note #7 Page 2 of 2 Who’s Zooming Whom?

Human Interface ny Notes

nn —

Note #8 Keyboard Equivalents

Revised by: Scott Jenson June 1990

Written by: Scott Jenson April 1990

A discussion of the standard Apple Human Interface keyboard equivalents.

Standard Keyboard Equivalents

N New Z Undo
O Open... xX Cut °
Ww Close C Copy
S Save Vv Paste
P Print... A Select All
Q Quit

These keyboard equivalents are reserved across all applications. If your application does

not support one of these commands, it should not use these keys for any other function.

This restriction is for the user’s benefit; it gives them guaranteed, predictable behavior

across all applications. Using Command-O to mean “Open...” ninety-nine percent of the

time and “Ostracize...” in your special case does two things: 1) users do not consider

using Command-O, as it is already taken by all other applications, and 2) the variability of

the equivalent only weakens their perception of consistency.

Other Common Keyboard Equivalents

F Find... T Plain Text
G Find Again B Bold

I Italic
U Underline

These Command keys equivalents are secondary to the standard keys previously listed. If

your product does not support one of these functions, then feel free to use these equivalents

as you wish.

Note that the keyboard equivalents for Print... and Plain Text are different from past

Human Interface guidelines, which suggested P for Plain Text and nothing at all for Print.

The marketplace has, by and large, standardized upon P for Print, leaving no common

Command key equivalent for Plain Text. Apple has accepted this change and now suggests

Human Interface Note #8 Page 1 of 2 Keyboard Equivalents

standardizing on T for Plain Text, based upon its mnemonic value and common usage
among applications that use P for Print.

Unnecessary Command Keys

There should not be Command key equivalents for infrequently used menu commands.
This type of usage only burdens your users and constrains your life even more. Only add
Command key equivalents to commands your users use most frequently. As infrequently
as it is chosen by most users, “Page Setup...” is an example of menu command that does
not need a key equivalent.

Human Interface Note #8 Page 2 of 2 Keyboard Equivalents

Human Interface ql Notes

Note #9 Pop-Up Menus

Written by: Scott Jenson & John Sullivan June 1990

A description of the new style of pop-up menus.

Introduction

Pop-up menus have been around on the Macintosh since HFS (Hierarchical File System)

was introduced in 1986, and their use became much more widespread after the addition of

Toolbox support in 1987. It is surprising, then, that many Macintosh users have no idea

what pop-up menus are and do not recognize them when they see them. The problem is

that pop-up menus do not look sufficiently different from other Macintosh interface

elements; the one-pixel drop shadow that differentiates pop-up menus from editable text

fields has proven inadequate. This Note presents the new standard appearance for the pop-

up menu in System Software 7.0 and also describes how the new appearance lends itself to

some new uses that were previously impossible.

Standard pop-up menus

Previously, pop-up menus were displayed by surrounding the current value of the menu

with a one-pixel rectangle and a one-pixel drop shadow to the right and bottom. The new

standard appearance adds a downward-pointing black arrow, which is identical to the

arrow that indicates that a menu is too long to fit on the screen and must scroll. All pop-up

menus should now use this new style. Figure 1 shows a simple pop-up menu in both the

old and new styles.

Baud:| 1200 Baud:| 1200 v

Old Style New Style

Figure 1—Old-style and new-style pop-up menus

Human Interface Note #9 Page 1 of 3 Pop-Up Menus

Figure 2 shows an expanded view of the downward-pointing black arrow of this new-style
pop-up menu.

Figure 2—FatBits view of new-style pop-up menu

When the user clicks on the pop-up menu or its label text, the black arrow disappears and
the menu pops up, and when the user releases the mouse button, the menu disappears and
the black arrow is redrawn. Figure 3 illustrates the proper behavior of a pop-up menu
when a user clicks on it.

Baud: | 1200 v |

Figure 3—Pop-up menu before and during a mouse click

Human Interface Note #9 Page 2 of 3 Pop-Up Menus

Pop-up menus with editable text fields

Sometimes it is useful to display a list of choices but still allow a user to enter or edit a

choice that the application may not know in advance. One example is a font size field with

an accompanying pop-up menu of commonly used sizes. The new standard pop-up menu

appearance leads itself readily to this use, as shown in Figure 4.

Size: E312) Size: [9 | 4/9

Figure 4—Pop-up menu with an editable text field

Note that as in standard pop-up menus, the black arrow disappears when a user clicks on it

and reappears when a user releases the mouse button. Also note that an application should

draw the pop-up menu so it automatically highlights the item that corresponds to the value

in the edit text field; this technique prevents a quick click in the pop-up menu from

accidently erasing the previous value.

If a user enters a value in the edit text field that does not match any of the pop-up menu’s

items, then the pop-up menu should make that value the first item and separate it from the

rest of the standard values with a gray line., as shown in Figure 5. This separation makes

a clean distinction between common items, which are always available, and the user-

entered value, which is only temporary. (In the case of the example in Figure 5, if the font

size 13 had been inserted in order into the list, a subsequent selection of 10, or any other

matching selection, would have removed it from the list.)

Size: EER i Size: [13] 413

Figure 5—-Pop-up menu with a non-matching edit text item

Human Interface Note #9 Page 3 of 3 Pop-Up Menus

Human Interface |’, Notes

Note #10 Alert Box Guidelines

Written by: John Sullivan June 1990

(Slightly plagiarized from Kate Gomoll)

Some simple rules to follow for alert boxes.

ee LEER

Why there are alert box guidelines

From the feedback the Human Interface group has received, it is clear that the discussion of

alert boxes in Human Interface Guidelines: The Apple Desktop Interface is both imperfect

and incomplete.

These guidelines serve at least three major purposes. First, they provide a simple recipe for

making attractive alert boxes. Second, they provide a simple recipe (the same one, in fact)

for making alert boxes that have a standard appearance and behavior. This standardization

is important, because the more familiar the appearance of an alert box is to users, the easier

it is for them to concentrate on the specific message being communicated. Finally, these

guidelines provide simple rules that can be extended for designing more complicated dialog

boxes.

This Note supplements and partially replaces the discussion in Human Interface Guidelines:

The Apple Desktop Interface, so where this Note and the book disagree, believe this Note.

Alert box layout

Alert boxes drawn with the toolbox calls_stopAlert, NoteAlert, and _CautionAlert

place the icon in the rectangle (top = 10, left = 20, bottom = 42, right = 52); however,

placement of all other elements is left to the individual designer. Figure 1 shows a simple

alert box in which spacing between elements is based upon this placement of the icon.

Human Interface Note #10 Page 1 of 4 Alert Box Guidelines

BEX C4) ne i
This is where the text goes. Be sure td

use wording that makes sense to the

A= 13 white pixels ve
B = 23 white pixels

Figure 1—Simple alert box with spacing

Following are the exact coordinates used in Figure 1 and how they were derived, in Rez

format. Note that there are three white pixels built into the dialog frame and that the upper

left corner of the text item is not the same as the upper left corner of the first character.

The first set of definitions are not actual coordinates, but instead are intermediate values

used to derive them:

#define A 13 // white space between most elements

#define B 23 // white space to left and right of icon

#define NumTextLines 3 // number of lines of text in the alert

#define LineHeight 16 // height of a single line of Chicago-12

#define ButtonHeight 20 // standard button height

#define LongestButtonName 41 // width of “Cancel” in Chicago-12

#define ButtonWidth 59 // (LongestButtonName + 18)

The rest of the definitions are actual coordinates defining the window size (AlertWidth

and AlertHeight) and the icon, text, and button locations:

#define AlertWidth 341 // chosen to make the right margin =A

#define IconLeft 20 // (B - 3)
#define IconRight 52 // (IconLeft + 32)

#define IconTop 10 // (BK. = 3)

#define IconBottom 42 // (IconTop + 32)

#define TextLeft 74 // (IconRight + (B - 1))

#define TextRight 331 // (AlertWidth - (A - 3))

#define TextTop 7 // (A - 6)

#define TextBottom 55 // (TextTop + (NumTextLines * LineHeight))

#define ButtonTop 68 // (TextBottom + A)

#define ButtonBottom 88 // (ButtonTop + ButtonHeight)

#define ActionButtonRight 331 // (AlertWidth - (A - 3))
#define ActionButtonLeft 272 // (ActionButtonRight - ButtonWidth)

#define CancelButtonRight 259 // (ActionButtonLeft - A)

#define CancelButtonLeft 200 // (CancelButtonRight - ButtonWidth)

#define AlertHeight 98 // (ButtonBottom + (A - 3))

Human Interface Note #10 Page 2 of 4 Alert Box Guidelines

The action button

Alert boxes that provide the user a choice should be worded as questions to which there is

an unambiguous, affirmative response. The button for this affirmative response is called

the action button. Whenever possible, label the action button with the action that it

performs. Button names such as Save, Quit, or Erase Disk allow experienced users to

click the correct button without reading the text of a familiar dialog. These labels are often

clearer than words like OK or Yes. Phrase the question to match the action that the user is

trying to perform. For instance, if the user selects Revert to Saved, the confirmation alert

should say something like “Revert to the last saved version of the document? Any changes

made since the last save will be lost.” This message is much clearer than something like .

“Discard changes made since the last save?”

If the action cannot be condensed conveniently into a word or two, use OK. Also use OK

when the alert is simply giving the user information without providing any choices.

The cancel button

Whenever possible, provide a button that allows the user to back out of the operation that

caused the alert box to be displayed. This button is activated when the user types

Command-. (period) or presses the Escape key. (Note that the Command key sequence

may differ depending upon the script system in use. See Macintosh Technical Note #263,

International Canceling, for more information.) Apple recommends naming this button

Cancel, so that users can easily identify it as the safe escape hatch. For more information,

see Human Interface Note #5, “What Cancel Means.”

The default button

In most cases, the default button should perform the most likely action (if that can be

determined). This usually means completing the action that the user initiated to display the

alert box in the first place; therefore, the default button is usually the same as the action

button. The default button is boldly outlined, and its action is performed when the user

presses the Return or Enter key.

If the most likely action is dangerous (for example, it erases the hard disk), the default

should be a safe button, typically the cancel button. If none of the choices are dangerous

and there is not a likely choice, then there should be no default button.

When there is no default button, the user must explicitly click on one of the buttons

(pressing Return or Enter does not perform an action). By requiring users to explicitly

Human Interface Note #10 Page 3 of 4 Alert Box Guidelines

click on a button, you can protect them from accidentally damaging their work by pressing
the Return or Enter key out of habit.

Buttons (placement, size, capitalization, and feedback)

Put the action button in the lower right corner, with the cancel button to its left. Use this

placement regardless of which button is the default button; put the action button in the

lower right corner even if the cancel button is the default.

Buttons in alert boxes look best when they are 20 pixels high (not counting the default

button outline) and have at least 8 white pixels on either side of each button’s name. These

specifications mean that the width of the button should be at least 18 pixels larger than the

width of the longest button name (16 pixels for the white space plus 2 pixels for the edges).

It looks best to make all buttons the same width, unless the buttons’ names have extremely

different length names. If you find yourself tempted to make buttons with extremely long

names, reconsider the names carefully; button names should be simple, concise, and

unambiguous.

Capitalize the first letter of each button name, but never capitalize the entire name—with the

single exception of the OK button. The OK button should always be named OK and never

ok, Ok, Okay, okay, OKAY, or any even stranger variation. If a button name contains

more than one word, capitalize each word, such as Replace All or Cancel Printing.

As in all dialog boxes, any buttons that are activated by key sequences must flash to give

visual feedback as to which item has been chosen. A good rule of thumb is to invert the

button for eight ticks; this is long enough so that it is always visible, but short enough that

it is not annoying. Alert box calls in the Toolbox use the eight tick value by default.

Further Reference

¢ Human Interface Note #5, What Cancel Means
* Macintosh Technical Note #263, International Canceling

Human Interface Note #10 Page 4 of 4 Alert Box Guidelines

oe —_-<

>

Macintosh “

Sample Code Notes

Developer Technical Support

#0: About Macintosh Sample Code February 1990

Technical Note #0 (this document) accompanies each release of Macintosh Sample Code. This
release includes revisions to Sample Code #11, #13-#14 and new Sample Code #19-#22
(originally dated October 1989 on Phil & Dave’s Excellent CD: The Release Version). If there are
any subjects which you would like to see treated in Sample Code (or if you have any questions
about existing Sample Code), please contact us at one of the following addresses:

Macintosh Sample Code
Developer Technical Support
Apple Computer, Inc.
20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014
AppleLink: MacDTS
MCI Mail: MacDTS
Internet: MacDTS@AppleLink.Apple.com

We want Sample Code to be distributed as widely as possible, so they are sent to all Partners and
Associates at no charge; they are also posted on AppleLink in the Developer Services bulletin board
and other electronic sources, including the Apple FTP site (IP 130.43.2.2). You can also order
them through APDA. As an APDA customer, you have access to the tools and documentation
necessary to develop Apple-compatible products. For more information about APDA, contact:

APDA
Apple Computer, Inc.
20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014
(800) 282-APDA or (800) 282-2732
Fax: (408) 562-3971
Telex: 171-576
AppleLink: APDA

We place no restrictions on copying Sample Code, with the exception that you cannot resell them,
so read, enjoy, and share. We hope Sample Code will provide you with lots of valuable
programming techniques while you are developing Macintosh hardware and software. These
examples have undergone extensive review by DTS and Apple engineering, so we feel that the
quality of the code is very high. However, it is likely that there are still some bugs that we have
overlooked (unintentionally, of course), so we would appreciate hearing from you if you find any.
If you are the first to report a particular bug, you will be the recipient of a genuine DTS kudo.

The following pages list all the Macintosh Sample Code that has been released:

#0: About Macintosh Sample Code 1 of 2

Macintosh Sample Code Notes
7

—

Released Macintosh Sample Code February 1990

New * KK WwW

Revised *R*
Number Title Languages Release Date

1 Sample C,P,A 6/89
2 TESample CP ax 6/89
3 SillyBalls C.P 8/88
4 TubeTest Cc? 8/88
5 HierMenus P 8/88
6 PopMenus P 8/88
7 FracApp P 8/88
8 FracA ppPalette P 8/88
9 FracApp300 P 8/88

10 EditCdev C.P 8/88
R® 1 GetZoneList C,P,a 2/90

12 Signals C,P,A 11/88
*"R® 13 OOPTESample OOP,a 2/90
R 14 CPlusTESample C++,a 2/90

15 Offscreen P 4/89
16 OffSample P,a 4/89
17 TbltDrvr A 4/89
18 StdFile CP 4/89

eee TO TEStyleSample r 2/90
eee 20 Transformer OOP 2/90
ee, 2h ModalList Cc 2/90
<a 22 ScreenFKey P,a 2/90 VU

Key to Languages A Assembly language version
P Pascal language version
GC C language version
OOP Object-Oriented Pascal
C++ C++
X Can compile under A/UX
a Some assembly required
b batteries included

UO

2 of 2 #0: About Macintosh Sample Code

—_

Macintosh U
Sample Code Notes a

Developer Technical Support

#1: Sample

Written by: Darin Adler, Mark Bennett, and Jim Reekes

Versions: 1.00 August 1988
1.01 November 1988
1.02 April 1989
1.03 June 1989

Components: Sample.p June 1, 1989
Sample.c June 1, 1989

Sample.a June 1, 1989
Sample.incl.a June 1, 1989
SampleMisc.a June 1, 1989

Sample.r June 1, 1989

Sample.h June 1, 1989

PSample.make June 1, 1989

CSample.make June 1, 1989

ASample.make June 1, 1989

Major changes since 1.0
Revamped the way that memory availability is checked and handled at initialization. Substantially
changed the way windows are closed. Added an error message dialog to better inform users, and
improved error handling in general. Finally, put a funny hack into the C version so we could call
_PurgeSpace under MPW 2.0.2.

Search for “1.01” in the code to find all the specific changes.

Major changes since 1.01
Removed all dependencies on MPW 2.0; this version requires MPW 3.0 or later. Improved
TrapAvailable to handle differences between machines prior to the Macintosh II and the
Macintosh II and later models.

Search for “1.02” in the code to find all the specific changes.

Sample is an example application that demonstrates how to initialize the commonly used Toolbox
managers, operate successfully under MultiFinder, handle desk accessories, and create, grow, and
zoom windows.

It does not, by any means, demonstrate all the techniques you need for a large application. In
particular, Sample does not cover exception handling, multiple windows or documents,
sophisticated memory management, printing, or undo, all of which are vital parts of a normal full-
sized application.

#1: Sample 1 of 2

Macintosh Sample Code Notes

This application is an example of the form of a Macintosh application; it is not a template. It is not
intended to be used as a foundation for the next world-class, best-selling, 600K application. A
stick figure drawing of the human body may be a good example of the form for a painting, but that
does not mean it should be used as the basis for the next Mona Lisa.

We recommend that you review this program or TESample before beginning a new application.

LL

2 of 2 #1: Sample

o>

Macintosh a
Sample Code Notes

Developer Technical Support

#2: TESample

Written by: | Mark Bennett, Rick Blair, and Dave Radcliffe

Versions: 1.00 August 1988
1.01 November 1988
1.02 April 1989
1.03 June 1989

Components: TESample.p June 1, 1989
TESample.c June 1, 1989
TESampleGlue.a ° June 1, 1989
TESample.r June 1, 1989
TESample.h June 1, 1989
PTESample.make ° June 1, 1989

CTESample.make ° June 1, 1989

TESampleGlue.s oe June 1, 1989

TESampleAUX.r ee June 1, 1989

Makefile ee June 1, 1989
MPW Only ° A/UX Only *

Major changes since 1.0
Revamped the way that memory availability is checked and handled at initialization. Substantially
changed the way windows are closed. Added an error message dialog to better inform users, and
improved error handling in general. Finally, put a funny hack into the C version so we could call
_PurgeSpace under MPW 2.0.2.

Search for “1.01” in the code to find all the specific changes.

Major changes since 1.01
Removed all dependencies on MPW 2.0; this version requires MPW 3.0 or later. Improved
TrapAvailable to handle differences between machines prior to the Macintosh II and the
Macintosh II and later models.

A/UX programmers
Version 1.02 introduces conditionals for compilation under A/UX 1.1. Note that the binary file
compiled under MPW will run fine under A/UX. These changes were made to provide an example
of how to produce source files which can be compiled under both MPW and A/UX.

Search for “1.02” in the code to find all the specific changes.

TESample is an example application that demonstrates how to initialize the commonly used
Toolbox managers, operate successfully under MultiFinder, handle desk accessories, and create,

#2: TESample lof 2

Macintosh Sample Code Notes a ee

grow, and zoom windows. It demonstrates fundamental TextEdit toolbox calls and TextEdit
automatic scrolling, and it shows how to create and maintain scroll bar controls.

It does not, by any means, demonstrate all the techniques you need for a large application. In
particular, TESample does not cover exception handling, multiple windows or documents,
sophisticated memory management, printing, or undo, all of which are vital parts of a normal full-
sized application.

This application is an example of the form of a Macintosh application; it is not a template. It is not
intended to be used as a foundation for the next world-class, best-selling, 600K application. A
stick figure drawing of the human body may be a good example of the form for a painting, but that
does not mean it should be used as the basis for the next Mona Lisa.

We recommend that you review this program or Sample before beginning a new application.
Sample is a simple application which does not use TextEdit or the Control Manager.

ge ec ge te gc a an cm eg Be

: #>: TESample ,

a, hee

oo

Macintosh yD

Sample Code Notes =

Developer Technical Support

#3: SillyBalls

Written by: | _Bo3b Johnson

Versions: 1.00 August 1988

Components: SillyBalls.p August 1, 1988
SillyBalls.c August 1, 1988
PSillyBalls.make August 1, 1988
CSillyBalls.make August 1, 1988

SillyBalls is a very simple application that demonstrates how to use Color QuickDraw. It is about
two pages of code, and it does nothing more than open a color window and draw randomly
colored ovals in the window.

The purpose of SillyBalls is to demonstrate how to get quick results with Color QuickDraw. It is a
complete program, but it is very short to be as clear as possible. It does not have an event loop,
and it is not fully functional, in the sense that it does not do all the things one would normally
expect from a well-behaved Macintosh application (i.e., use an event loop, size the window
naturally, use menus, etc.)

We recommend that you review Sample or TESample for the general structure and MultiFinder
techniques you should use when writing a new application.

eee

#3: SillyBalls 1 of 1

6a

Macintosh U
Sample Code Notes —

Developer Technical Support

#4; TubeTest

Written by: | _Bo3b Johnson

Versions: 1.00 August 1988

Components: TubeTest.p August 1, 1988
TubeTest.c August 1, 1988

TubeTest.r August 1, 1988
PTubeTest .make August 1, 1988
CTubeTest .make August 1, 1988

TubeTest is a very simple demonstration of how to use the Palette Manager in a color application.
It has a special color palette that is associated with the main window, and the colors are animated
using the Palette Manager to give a flowing tube effect. The program is very simple; the Palette
Manager and drawing routines are in separate subroutines to make it easier to figure out what is
happening.

TubeTest is a complete program with a main event loop (MEL), so there is extra code to run in the
MEL. A resource file is necessary to define the menu, window, dialog, and palette resources
which the program uses.

We recommend that you review Sample or TESample for the general structure and MultiFinder
techniques you should use when writing a new application.

a ae eee ee ee ee ae ee

#4: TubeTest 1 of 1

Macintosh 5
lan Sample Code Notes ©]

Developer Technical Support

#5: HierMenus

Written by: Bryan Stearns

Versions: 1.00 August 1988

Components: HierMenus.p August 1, 1988
HierMenus.r August 1, 1988

HierMenus.make August 1, 1988

HierMenus is a very simple demonstration of how to use hierarchical menus in your application.

We recommend that you review Sample or TESample for the general structure and MultiFinder
techniques you should use when writing a new application.

eee

#5: HierMenus 1 of 1

4 Macintosh @

Sample Code Notes

Developer Technical Support

#6: PopMenus

Written by: Bryan Stearns

Versions: 1.00 August 1988

Components: PopMenus.p August 1, 1988

PopMenus.r August 1, 1988
PopMenus.make August 1, 1988

PopMenus is a very simple demonstration of how to use pop-up menus in your application. It
implements a pop-up menu as a userItemin a modal dialog box (this is a helpful example in its
own right).

We recommend that you review Sample or TESample for the general structure and MultiFinder
techniques you should use when writing a new application.

ni eee he

#6: PopMenus
1 of 1

o
Macintosh 4

Sample Code Notes | §

Developer Technical Support

#7: FracApp

Written by: | _Bo3b Johnson

Versions: 1.00 August 1988

Components: MFracApp.p August 1, 1988
UFracApp.p August 1, 1988
UFracApp.incl.p August 1, 1988
FracApp.r August 1, 1988
FracApp.make August 1, 1988

This program requires MPW 2.0.2 and MacApp 1.1.1 to build.

This is the “commercial quality” version of FracApp. This version handles multiple documents,
and it supports color table animation using an off-screen gDevice with a port. The updates to the
screen using CopyBits are as fast as possible. FracApp does not use the Palette Manager,
except to provide for the system palette, or color modes with less than 255 colors. For the color
table animation, it uses the Color Manager and handles the colors itself. Strict compatibility was
relaxed to allow for a higher performance program. This is the most “real” of the FracApp
programs.

As color on the Macintosh evolves, we hope that future versions of this program will be able to use
the Palette Manager and maintain the level of performance. To achieve this, we will have to attain
better QuickDraw (i.e.,_CopyBits) and Palette Manager integration.

re

#7: FracApp 1 of 1

Macintosh DZ

Sample Code Notes .

Developer Technical Support

#8: FracAppPalette

Written by: | Bo3b Johnson

Versions: 1.00 August 1988

Components: MFracAppPalette.p August 1, 1988
UFracAppPalette.p August 1, 1988
UFracAppPalette.incl.p August 1, 1988
FracAppPalette.r August 1, 1988
FracAppPalette.make August 1, 1988

This program requires MPW 2.0.2 and MacApp 1.1.1 to build.

This version of FracApp uses the Palette Manager. It demonstrates a full-color palette which is
used to display the Mandelbrot set. FracAppPalette does not support color table animation, since
the integration of QuickDraw (i.e., CopyBits) and the Palette Manager is not yet full enough.

This version uses an off-screen gDevice with a port to handle the data, using _CopyBits to
draw into the window. The palette is automatically associated with each window. The PICT files
are read and written using the bottlenecks (spooled) to save on memory usage.

eee

#8: FracAppPalette 1 of 1

om

4 Macintosh
Sample Code Notes 4

Developer Technical Support

#9: FracApp300

Written by: | Bo3b Johnson

Versions: 1.00 August 1988

Components: MF racApp300.p August 1, 1988

UFracApp300.p August 1, 1988
UFracApp300.incl.p August 1, 1988

FracApp300.r August 1, 1988
FracApp300.make August 1, 1988

This program requires MPW 2.0.2 and MacApp 1.1.1 to build.
ee eee eee ae ee ee See a ee Se

This version of FracApp does not support colors, but it does demonstrate how to create and use a
300 dpi bitmap with a port. The bitmap is printed at full resolution on LaserWriter printers and
clipped on other printers (but it still prints). FracApp300 demonstrates how to use a high-
resolution image as a PICT file and how to print it.

Sseeemerremenm ee eee eee

#9: FracApp300
1 of 1

UA Macintosh €

Sample Code Notes

Developer Technical Support

#10: EditCdev

Written by: Mark Bennett

Versions: 1.00 August 1988

Components: EditCdev.p August 1, 1988
EditCdev.c August 1, 1988
EditCdev.r August 1, 1988
CEditCdev.make August 1, 1988
PEditCdev.make August 1, 1988

EditCdev is a sample Control Panel device (cdev) that demonstrates the use of the edit-related
messages and how to implement an editText item in a cdev. It utilizes the new undo, cut,
copy, paste, and delete messages that are sent to cdevs in response to user menu selections.

EditCdev is comprised of two edit Text items which can be edited and selected with the mouse
or the Tab key.

eee

#10: EditCdev 1 of 1

oO
Macintosh
Sample Code Notes

4

Developer Technical Support

#11: GetZoneList

Written by: | Mark Bennett & Pete Helme

Versions: 1.00
1.1

Components: GetZoneList.p
GetZoneList.c

GetZoneList.r

PGet ZoneList.make

CGetZoneList.make

Required: UFailure.p
UFailure.incl.p

UFailure.a

November 1988
February 1990

February 1, 1990
February 1, 1990
February 1, 1990

February 1, 1990
February 1, 1990

November 1, 1988

November 1, 1988

November 1, 1988

GetZoneList is a sample application that uses AppleTalk’s AppleTalk Transaction Protocol (ATP)
and Zone Information Protocol (ZIP) to obtain a list of zones on an AppleTalk internet. It also
demonstrates using a signal, or failure-catching mechanism, to recover from error situations.

GetZoneList is based on Sample, and we recommend that you review Sample or TESample for the
general structure and MultiFinder techniques you should use when writing a new application.

——————————— SS

#11: GetZoneList lof 1

Macintosh D
a Sample Code Notes 4

Developer Technical Support

#12: Signals

Written by: —_ Rick Blair

Versions: 1.00 Technical Note #88
and MacApp 1.1

2.00 November 1988

Components: UFailure.p November 1, 1988

UFailure.h November 1, 1988

UFailure.incl.p November 1, 1988

UFailure.a November 1, 1988

TestSignal.p November 1, 1988
TestCignal.c November 1, 1988
TestSignal.make November 1, 1988
TestCignal.make November 1, 1988

KL

UFailure (or Signals) is a set of exception handling routines suitable for use with MacApp, MPW
Pascal, and MPW C. It is a “jazzed-up” version of the original MacApp UFailure unit, and it

r ey includes a set of C interfaces too.

a a

#12: Signals 1 of 1

C)

Macintosh a

Sample Code Notes

Developer Technical Support

#13: OOPTESample

Written by: Keith Rollin

Versions: 1.00 April 1989
1.1 February 1990

Components: BuildOOPTESample February 1, 1990

MOOPTESample.p February 1, 1990

OOPTESample.make February 1, 1990
TECommon.h February 1, 1990
TESampleGlue.a February 1, 1990
TESample.r February 1, 1990
UApplication.p February 1, 1990

UApplication.incl.p February 1, 1990
UDocument.p February 1, 1990

UDocument.incl.p February 1, 1990
UTEDocument .p February 1, 1990
UTEDocument.incl.p February 1, 1990
UTESample.p February 1, 1990
UTESample.incl.p February 1, 1990

The build process for OOPTESample is entirely automated. All you need to do is run the
BuildOOPTESample script. BuildOOPTESample is a variation on the BuildProgram script that
comes standard with MPW. It creates a folder to contain the intermediary object files, and then
calls Make with the file OOPTESample.make. Make’s output is executed with the final application
OOPTESample as the result.

OOPTESample is an example application that demonstrates how to initialize the commonly used
Toolbox managers, operate successfully under MultiFinder, handle desk accessories, and create,
grow, and zoom windows. It demonstrates fundamental TextEdit toolbox calls and TextEdit
automatic scrolling, and it shows how to create and maintain scroll bar controls.

This version of TESample has been substantially reworked in Object Pascal to show how a
“typical” object-oriented program could be written. To this end, what was once a single source
code file has been restructured into a set of classes which demonstrate the advantages of object-
oriented programming.

There are four main classes in this program. Each one of these has an interface (.p) file and an
implementation (.inc1.p) file, and is compiled into its own separate UNIT.

#13: OOPTESample 1 of 2

Macintosh Sample Code Notes
ee

The TApplication class does all of the basic event handling and initialization necessary for
Macintosh Toolbox applications. It maintains a list of TDocument objects and passes events to the
correct TDocument class when appropriate.

The TDocument class does all of the basic document handling work. TDocuments are objects that
are associated with a window. Methods are provided to deal with update, activate, mouse-click,
key-down, and other events. Some additional classes which implement a linked list of TDocument
objects are provided.

The TApplication and TDocument classes together define a basic framework for Macintosh
applications, without having any specific knowledge about the type of data being displayed by the
application’s documents. They are a (very) crude implementation of the MacApp application
model, without the sophisticated view hierarchies or any real error handling.

The TESample class is a subclass of TApplication. It overrides several TApplication methods,
including those for handling menu commands and cursor adjustment, and it does some necessary
initialization. Note that we only need to override nine methods to create a useful application class.

The TEDocument class is a subclass of TDocument. This class contains most of the special-
purpose code for text editing. In addition to overriding most of the TDocument methods, it defines
a number of additional methods which are used by the TESample class to get information on the
document state.

This program consists of four segments. “Main” contains most of the code, including the MPW
libraries and the main program. “Initialize” contains code that is used only once, or rarely, and can
be unloaded after the event loop is completed. ““%ASInit” is automatically created by the Linker to
initialize globals for the MPW libraries and is unloaded right away. “%_MethTables” is a fake
segment used by Object Pascal to maintain object relationships.

Toolbox routines do not change the current port. In spite of this, in this program we use a strategy
of calling _SetPort whenever we want to draw or make calls which depend on the current port.
This precaution makes us less vulnerable to bugs in other software which might alter the current
port (such as the bug (feature?) in many desk accessories which changes the port when there is a
callto OpenDeskAcc). Hopefully, this also makes the routines from this program more self-
contained, since they don’t depend on the current port setting.

This program does not maintain a private scrap. Whenever a cut, copy, or paste occurs, we import
or export from the public scrap to TextEdit’s scrap right away, using the TEToScrap and

TEFromScrap routines. If we did use a private scrap, the import or export would be in the
activate or deactivate event and suspend or resume event routines.

2 of 2 #13: OOPTESample

a

4 Macintosh &

Sample Code Notes

Developer Technical Support

#14: CPlusTESample

Written by: © Andrew Shebanow

Versions: 1.00 April 1989
1.1 July 1989
1.2 February 1990

Components: CPlusTESample.make February 1, 1990
TApplicationCommon.h February 1, 1990
TApplication.h February 1, 1990
TDocument .h February 1, 1990
TECommon.h February 1, 1990
TESample.h February 1, 1990
TEDocument .h February 1, 1990
TApplication.cp February 1, 1990

TDocument .cp February 1, 1990

TESample.cp February 1, 1990
TEDocument .cp February 1, 1990

TESampleGlue.a February 1, 1990
TApplication.r February 1, 1990
TESample.r February 1, 1990

CPlusTESample is an example application that demonstrates how to initialize the commonly used
Toolbox managers, operate successfully under MultiFinder, handle desk accessories, and create,
grow, and zoom windows. It demonstrates fundamental TextEdit toolbox calls and TextEdit
automatic scrolling, and it shows how to create and maintain scroll bar controls.

This version of TESample has been substantially reworked in C++ to show how a “typical” object-
oriented program could be written. To this end, what was once a single source code file has been
restructured into a set of classes which demonstrate the advantages of object-oriented
programming.

There are four main classes in this program. Each one of these has a definition (.h) file and an
implementation (.cp) file.

The TApplication class does all of the basic event handling and initialization necessary for
Macintosh Toolbox applications. It maintains a list of TDocument objects and passes events to the
correct TDocument class when appropriate.

The TDocument class does all of the basic document handling work. TDocuments are objects that
are associated with a window. Methods are provided to deal with update, activate, mouse-click,
key-down, and other events. Some additional classes which implement a linked list of TDocument
objects are provided.

eee

#14: CPlusTESample 1 of 2

Macintosh Sample Code Notes

The TApplication and TDocument classes together define a basic framework for Macintosh
applications, without having any specific knowledge about the type of data being displayed by the
application’s documents. They are a (very) crude implementation of the MacApp application
model, without the sophisticated view hierarchies or any real error handling. VW

The TESample class is a subclass of TApplication. It overrides several TApplication methods,
including those for handling menu commands and cursor adjustment, and it does some necessary
initialization. Note that we only need to override nine methods to create a useful application class.

The TEDocument class is a subclass of TDocument. This class contains most of the special-
purpose code for text editing. In addition to overriding most of the TDocument methods, it defines
a number of additional methods which are used by the TESample class to get information on the
document state.

—— ee Ossesc _ CT —LGVTea

2 of 2 #14: CPlusTESample

C)

Macintosh D
Sample Code Notes =

Developer Technical Support

#15: Offscreen

Written by: —_ Rick Blair

Versions: 1.00 April 1989

Components: Offscreen.p April 1, 1989
Offscreen.incl.p April 1, 1989

These routines provide a high-level interface to the QuickDraw and Color Manager routines which
allow the creation and manipulation of off-screen bitmaps and pixel maps. They are designed to
run on any machine with 128K or later ROMs (sorry 64K ROM fans).

Note that the design incorporates the idea that you can go along pretending there is an off-screen
buffer, even when one could not be allocated, and the calls will do nothing.

eee

#15: Offscreen 1 of 1

a

Macintosh Dp
Sample Code Notes =

Developer Technical Support

#16: OffSample

Written by: Mark Bennett

Versions: 1.00 April 1989

Components: OffSample.p April 1, 1989
OoffSample.r April 1, 1989

OffSample.h April 1, 1989

POffSample.make April 1, 1989

Required: Offscreen.p April 1, 1989
Offscreen.incl.p April 1, 1989

UFailure.p November 1, 1988
UFailure.incl.p November 1, 1988

UFailure.a November 1, 1988

OffSample demonstrates the usage of the Offscreen unit. It shows how to use off-screen bitmaps
and pixel maps to produce flicker-free updating with a minimum of code restructuring. OffSample
attempts to reduce the amount of “knowledge” it has of the off-screen structure so as to minimize
its dependence upon that unit.

OffSample emphasizes using the Offscreen unit; it is not intended to be viewed as a complete
application on which to base some larger effort. Instead, its method of using off-screen bitmaps
and pixel maps should be studied and adapted to other applications that desire features like flicker-
free updating.

eee

#16; OffSample 1 of 1

C)

Macintosh a
Sample Code Notes =.

Developer Technical Support

#17: TbitDrvr

Written by: | Cameron Birse

Versions: 1.00 April 1989

Components: TbltDrvr.a April 1, 1989

"ADBS' resources are loaded and executed at boot time (before INIT 31), and they are made of
two main parts, the installation or initialization code and the the actual driver.

In this example, the installation portion allocates memory in the system heap for the service routine
and the “optional data area.” It installs the driver using the Apple Desktop Bus (ADB) Manager
call SetADBInfo.

Generally speaking, ADB devices are intended to be user input devices. The ADB Manager polls
the bus every 11 milliseconds to see if a device has new user input data. This polling is
accomplished by sending a talk RO command to the last active device. The last active device is the
last device that had data to send to the host. If another device has data, it can request a poll by
sending a service request signal to the host.

When a device has responded to a poll, the ADB Manager will call the driver to process the data.
This call is done a interrupt time (level 1), and the driver is passed the data, by getting a pointer to a
Pascal string which contains the actual data.

In this example, the data is in the form of a pointing device’s coordinates and button state. When
the driver gets the data, it stores the coordinate information in RawMouse and MTemp. We stuff
both RawMouse and MTemp, because the tablet is an “absolute” device. It also checks the state of

the button against MBSt ate, and if there has been a change, it will update MBSt ate. and post
either a mouse-up or mouse-down event, as appropriate.

Note: This code demonstrates how to move the cursor position. This information is
meant for input device drivers only; this technique should not be used by
applications to move the cursor. Moving the cursor is bad user interface, and
nobody likes a bad user interface, so “Just Say No.”

SS

#17: TbltDrvr 1 of 1

Macintosh “
Sample Code Notes

Developer Technical Support

#18: StdFile

Written by: _—‘ Keith Rollin

Versions: 1.00 April 1989

Components: StdFile.c April 1, 1989

StdFile.p April 1, 1989
StdFile.h April 1, 1989
StdFile.r April 1, 1989
StdFile.rsrce April 1, 1989
CStdFile.make April 1, 1989

PStdFile.make April 1, 1989

StdFile attempts to demonstrate the following techniques:

* Normal use of SFGetFile and SFPutFile.
* Normal use of SFPGetFile and SFPPutFile, which includes the use of

custom dialogs and handling extra items through the implementation of a
D1gHook.

¢ First time initialization.
¢ Extra simple buttons (Quit, Directory, ThisDir).
* Radio buttons (file format, types of files to show).
* Aliasing—click on some buttons to click on other buttons.
* Regenerating the list of files displayed.
Creating a full pathname from a reply record (using working directories or Dir ID)
Selecting a directory (@ la MPWs “GetFileName -d”)
Simple file filter (checks file type).
Complex file filter (looking inside the file).
Adding and deleting List Manager lists and extra List Manager lists. This is shown
for both SFGet File and SFPutFile.

* Select multiple files using one of two methods.
* Replace StdFile’s list with one of your own.
* Add a second list to the dialog box. This method is not shown explicitly, but

rather, I show how to install and dispose of the actual list item. Inserting
filenames into the list is left as an exercise to you, the programmer.

¢ Setting the starting directory or volume.
* Describe pending update event clogging.

eeee®@

Note: This application assumes the existence of HFS. It makes HFS calls and accesses
HFS data structures without first checking to see if HFS exists on this machine.
In some cases, you will see me make use of a peculiar Pascal syntax: IF <expr>
THEN;. This is intentional, as it gets the Pascal compiler to discard function results
in which I have no interest.

eee

#18: StdFile
1 of 1

Macintosh U
Sample Code Notes §

Developer Technical Support

#19; TEStyleSample

Written by: Mary Burke

Versions: 1.00 February 1990

Components: PTEStyleSample.p February 1, 1990
TEStyleSampleGlue.a February 1, 1990
TEStyleSample.r February 1, 1990
TEStyleSample.h February 1, 1990
PTEStyleSample.make February 1, 1990

—_—_—_snnkr_

TEStyleSample is an example application that demonstrates how to initialize the commonly used
toolbox managers, operate successfully under MultiFinder, handle desk accessories and Create,
grow, and zoom windows. Both styled and fundamental TextEdit toolbox calls and TextEdit auto-
scroll are demonstrated. It also shows how to create and maintain scroll bar controls as well as
implement a basic printing loop.

eee

#19: TEStyleSample 1 of 1

a
Macintosh -
Sample Code Notes es

Developer Technical Support

#20: Transformer

Written by: Keith Rollin

Versions: 1.00 February 1990

Components: MTransformer.p February 1, 1990
Transformer.c February 1, 1990
Transformer.r February 1, 1990
UTransformer.p February 1, 1990
UTransformer.incl.p February 1, 1990
Transformer .MAMake February 1, 1990

Additional Documentation: |The Amazing Bitmap Transmogrifier

Transformer is a sample program that demonstrates:

bitmap transformations
mixing MacApp with C subroutines
mixing 68881 and non-68881 code together
calling of MacApp routines from C
using CursorCtl routines
turning on and off the MacApp BusyCursor mechanism

It uses a MacApp shell to open file, open windows, and handle menus, but uses a core routine
written in vanilla C to perform the actual transformation. The transformation consists of
translating, scaling, and rotating. The comments in the source code are sparse, if existant at all, so
gleaning how the transformation routine works is very difficult. To explain what is going on, a
sister document, The BitMap Transmogrifier, has been included. It explains all of the necessary
math, and shows how the formulas were derived. There are also lots of pictures.

Adding C routines to a MacApp program used to be a pain, but no longer. Previously, weird
gyrations had to be performed in order to get things to link correctly and without lots of warnings
or errors. Now with MacApp 2.089 and later, support has been explicitly provided in MABuild for
mixing in C.

For best performance, the C routine is compiled with the -mc68881 option (this is set in the
MAMake file). A problem arises with this, as an extended value is passed from the non-FPU
Pascal code to the FPU C code. Since the size of extended values changes depending on the setting
of the ie options, the parameters have to be converted as per page 347 of the MPW 3.0 Pascal
manual.

In our C routine, we make use of some of the MacApp utilities. This is done by making a small set
of external declarations that match the Pascal interfaces for the routines we are interested in. This is
done for FailNIL, FailOSErr, and BusyActivate.

#20: Transformer 1 of 2

Macintosh Sample Code Notes

BusyActivate is a routine that controls the BusyCursor mechanism of MacApp. This mechanism
gives MacApp programs a built-in watch cursor that kicks in whenever the application is involved
in a lengthy process. During our transformation routine we want this turned off, as we supply our
own busy indicator with the CursorCtl library routines.

The CursorCtl library routines allow one to implement the spinning beachball cursor. We set this
up when we initialize our application with a call to InitCursorCtl. This reads in our 'acur' and
'CURS" resources and initializes them in whatever way it deems necessary. When we need to
show the spinning cursor, we just start calling SpinCursor() with some rotation value. This
rotation value is added to an internal counter. When this counter reaches 32, the next cursor
specified in the 'acur' resource is shown. More information on this is included in the interface
files for CursorCtl.

NN

ZOE #20: Transformer

VY

oO
Macintosh U

Sample Code Notes =

Developer Technical Support

#21: ModalList

Written by: James Beninghaus

Versions: 1.00 February 1990

Components: ModalList.c February 1, 1990

ModalList.h February 1, 1990

ModalList.r February 1, 1990

ModalList.make February 1, 1990

ModalList is an example using a list in a dialog window. The default LDEF is used to display a

two-dimensional list of strings. You can scroll the list, search for and change cell contents, and

change the list’s selection flags.

Please review Sample or TESample for the general application structure and MultiFinder

techniques you should use when writing a new application. This sample is meant to demonstrate

the use of the List Manager and Dialog Manager routines.

#21: ModalList 1 of 1

as

4 Macintosh
Sample Code Notes S

Developer Technical Support

#22: ScreenFKey

Written by: | Guillermo Ortiz

Versions: 1.00 February 1990

Components: ScreenFKey.p February 1, 1990

ScreenFKey.a February 1, 1990

ScreenFKey.make February 1, 1990

ScreenFKey is a basic example on how to spool a PICT file to disk by replacing the bottleneck

PutPICProc, it saves the contents of the screen to a file. The FKEY creates ten files Screen 0
through Screen 9; it is necessary to erase or rename old files when the limit is reached.

This FKEY works in any Macintosh computer and saves the screen regardless of the setting of the
screen; to use, it has to be added to the System file using ResEdit.

ATTENTION 32-BIT QD USERS: A ‘feature’ in 32 Bit Quickdraw makes it possible for this
FKEY to fail under normal conditions (normal means it would work okay without 32-Bit QD) the
symptoms are lost cursor and empty pictures. The cheap solutions are use Finder or increase the
partition size for your application. As a quick reference if the main screen is set to 8-bits deep then
32-Bit QD will try to allocate a 300K handle, when the main screen is a direct device 32-bit deep
then 1.2M is necessary. Future versions will compensate for this anomalous behavior.

#22: ScreenFKey lof 1

